

Functionalized Periodic Mesoporous Organosilica: A Highly Enantioselective Catalyst for the Michael Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes

Ketang Liu,^[a] Ronghua Jin,^[a] Tanyu Cheng,^[a] Xiangming Xu,^[a] Fei Gao,^[a] Guohua Liu,^{*[b]} and Hexing Li^{*[b]}

Abstract: A functionalized periodic mesoporous organosilica with incorporated chiral bis(cyclohexyldiamine)based Ni^{II} complexes within the silica framework was developed by the cocondensation of (1R,2R)-cyclohexyldiamine-derived silane and ethylenebridge silane, followed by the complexation of NiBr₂ in the presence of (1R,2R)-N,N'-dibenzylcyclohexyldiamine. Structural characterization by XRD, nitrogen sorption, and TEM disclosed its orderly mesostructure, and FTIR and solid-state NMR spectroscopy demonstrated the incorporation of well-defined single-site bis(cyclohexyldiamine)-based Ni^{II} active centers within periodic mesoporous organosilica. As a chiral heterogeneous catalyst, this functionalized periodic mesopo-

Keywords: asymmetric catalysis • heterogeneous catalysis • immobilization • mesoporous materials • Michael addition rous organosilica showed high catalytic activity and excellent enantioselectivity in the asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroalkenes, comparable to those with homogeneous catalysts. In particular, this heterogeneous catalyst could be recovered easily and reused repeatedly up to nine times without obviously affecting its enantioselectivity, thus showing good potential for industrial applications.

Introduction

Great success has been achieved in the immobilization of homogeneous catalysts within silica-based mesoporous materials for asymmetric catalysis.^[1] Various self-assemblies of functionalized inorganosilanes and organosilanes through postsynthesis and co-condensation methods have dominated the preparation of heterogeneous catalysts. Some of these inorganosilane-based mesoporous materials, such as MCM-41,^[2] SBA–15,^[3] and SBA-16,^[4] have been successfully used to immobilize homogeneous chiral catalysts and have exhibited excellent enantioselectivities in various asymmetric re-

[a] K. Liu, R. Jin, T. Cheng, X. Xu, F. Gao Department of Chemistry College of Life and Environmental Science Shanghai Normal University No.100 Guilin Rd., Shanghai 200234 (P.R. China)
[b] Prof. G. Liu, Prof. H. Li Kayu Laboratory of Basaurae Chemistry of Ministry

Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University No.100 Guilin Rd., Shanghai 200234 (P.R. China) Fax: (+86)2164321819 E-mail: ghliu@shnu.edu.cn Hexing-Li@shnu.edu.cn

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201202407.

actions. In particular, as a typical organosilane-based mesoporous material, periodic mesoporous organosilicas (PMOs) with a bridging chiral moiety within the silica framework have shown some salient features in asymmetric catalysis.^[5] Besides the general advantages of inorganosilane-based mesoporous materials, such as relatively large surface area, tunable pore volume, and well-defined pore arrangement, periodic mesoporous organosilicas have obvious hydrophobicity, owing to their intrinsic organic functionality on their inner surface, which can promote catalytic activity. More importantly, functionalized periodic mesoporous organosilicas with chiral ligands embedded within the silica framework possess special rigidity, which is beneficial for the construction of suitable chiral microenvironments to enhance enantioselectivity. Moreover, they also exhibit superior thermal and mechanical stability relative to polymer-supported catalysts, which makes them easy to separate and convenient to recycle. Although lots of periodic mesoporous organosilicas with achiral-functionalized alkyl and aryl groups embedded within silica frameworks have been reported,^[6] only a few examples have successfully incorporated chiral functionality within the silica framework.^[5,7] Moreover, most of these still frameworks suffer from lower catalytic activities and enantioselectivities than their corresponding homogeneous catalysts. Thus, exploiting suitable chiral-functionalized periodic mesoporous organosilicas for highly efficient asymmetric catalysis remains a scientific and technological challenge.

As one type of important carbon-carbon bond-formation reactions, chiral bis(cyclohexyldiamine)-based Ni^{II} com-

15546 -

plexes exhibit high catalytic activity and excellent enantioselectivity in the asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroalkenes.^[8] In particular, their chiral products are used extensively as useful chiral building blocks to generate chiral amino acids and fivemembered nitrogen heterocycles.^[9] More importantly, the investigation of its catalytic mechanism has disclosed that singlesite bis(cyclohexyldiamine)based Ni^{II} active species play an exclusive role in this asymmetric addition reaction.^[8a] Thus, the immobilization of chiral bis(cyclohexyldiamine)-based Ni^{II} complexes within periodic

mesoporous organosilicas could not only eliminate unexpected disturbances to solve the complicated compatibility of functionalities in a heterogeneous catalysis system but it could also further elucidate the catalytic mechanism from the viewpoint of solid-state chemistry.

