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The formation of carbon-carbon and carbon-heteroatom bonds 

via direct C-H functionalization has emerged as an efficient 

methodology for the synthesis of biologically active molecules 

and functionalized materials.
1
 Transition metals are commonly 

required to accelerate the C-H activation step,
2
 however, the 

recovery and reuse of “soluble” metal catalysts can be 

challenging. It is therefore more beneficial that recyclable 

materials replace conventional homogeneous analogues as 

catalysts for organic transformations.
3
 The use of heterogeneous 

catalysts, such as a metal organic framework-,
4a-c

 carbon-,
4d-k

 

alumina-,
4l
 or polymer-supported catalysts,

4m-n
 for C-H activation 

has been reported. However, complex catalytic systems are 

scarcely available and expensive second- or third-row metals are 

required. Few literature examples describe simple and first-row 

transition metal-based catalysts for C-H functionalization.
5
 

Notably, reusable, heterogeneous copper catalysis is used in these 

rare cases.
5d-g

 As part of our continued interest in copper-
promoted C-H activation/functionalization,6 herein, we report a 

method for the copper ferrite nanoparticle-catalyzed, directed O-

H/C-H coupling of (2-hydroxyphenyl)benzoazoles and N,N-

dialkyl formamides. 

In this protocol, the benzothiazole motif acts as a directing 

substituent, thus facilitating the coupling transformation to give a 
hybrid benzothiazole-carbamate moiety. Based on previous C-H 

functionalization reactions reported by our group,
6,7

 copper ferrite 

nanoparticles were used as the catalyst and tert-butyl 

hydroperoxide (tBuOOH) was chosen as the oxidant. 

Optimization with respect to the catalyst and oxidant is 

illustrated in Table 1. tBuOOH in decane (Entry 1) was an 

inferior oxidant compared with tBuOOH in water (Entry 2). The 

inorganic oxidant K2S2O8 afforded 3 in low yield (Entry 3). 

Conducting the reaction at 60 °C substantially decreased the 

reaction yield (Entry 4), whilst decreasing the amount of oxidant 

still gave product 3 in good yield (Entry 5). Other heterogeneous 
iron-based catalysts were inferior (Entries 6-8). Finally, the 

reaction in air without an external oxidant was inefficient (Entry 

9), and copper ferrite was found to be necessary (Entry 10).  

Table 1. Optimization conditions and control experiments
a 

Entry Catalyst Oxidant Yield 3 (%) 

1 Nano CuFe2O4 tBuOOH/decane (6 M) 59 

2 Nano CuFe2O4 tBuOOH/water (70%) 72 

3 Nano CuFe2O4 K2S2O8 < 5 

4b Nano CuFe2O4 tBuOOH/water (70%) < 5 

5c Nano CuFe2O4 tBuOOH/water (70%) 76 

6c Nano NiFe2O4 tBuOOH/water (70%) < 5 

7c Nano Fe3O4 tBuOOH/water (70%) N.R. 

8c Nano Fe2O3 tBuOOH/water (70%) N.R. 

9d Nano CuFe2O4 - < 5 

10 - tBuOOH/water (70%) N.R. 
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The copper ferrite-catalyzed, directed coupling of ortho-arylated phenols and dialkylformamides 

in the presence of a peroxide oxidant is described. Acyclic and cyclic amides were compatible with 

the reaction conditions. The copper ferrite catalyst is heterogeneous since substantial leaching was

not detected and re-use of the catalyst for 9 consecutive reactions proceeded without a significant

decrease in yield.  To the best of our knowledge, this transformation has not been previously 

performed under heterogeneous catalysis conditions. 

2009 Elsevier Ltd. All rights reserved.
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a Reagents and conditions: (2-hydroxyphenyl)benzothiazole 1 (0.5 mmol), 

N,N’-dimethylformamide 2 (1.5 mL), catalyst (0.025 mmol, 5 mol%), oxidant 
(2 mmol), 100 °C, 1 h. Yields determined by GC analysis, with diphenyl 

ether as the internal standard. b Temperature: 60 °C. c tBuOOH/water (0.5 
mmol). d air as the sole oxidant. Further optimization is contained in the ESI 

(Table S1-2). 

Table 2. Coupling of phenols containing the benzoazole motif 

and formamides
a 

 

Entry Phenol Formamide Product Yield 
(%) 

1 

1 

HC(O)NMe2 

2 

3 

72 

2 

1 

HC(O)NEt2 

4 

5 

75 

3 

1 

HC(O)N(iPr)2 

6 

7 

70 

4 

1 

HC(O)N(nBu)2 

8 

9 

64 

5 

1 

10 

11 

71 

6
 

 

1 

12 

 

13 

66 

7 

14 

HC(O)NMe2 

2 

15 

72 

8 

16 

HC(O)NMe2 

2 

17 

74 

a Reagents and conditions: (2-hydroxyphenyl)benzoazole (0.5 mmol), 

dialkylformamide (19 mmol), CuFe2O4 (0.025 mmol, 5 mol%), 
tBuOOH/water (0.5 mmol), 100 °C, 2 h. Isolated yields. See ESI for details. 

The reaction scope with respect to the ortho-arylated phenols 

and dialkylformamides is presented in Table 2. 