We are interested in mesoporous-silica-supported heterogeneous catalysts;^[10] in particular, their use in the development of silica-based heterogeneous catalysts. Recently, we have reported a series of chiral, heterogeneous, inorganosilica-based ruthenium, rhodium, and iridium catalysts and some of these have showed highly catalytic activity and excellent enantioselectivity in the asymmetric transfer hydrogenation of ketones.^[11] Herein, we report the successful incorporation of chiral bis(cyclohexyldiamine)-based Ni^{II} complexes within ethylene-bridged periodic mesoporous organosilica to afford an organosilane-based chiral heterogeneous Ni^{II} catalyst that has shown high catalytic activity and excellent enantioselectivity in the asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroalkenes. Moreover, an exploration of the heterogeneous mono(cyclohexyldiamine)based Ni^{II} catalyst and an investigation of the recyclability of the heterogeneous bis(cyclohexyldiamine)-based Ni^{II} catalyst were also performed.

Results and Discussion

Synthesis and structural characterization of the heterogeneous catalyst: The chiral heterogeneous bis(cyclohexyldiamine)-based ethylene-bridged Ni^{II} catalyst, abbreviated as DACH-Ni-PMO (5, DACH = (1R,2R)-1,2-diaminocyclohexane), was prepared as outlined in Scheme 1. First, (1R,2R)-N,N'-dibenzylcyclohexyldiamine-derived silane, with trimethlysilyl groups at the 4-positon of the aromatic ring, was synthesized according to a literature procedure.^[3a] Then, the co-condensation of (1R,2R)-DACH-derived silane 1 and ethylene-bridged silane 2 afforded (1R,2R)-DACH-functional-

As shown in Figure 1, FTIR spectroscopy of the (1R,2R)-DACH-functionalized PMO (3) and of heterogeneous catalyst 5 showed the characteristic bands of PMO-type materi-

Figure 1. FTIR spectra of compounds 3 and 5.

Chem. Eur. J. 2012, 18, 15546-15553

www.chemeurj.org

FULL PAPER

Scheme 1. Synthesis of heterogeneous catalyst 5.

als at around 3421, 1189, 1609, and 440 cm⁻¹ for ν (O–H), ν (Si–C), ν (Si–O) and ω (C–H), respectively.^[12] The relatively weak bands between 3100–2800 cm⁻¹ were assigned to asymmetric and symmetric stretching vibrations of the C–H bonds, whilst the bands between 1610–1400 cm⁻¹ were attributed to stretching vibrations of the C=C bonds both in the ethylene groups and in the aromatic rings. In comparison with compound **3**, the bands at 1609, 1453, and 1403 cm⁻¹ in compound **5** were consistently more intense, thus implying that (1*R*,2*R*)-*N*,*N'*-dibenzylcyclohexyldiamine (**4**) participated in the coordination of Ni centers to form bis(cyclohexyldiamine)-based Ni^{II} complexes within the periodic mesoporous organosilica.

The incorporation of bis(cyclohexyldiamine)-based Ni^{II} complexes within periodic mesoporous organosilica was further confirmed by solid-state NMR spectroscopy. As shown in Figure 2, the ¹³C cross-polarization magic angle spinning

Figure 2. Solid-state ¹³C CP MAS NMR spectrum of compound 5.

(CP MAS) NMR spectrum of compound 5 clearly showed the characteristic peaks of bis(cyclohexyldiamine)-based Ni^{II} complexes. Notably, the protons of the aromatic rings inside and outside the silica framework gave obviously different chemical-shift values. In sharp contrast to those of (1R,2R)-DACH-functionalized PMO 3 (see the Supporting Information, Figure S1), the chemical shifts of the Ph groups outside the silica framework (denoted by asterisks, Figure 2) were at their normal values, whilst those inside the silica framework were obviously shifted down-field, owing to the deshielding effect of the ethylene groups within the silica framework. Similarly, a difference between the protons on the methylene moiety of the benzyl groups inside and outside the silica framework was also observed. To further confirm these structural arrangements, the ¹³C CP MAS NMR spectrum of a mono(cyclohexyldiamine)-based Ni^{II}-acetylacetone intermediate,^[8a] which was obtained by the treatment of heterogeneous catalyst 5 with acetylacetone, was also investigated. As shown in Figure 3, we found that the mono(cyclohexyldi-

Figure 3. Solid-state ¹³C CP MAS NMR spectrum of compound **5** after treatment with acetylacetone.

amine)-based Ni^{II}-acetylacetone intermediate showed the same typical peaks as the bis(cyclohexyldiamine)-based Ni^{II} complexes and only the intensity of the peaks varied. The obviously less-intense peaks (denoted by asterisks, Figure 3) should be ascribed the protons of the Ph groups outside the silica framework, thus indicating that parts of the bis(cyclohexyldiamine)-based Ni^{II} complexes were displaced by acetvlacetone molecules. This behavior suggested that the potential ligand displacement between (1R,2R)-N,N'-dibenzylcyclohexyldiamine and the substrates would play an important role in the catalytic performance (see below). In addition, the undisplaced peaks of the protons on the aromatic rings remained at their original values, thus demonstrating that these protons in the aromatic rings were inside the silica framework. In particular, two new peaks at $\delta = 193$ and 102 ppm corresponded to the C atoms of the C=O group and the enolized position, respectively, which was evidence for the formation of the mono(cyclohexyldiamine)based Ni^{II}-acetylacetone intermediate. All of these observations demonstrated the successful incorporation of bis(cyclohexyldiamine)-based Ni^{II} complexes within periodic mesoporous organosilica.

The ²⁹Si CP MAS NMR spectra (Figure 4) clearly showed that DACH-functionalized PMO (**3**) and heterogeneous cat-

Figure 4. Solid-state ²⁹Si MAS NMR spectra of compounds 3 and 5.

FULL PAPER

alyst **5** possessed the organosilicate framework.^[5,10a,b] In the case of the heterogeneous catalyst (**5**), the characteristic signals of the T series at $\delta = -74.5$ and -82.9 ppm, which corresponded to T² (R–Si(OAr)₂(OH)) and T³ (R–Si(OAr)₃), suggested that all of the Si species were covalently attached to carbon atoms,^[10a-b] whereas the most intense T² signal revealed that the R–Si(OAr)₂(OH) species were predominantly inside the silica framework. Furthermore, the absence of signals for the Q series from $\delta = -90$ to -120 ppm indicated that no cleavage of the carbon–silicon bond occurred during the hydrolysis/condensation process.

The (1R,2R)-DACH-functionalized PMO material (3) and the heterogeneous catalyst (5) showed the same intense d_{100} diffraction peak as those of typical PMO materials in their small-angle XRD patterns (Figure 5), thus suggesting that

Figure 5. Powder XRD patterns of compounds 3 and 5.

the hexagonal pore structure (p6mm) could be preserved after the co-condensation and complexation.^[10b] TEM analysis further confirmed that both the (1R,2R)-DACH-functionalized PMO material (**3**) and the heterogeneous catalyst (**5**) formed highly ordered mesostructures with hexagonal arrangements (Figure 6). In addition, nitrogen-adsorption/-de-

Figure 6. TEM images of compounds **3** and **5**, viewed along the [100] and [001] directions.

sorption isotherms of both the (1R,2R)-DACH-functionalized PMO material (3) and the heterogeneous catalyst (5) exhibited typical type-IV isotherms with a H₁ hysteresis loop and a visible step at $P/P_0=0.30-0.70$, which corresponded to the capillary condensation of nitrogen in the

Figure 7. Nitrogen adsorption-desorption isotherms of compounds **3** and **5**.

mesopores (Figure 7). As shown by the structural parameters (Figure 5), the complexation of NiBr₂ within the periodic mesoporous organosilicas caused a decrease in mesopore size, surface area, and pore volume, presumably owing to the coverage of the pore surface with bis(cyclohexyldiamine)-based Ni^{II} complexes, thereby leading to an increase in the wall-thickness.^[13] Based on these above studies, a chiral heterogeneous PMO-based Ni^{II} catalyst with a highly ordered mesostructure could be readily obtained in this case.

Catalytic properties of the heterogeneous catalysts: The asymmetric Michael addition of malonate to nitroalkenes has been investigated extensively as one type of important carbon-carbon bond-formation reactions.[8,14] With heterogeneous catalyst 5 in hand, we first examined its catalytic activity and enantioselectivity in the asymmetric Michael addition of diethylmalonate to nitrostyrene. As shown in Table 1, entry 1, the catalytic addition of diethylmalonate to nitrostyrene gave chiral products with more than 99% conversion and 94% ee, which were comparable to the values with the parent homogeneous catalyst (Table 1, entry 1, in parentheses^[8a]). In this case, the high enantioselectivity might be due to the fact that the bis(cyclohexyldiamine)based Ni^{II} active centers that were incorporated within the periodic mesoporous organosilicas remained in the same chiral microenvironment as the parent homogeneous catalyst. To confirm this conclusion, X-ray photoelectron spectroscopy (XPS) of the heterogeneous catalyst (5) and the homogeneous bis(cyclohexyldiamine)-based Ni^{II} complex, abbreviated as DACHNiDACH, was performed. As shown in Figure 8, the XPS spectra of the heterogeneous catalyst (5) showed almost the same Ni $2p_{3/2}$ electron-binding energy as the parent DACHNiDACH complex (855.53 versus 855.51 eV),^[15] thus confirming that the high enantioselectivity originated from the unchanged chiral-coordination microenvironment.

Based on this excellent result, heterogeneous catalyst **5** was further investigated systemically in this asymmetric addition reaction. We found that most of the tested substrates

www.chemeurj.org

Table 1. Asymmetric Michael addition of malonates to nitroalkenes.^[a]