Diethylformamide and dimethylformamide were both coupled 

with (2-hydroxyphenyl)benzothiazole in good yields (Entries 1-

2). Steric hindrance (Entry 3) or a longer alkyl chain (Entry 4) on 

the formamide nitrogen did not significantly affect the reaction 
yield. Formamides bearing a cyclic amide moiety afforded the 

corresponding products in reasonable yields (Entries 5-6). 

Additionally, benzoxazole (Entry 7) and benzimidazole (Entry 8) 

were competent substrates for the reaction. In contrast to copper- 

or iron-catalyzed, non-directed dehydrogenative coupling, the 

reaction of benzimidazole did not favor C-N bond formation 
(Entry 8).8  

The research was subsequently extended to the coupling of 

other phenols with dialkylformamides in the presence of the 

copper ferrite catalyst.  It was found that phenols containing 

carbonyl substituents at the ortho position were also reactive 

towards this transformation, affording the corresponding 
carbamates in reasonable yields (Entries 1-4, Table S3). 

However, carbonyl substituents at the meta- or para- position did 

not promote the coupling reaction (Entries 5-6, Table S3).  

Interestingly, 2-(4,5-dihydro-1H-imidazol-2-yl)phenol (Entries 7-

8, Table S3) was inactive, with no trace of the carbamates 

detected. Similarly, phenol, 2-phenyl phenol, and 2-methyl 
phenol were also inert in this reaction (Entries 9-11, Table S3). 
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Figure 1. Leaching test of copper ferrite nanoparticles. 
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Figure 2. Reusability of the copper ferrite catalyst. 
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Leached homogeneous species have been reported to effect C-

H functionalization reactions;
9
 therefore control experiments 

were necessary to confirm the heterogeneity of the copper ferrite 
nanoparticles. Obviously, if additional product 3 was generated 

after the catalyst was separated from the reaction mixture, the 
contribution of homogeneous catalysis to the reaction of 1 with 2 

would be significant. It was observed that upon catalyst removal 
after 30 min the reaction did not substantially yield additional 

product 3, indicating that leaching of the active species was 
negligible (Fig. 1).  

Additionally, recovery and reuse of the copper ferrite catalyst 
was demonstrated  for the reaction of 1 with 2. After the first run, 

the catalyst was gathered by magnetic decantation, washed 
carefully with DMF and MeOH, dried under vacuum, and reused 

in subsequent reactions. It was observed that the regenerated 

catalyst afforded the desired product without a significant 

decrease in yield; a 72% yield of compound 3 was achieved in 
the 9

th
 run (Fig. 2). Moreover, the structure of the nanoparticle 

CuFe2O4 was maintained during the reaction, as disclosed by 

XRD analysis (Fig. 3).  
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Figure 3. XRD analysis of the new (a) and recovered (b) catalyst. 
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Figure 4. Affect of radical scavengers. 
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Figure 5. Plausible mechanism. 

 

To explore the pathway for the reaction of 1 with 2, (2,2,6,6-

tetramethylpiperidin-1-yl)oxy (TEMPO) and ascorbic acid were 

added to the reaction mixture after 10 min. It was found that the 

reaction was affected by the radical scavengers, with 26% and 
38% yields of 3 obtained under these conditions (Fig. 4). These 

observations demonstrated that the interaction of TEMPO or 

ascorbic acid with the radical species generated in the catalytic 

cycle could stop the transformation. Furthermore, the reaction of 

phenol, 2-phenyl phenol, and 2-methyl phenol, respectively, with 

2 did not occur (Entries 9-11, Table S3), confirming that the 

nitrogen functionality in 1 is actually promoting the coupling 

reaction. As mentioned earlier, 2-(4,5-dihydro-1H-imidazol-2-

yl)phenol (Entries 7-8, Table S3) was unable to react with 

dialkylformamides, indicating the necessity of the benzene ring of 

the (2-hydroxyphenyl)benzoazoles to the reaction. 

The reaction of 1 with 2 utilizing the nanoparticle CuFe2O4 

catalyst proceeded in 76% yield, while both nanoparticle Fe2O3 

and nanoparticle Fe3O4
 
 were inactive, suggesting that the copper 

sites on the CuFe2O4 superparamagnetic nanoparticles were 

responsible for the catalytic activity. A possible mechanism is 

proposed in Figure 5. Chelation of (2-

hydroxyphenyl)benzothiazole to the copper sites forms a 
cyclometalated species.

10
 Single-electron oxidative addition of 

copper(II) by the formamide radical generates a copper(III) 

species, which then undergoes reductive elimination to afford the 

product and the copper(I) species. Catalyst regeneration proceeds 

via oxidation of copper(I) by either peroxide or the oxygen in air.  

In conclusion, we have developed a method for the copper 
ferrite-catalyzed, directed coupling of phenols and 

dialkylformamides. Benzothiazole, benzoxazole, benzimidazole 

and formamides bearing acyclic and cyclic substituents on 

nitrogen are compatible with the reaction conditions. Copper 

ferrite could be recovered by magnetic decantation, and reused 

without significant leaching. To the best of our knowledge, this 

transformation has not been previously performed under 

heterogeneous catalysis conditions.  
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Highlights 

• CuFe2O4 nano particles were used as a catalyst 

for directed phenol/formamide coupling. 

• High yields were obtained. 

• The magnetic catalyst could be recovered and 

reused. 
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