RO-	Ŭ	OR ⁺ Ar	✓ ^{NO} 2	$\xrightarrow{\text{Catalyst 5}}_{\text{Toluene}} RO \xrightarrow{\text{O}}_{\text{CO}_2 R}^{\text{AI}} NO_2$				
Entry	R	Ar	Run	<i>t</i> [h]	Conv. [%] ^[b]	ee [%] ^[b]	TOF	
1	Et	Ph	1	8	>99(99)	94(94) ^[c]	6.3	
2	Et	Ph	1	12	89	94 ^[d]	3.7	
3	Et	Ph	1	48	45	89 ^[e]	0.5	
4	Et	Ph	1	48	29	1 ^[f]	0.3	
5	Me	Ph	1	8	>99	95	6.3	
6	Bn	Ph	1	12	>99	94	4.2	
7	iPr	Ph	1	16	>99	95	3.1	
8	tBu	Ph	1	120	76	95	0.3	
9	Et	4-MePh	1	12	99	95	4.1	
10	Et	4-OMePh	1	12	98	95	4.1	
11	Et	4-BrPh	1	12	>99	93	4.2	
12	Et,	2-ClPh	1	12	>99	95	4.2	
13	Me	Ph	2	12	>99	95 ^[g]	4.2	
14	Me	Ph	3	12	>99	95 ^[g]	4.2	
15	Me	Ph	4	12	>99	95 ^[g]	4.2	
16	Me	Ph	5	12	>99	94 ^[g]	4.2	
17	Me	Ph	6	12	>99	94 ^[g]	4.2	
18	Me	Ph	7	12	>99	93 ^[g]	4.2	
19	Me	Ph	8	12	>99	94 ^[g]	4.2	
20	Me	Ph	9	12	98	94 ^[g]	4.1	

[a] Reaction conditions: catalyst (58.8 mg, 0.02 mmol of Ni, based on ICP analysis), nitroalkene (1.0 mmol), malonate (1.0 mmol), toluene (4.0 mL), 40 °C, 12–120 h; turnover frequency (TOF=mole of substrate converted per mole of Ni complex per hour). [b] Determined by chiral HPLC analysis (Chiralcel AD-H column; see the Supporting Information, Figures S3 and S4); conversion was calculated by using an external standard. [c] Data are taken from reference [8a]. [d] Data were obtained by using a physical mixture of (1*R*,2*R*)-DACH-functionalized PMO (**3**) and NiBr₂ in the presence of (1*R*,2*R*)-*N*,*N'*-dibenzylcyclohexyldiamine as a catalyst. [e] Data were obtained by using a physical mixture of (1*R*,2*R*)-*N*,*N'*-dibenzylcyclohexyldiamine. [f] Data were obtained by using 20% mol of (1*R*,2*R*)-DACH-functionalized PMO (**3**) as a catalyst. [g] Data were obtained by using the reused DACH-Ni-PMO (**5**) as a catalyst.

Figure 8. XPS spectra of DACHNiDACH and compound 5.

afforded their corresponding products with high conversions and excellent enantioselectivities under similar conditions. More interestingly, the steric properties of substituted malonates significantly affected their catalytic activities. As shown in Table 1, entries 1 and 4–7, as the alkyl ester group

(R) became enlarged, their asymmetric reactions needed longer reaction times to reach completion. Indeed, in the case where the R group was a tert-butyl group (Table 1, entry 7), the reaction was not complete within three days. A reasonable explanation for this result was that the steric bulk of the mesopores was responsible for this trend, in which the large, sterically substituted malonates found it difficulty to enter the nanopores, thereby leading to prolonged reaction times. Evidence to support this view came from two comparable experiments, in which physical mixtures of the (1R,2R)-DACH-functionalized PMO (3) and an equimolar amount of the malonate (diethylmalonate or di-tert-butylmalonate) were suspended in the solution under the same conditions. After stirring for 4 h and filtering, the molar ratio of the two reactants in solution was 1:11.5, as detected by GC analysis, thus confirming that di-tert-butylmalonate found it more difficult to penetrated the mesopores, owing to the steric bulk of the mesopores. Furthermore, the electronic properties of the substituents on the nitroalkenes did not affect its catalytic activity and enantioselectivity. The reactions of diethyl malonate with electron-rich and electronpoor substituents on the nitroalkenes were equally efficient in the asymmetric Michael addition of diethylmalonate to nitroalkenes (Table 1, entries 8-11).

To gain better insight into the nature of this heterogeneous catalysis and to eliminate the disturbance that originates from mono(cyclohexyldiamine)-based Ni^{II} complexes within PMO materials, two control experiments were also carried out in which the asymmetric addition of diethylmalonate to nitrostyrene was performed with (1R,2R)-DACH-functionalized PMO (3) and NiBr₂ in the presence or absence of (1R,2R)-N,N'-dibenzylcyclohexyldiamine as the heterogeneous catalysts. We found that the former reaction afforded the corresponding products with 89% conversion and 94% ee (Table 1, entry 2), whilst the latter reaction gave the corresponding products with 45% conversion and 89% ee (Table 1, entry 3). The former result suggested that the catalyst that was synthesized by an in situ postmodification method also showed moderate catalytic performance. Its lower catalytic activity than that of catalyst 5 should be due to the fact that a small amount of NiBr₂ had not coordinated during the catalytic process, in which the loss of Ni was detected by ICP analysis in solution. The latter reaction indicated that the presence of mono(cyclohexyldiamine)-based Ni^{II} complexes was a key factor in determining chiral performance. Obviously, its lower catalytic efficiency than that of the heterogeneous catalyst (5) should be ascribed to the nature of the mono(cyclohexyldiamine)-based Ni^{II} complexes,^[8a] in which the absence of additional (1R,2R)-N,N'-dibenzylcyclohexyldiamine group as a Brönsted base could not activate diethylmalonate to form deprotonated metal-bound acetylacetone, thereby resulting in decreased catalytic performance. In other words, bis(cyclohexyldiamine)-based Ni^{II} active centers within periodic mesoporous organosilicas played a dual role as the homogeneous catalyst:^[8a] 1) the displaced ligands could activate diethylmalonate to enhance the catalytic activity, as shown by the ¹³C CP MAS NMR

FULL PAPER

spectrum of the mono(cyclohexyldiamine)-based Ni^{II}acetylacetone intermediate (see above), and 2) mono(cyclohexyldiamine)-based Ni^{II} complexes could control the chiral microenvironment to improve the enantioselectivity.

An important feature of the design of heterogeneous catalyst 5 is its easy and reliable separation by simple filtration and that the reused catalyst could still retain its catalytic activity and enantioselectivity over multiple cycles. As shown in Table 1, entries 12-19, heterogeneous catalyst 5 clearly showed good reusability for the addition of dimethylmalonate to nitrostyrene, in which the ee values, as well as the conversions, did not drop notably after its continuous nine runs. To elucidate that the recycling efficiency was derived from the heterogeneous catalyst itself, rather than form noncovalent adsorption, a hot-filtration experiment was carried out. In this case, the heterogeneous catalyst (5) was filtered from the reaction mixture after 8 h and the reaction was continued for a further 12 h. We found that there was no appreciable change in either the conversion or ee values of the chiral products. This result ruled out the role of noncovalent physical adsorption, thereby confirming that the high recyclability was derived from the heterogeneous catalyst itself.

Importantly, this heterogeneous catalyst (5) could also be applied to the asymmetric Michael addition of β -ketoesters to nitroalkenes. As shown in Table 2, their corresponding products were formed with high conversions and excellent enantioselectivities under similar conditions. Taking dime-

Table 2.	Asymm	etric N	lichael	addition	of β-	ketoesters t	o a nitroalkene. ^[a]
I		O ↓+ OR"	Ar	NO ₂	Catalyst		Ar NO ₂ CO ₂ R"
Entry	R′	R″	Ar	<i>t</i> [h]	Conv. [%] ^[b]	d.r. (a/b) ^[b]	<i>ee</i> [%] (a/b)
1	Me	Me	Ph	6	>99	1.2:1 (1:1)	95 (93) (94 (94))
2	Me	Et	Ph	6	>99	1.3:1	94 (93)
3	Me	iPr	Ph	8	>99	1.5:1	95 (95)
4	Me	<i>t</i> Bu	Ph	8	>99	1.7:1	95 (92)
5	iPr	Et	Ph	8	96	1:1	97 (97)

[a] Reaction conditions: catalyst (58.8 mg, 0.02 mmol of Ni, based on ICP analysis), nitroalkene (1.0 mmol), β -ketoester (1.0 mmol), toluene (4.0 mL), 40 °C, 6–8 h. [b] Determined by chiral HPLC analysis (Chiralcel AD-H column; see the Supporting Information, Figure S5); conversion was calculated by using an external standard. [c] Data refer to those in Ref. [8a].

thylacetoacetate as an example, the catalytic reaction afforded chiral products with more than 99% conversion and 95% *ee*, which was comparable to that with a homogeneous catalyst (Table 2, entry 1, in parentheses^[8a]). Furthermore, this catalytic reaction could be completed within the same reaction time as that with the homogeneous catalyst, thus demonstrating that the ethylene moiety worked as the hydrophobic inner wall to rapidly draw reactants into the nanopore, thereby accelerating the reaction rate relative to other heterogeneous catalysts, which needed prolonged reaction times owing to the general features of heterogeneous catalysis.^[11b] To confirm this conclusion, a similar heterogeneous inorganosilica-supported Ni^{II} catalyst was prepared by the similar co-condensation of (1R,2R)-DACH-derived silane (1) with tetraethylorthosilicate, in which O–Si–O groups acted as the inner wall rather than the phenyl moieties. With this catalyst, a reaction time of 18 h was needed to complete this reaction, thus confirming that the enhanced reaction rate in the case of heterogeneous catalyst **5** should be ascribed the high hydrophobicity of the nanopores.

Conclusion

In conclusion, we have successfully immobilized chiral bis-(cyclohexyldiamine)-based Ni^{II} complexes within periodic mesoporous organosilica to afford a chiral, heterogeneous, PMO-supported Ni^{II} catalyst (**5**). This catalyst exhibited high catalytic activity and excellent enantioselectivity in the asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroalkenes, comparable to those with homogeneous catalysts. In particular, this research also disclosed that chiral bis(cyclohexyldiamine)-based Ni^{II} complexes within the periodic mesoporous organosilica played a crucial role in determining both the catalytic and enantioselective performance. More importantly, heterogeneous catalyst **5** could be recovered and reused up to nine times without obviously affecting its enantioselectivity, thus showing good potential for industrial applications.

Experimental Section

Preparation of (1R,2R)-DACH-functionalized PMO (3): In a typical synthesis, the structure-directing agent (pluronic P123, 2.0 g) was fully dissolved in a mixture of 0.2 M hydrochloric acid (80 mL) and KCl (6.0 g). Then, bis(triethyoxysilyl)ethylene (3.46 g, 9.00 mmol) was added as the silica precursor at 40°C. After a pre-hydrolysis period of 40 min, (1R,2R)-DACH-[(CH₂PhSi(OMe)₃]₂ (1, 0.53 g, 1.00 mmol) was added, in which the initial molar ratio of Si/P123/KCl/HCl/water in the mother solution was 1.0:0.017:4.0:0.80:218 (Si refers to the total silica source). The reaction mixture was stirred at 40 °C for 24 h and aged at 100 °C for 24 h. The resulting solid was filtered and rinsed with excess EtOH before being dried overnight on a filter funnel. The surfactant template was removed by heating at reflux in acidic EtOH (400 mL per gram) for 24 h. The solid was filtered, rinsed again with EtOH, and dried at 60°C under reduced pressure overnight to afford (1R,2R)-DACH-functionalized PMO (3, 1.26 g) as a white powder. ¹³C

CP MAS NMR (100.6 MHz): $\delta = 145.4$ (*C*H=*C*H), 133.5 (*C*H of the Ph rings inside the framework), 73.9, 69.3 (*C* atoms of the cyclohexyl group that are connected to the N atom), 57.3 (O–*C*H₃ and O–*C*H₂CH₃), 51.2–49.0 (N–*C*H₂Ph), 35.2–20.5 (*C* atoms in the cyclohexyl group that are not connected to the N atom), 16.6 ppm (O–*C*H₂*C*H₃); ²⁹Si MAS NMR (79.5 MHz): $\delta = -74.3$ (T²), -81.0 ppm (T³); IR (KBr): $\tilde{\nu} = 3420.1$ (s), 2984.5 (w), 2942.9 (w), 2869.4 (w), 1609.9 (m), 1452.9 (w), 1403.0 (w), 1189.4 (s), 1049.3 (s), 925.8 (m), 802.3 (m), 440.2 cm⁻¹ (m); $S_{BET} = 514.2 \text{ m}^2\text{g}^{-1}$; $d_{pore} = 3.67 \text{ nm}$; $V_{pore} = 0.46 \text{ cm}^3\text{g}^{-1}$; elemental analysis found (%) found: C 32.60, H 4.52, N 0.81.

Preparation of heterogeneous catalyst 5: To a stirring suspension of (1R,2R)-DACH-functionalized PMO (**3**, 1.0 g) in dry MeCN (50 mL) was added NiBr₂ (51.84 mg, 0.24 mmol) and *N*,*N*-dibenzyl diamine (70.56 mg, 0.24 mmol) at room temperature. The resulting mixture was heated at

www.chemeurj.org

reflux for 12 h. After cooling to room temperature, the mixture was filtered through filter paper and rinsed with excess CH2Cl2. After Soxlet extraction (toluene) for 24 h to remove any homogeneous and unreacted starting materials, the solid was dried overnight at 60 °C under vacuum to afford heterogeneous catalyst 5 (1.04 g) as a pale powder. ICP analysis showed that the Ni loading was 19.68 mg (0.34 mmol) per gram of catalyst. ¹³C CP MAS NMR (161.9 MHz): $\delta = 146.9$ (CH=CH), 135.3 (CH of the Ph rings inside the framework), 130.4 (CH of the Ph rings outside the framework), 74.9, 70.9 (C of the cyclohexyl group that are connected to the N atom), 59.7 (O-CH₃ and O-CH₂CH₃), 53.1, 50.6, 48.5 (N-CH₂Ph), 33.7, 30.4, 25.4 (C atoms in the cyclohexyl group that are not connected to the N atom), 18.8 ppm (O–CH₂CH₃); ²⁹Si MAS NMR (300 MHz): $\delta =$ -74.5 (T²), -82.9 ppm (T³); IR (KBr): $\tilde{\nu} = 3413.2$ (s), 3083.0 (w), 2976.2 (w), 2942.8 (w), 2869.3 (w), 1609.7 (m), 1452.9 (w), 1403.0 (w), 1189.4 (s), 1049.3 (s), 925.8 (m), 802.3 (m), 695.5 (w), 662.2 (w), 440.2 cm⁻¹ (m); $S_{\rm BET} = 498.8 \text{ m}^2\text{g}^{-1}; \ d_{\rm pore} = 3.64 \text{ nm}; \ V_{\rm pore} = 0.44 \text{ cm}^3\text{g}^{-1};$ elemental analysis found (%): C 38.50, H 5.38, N 1.91.

Treatment of heterogeneous catalyst 5 with acetylacetone: To heterogeneous catalyst 5 (300 mg) was added acetylacetone (2.0 mL) and the mixture was stirred for 12 h at room temperature. The mixture was then filtered through filter paper and rinsed with excess CH2Cl2. After Soxlet extraction (toluene) for 24 h to remove any homogeneous and unreacted start materials, the solid was dried overnight at 60 °C under vacuum to afford the mono(cyclohexyldiamine)-based Ni^{II}-acetylacetone intermediate as a pale powder. ¹³C CP MAS NMR (161.9 MHz): $\delta = 192.7$ (C of the C=O group), 146.8 (CH=CH), 134.9 (CH of the Ph rings inside the framework), 130.1 (CH of the Ph rings outside the framework), 101.8 (CH atom at the enolized position), 73.1, 70.3 (C atoms of the cyclohexyl group that are connected to the N atom), 59.2 (O-CH₃ and O-CH₂CH₃), 56.4, 52.4, 52.0, 50.0 (N-CH2Ph substituted by acetylacetone and N-CH₂Ph unsubstituted by acetylacetone), 27.3 (CH₃ of acetylacetone), 32.1, 29.7, 24.9 (C atoms in the cyclohexyl group that are not connected to the N atom), 18.5 ppm ($O-CH_2CH_3$).

General procedure for asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroalkenes: In a typical procedure, heterogeneous catalyst 5 (58.8 mg, 0.02 mmol of Ni, based on ICP analysis), nitrostyrene (0.15 g, 1.0 mmol), dimethylmalonate (1.0 mmol), and toluene (4.0 mL) were added into a 10 mL round-bottomed flask and the mixture was heated at 40 °C for 8-28 h. During that time, the reaction was monitored constantly by TLC. After the completion of the reaction, the heterogeneous catalyst was filtered through filter paper for the recycling experiments. The aqueous solution was extracted with Et₂O (3×3.0 mL) and the combined Et₂O extracts were washed twice with brine and dehydrated with Na₂SO₄. After the evaporation of Et₂O, the residue was purified by column chromatography on silica gel to afford the desired product. Conversion was calculated by using an external standard and the ee value was determined by chiral HPLC analysis with a UV/Vis detector and a Daicel AD-H chiralcel column ($\Phi = 0.46 \text{ cm} \times 25 \text{ cm}$). The absolute configurations of the compounds were assigned by comparison of their optical rotations to literature values.[8a]

Acknowledgements

We are grateful to the National Natural Science Foundation of China (20673072), the Shanghai Sciences and Technologies Development Fund (10J1400103, 10JC1412300), and the Shanghai Municipal Education Commission (12ZZ135, S30406) for financial support.

- [2] a) J. M. Thomas, R. Raja, Acc. Chem. Res. 2008, 41, 708; b) R. Raja,
 J. M. Thomas, M. D. Jones, B. F. G. Johnson, D. E. W. Vaughan, J.
 Am. Chem. Soc. 2003, 125, 14982.
- [3] a) D. M. Jiang, J. S. Gao, Q. H. Yang, J. Yang, C. Li, *Chem. Mater.* 2006, *18*, 6012; b) P. N. Liu, P. M. Gu, F. Wang, Y. Q. Tu, *Org. Lett.* 2004, *6*, 169; c) D. M. Jiang, Q. H. Yang, J. Yang, L. Zhang, G. R. Zhu, W. G. Su, C. Li, *Chem. Mater.* 2005, *17*, 6154.
- [4] a) H. Q. Yang, L. Zhang, L. Zhong, Q. H. Yang, C. Li, Angew. Chem. 2007, 119, 6985; Angew. Chem. Int. Ed. 2007, 46, 6861;
 b) H. Q. Yang, J. Li, J. Yang, Z. M. Liu, Q. H. Yang, C. Li, Chem. Commun. 2007, 1086.
- [5] a) A. Thomas, Angew. Chem. 2010, 122, 8506; Angew. Chem. Int. Ed. 2010, 49, 8328; b) N. Mizoshita, T. Taniab, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789; c) F. Hoffmann, M, Fröba, Chem. Soc. Rev. 2011, 40, 608.
- [6] a) Y. F. Lu, H. Y. Fan, N. Doke, D. A. Loy, R. A. Assink, D. A. Lavan, C. J. Brinker, J. Am. Chem. Soc. 2000, 122, 5258; b) B. D. Hatton, K. Landskron, W. Whitnall, D. D. Perovic, G. A. Ozin, Adv. Funct. Mater. 2005, 15, 823; c) M. P. Kapoor, Q. H. Yang, S. Inagaki, J. Am. Chem. Soc. 2002, 124, 15176.
- [7] a) A. Kuschel, S. Polarz, J. Am. Chem. Soc. 2010, 132, 6558; b) X.
 Wu, T. Blackburn, J. D. Webb, A. E. Garcia-Bennett, C. M. Crudden, Angew. Chem. 2011, 123, 8245; Angew. Chem. Int. Ed. 2011, 50, 8095; c) X. Liu, P. Y. Wang, L. Zhang, J. Yang, C. Li, Q. H. Yang, Chem. Eur. J. 2010, 16, 12727; d) R. A. Garcia, R. van Grieken, J. Iglesias, V. Morales, N. Villajos, J. Catal. 2010, 274, 221; e) P. Y. Wang, J. Yang, J. Liu, L. Zhang, Q. H. Yang, Microporous Mesoporous Mater. 2009, 117, 91; f) P. Y. Wang, X. Liu, J. Yang, Y. Yang, L. Zhang, Q. H. Yang, C. Li, J. Mater. Chem. 2009, 19, 8009; g) D. M. Jiang, Q. H. Yang, H. Wang, G. R. Zhu, J. Yang, C. Li, J. Catal. 2006, 239, 65.
- [8] a) D. A. Evans, S. Mito, D. Seidel, J. Am. Chem. Soc. 2007, 129, 11583; b) D. A. Evans, D. Seidel, J. Am. Chem. Soc. 2005, 127, 9958; c) D. M. Barnes, J. G. Ji, M. G. Fickes, M. A. Fitzgerald, S. A. King, H. E. Morton, F. A. Plagge, M. Preskill, S. H. Wagaw, S. J. Wittenberger, J. Zhang, J. Am. Chem. Soc. 2002, 124, 13097; d) S. L. Poe, M. Kobaslija, D. T. McQuade, J. Am. Chem. Soc. 2006, 128, 15586; e) S. L. Poe, M. Kobaslija, D. T. McQuade, J. Am. Chem. Soc. 2007, 129, 9216.
- [9] a) A. G. M. Barrett, G. G. Graboski, *Chem. Rev.* **1986**, 86, 751; b) N. Ono, *The Nitro Group in Organic Synthesis*, Wiley-VCH, Weinheim, **2001**.
- [10] a) J. L. Huang, F. X. Zhu, W. H. He, F. Zhang, W. Wang, H. X. Li, J. Am. Chem. Soc. 2010, 132, 1492; b) X. S. Yang, F. X. Zhu, J. L. Huang, F. Zhang, H. X. Li, Chem. Mater. 2009, 21, 4925; c) G. H. Liu, Y. Q. Sun, J. Y. Wang, C. S. Sun, F. Zhang, H. X. Li, Green Chem. 2009, 11, 1477; d) G. H. Liu, Y. Gao, X. Q. Lu, F. Zhang, M. M. Liu, H. X. Li, Chem. Commun. 2008, 3184.
- [11] a) Y. Q. Sun, G. H. Liu, H. Y. Gu, T. Z. Huang, Y. L. Zhang, H. X. Li, *Chem. Commun.* 2011, 47, 2583; b) G. H. Liu, J. Y. Wang, T. Z. Huang, X. H. Liang, Y. L. Zhang, H. X. Li, *J. Mater. Chem.* 2010, 20, 1970; c) G. H. Liu, M. Yao, F. Zhang, Y. Gao, H. X. Li, *Chem. Commun.* 2008, 347; d) G. H. Liu, M. Yao, J. Y. Wang, X. Q. Lu, M. M. Liu, F. Zhang, H. X. Li, *Adv. Synth. Catal.* 2008, 350, 1464; e) G. H. Liu, M. M. Liu, Y. Q. Sun, J. Y. Wang, C. S. Sun, H. X. Li, *Tetrahedron: Asymmetry* 2009, 20, 240.
- [12] a) A. S. M. Chong, X. S. Zhao, J. Phys. Chem. B 2003, 107, 12650;
 b) Q. Y. Hu, J. E. Hampsey, N. Jiang, C. J. Li, Y. F. Lu, Chem. Mater. 2005, 17, 1561;
 c) G. Chaplais, J. L. Bideau, D. Leclercq, A. Vioux, Chem. Mater. 2003, 15, 1950;
 d) H. Huang, R. Yang, D. Chinn, C. J. Munson, Ind. Eng. Chem. Res. 2003, 42, 2427;
 e) M. Burleigh, A. Michael, M. Markowitz, S. Spector, B. Gaber, J. Phys. Chem. A J. Phys. Chem. B. 2001, 105, 9935.
- [13] a) H. X. Li, F. Zhang, Y. Wan, Y. F. Lu, J. Phys. Chem. B 2006, 110, 22942; b) H. X. Li, Q. F. Zhao, Y. Wan, W. L. Dai, M. H. Qiao, J. Catal. 2006, 244, 251.
- [14] a) O. M. Berner, L. Tedeschi, D. Enders, *Eur. J. Org. Chem.* 2002, 1877; b) Y. Wang, R. G. Han, Y. L. Zhao, S. Yang, P. F. Xu, D. J. Dixon, *Angew. Chem.* 2009, 121, 10018; *Angew. Chem. Int. Ed.* 2009,

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

a) M. Heitbaum, F. Glorius, I. Escher, Angew. Chem. 2006, 118, 4850; Angew. Chem. Int. Ed. 2006, 45, 4732; b) C. Li, H. D. Zhang, D. M. Jiang, Q. H. Yang, Chem. Commun. 2007, 547; c) M. Bartók, Chem. Rev. 2010, 110, 1663; d) P. McMorn, G. J. Hutchings, Chem. Soc. Rev. 2004, 33, 108.

FULL PAPER

48, 9834; c) Q. M. Zhu, H. M. Huang, D. J. Shi, Z. Q. Shen, C. X. Xia, Org. Lett. 2009, 11, 4536; d) D. Almasi, A. D. Alonso, E. Gomez-Bengoa, C. Najera, J. Org. Chem. 2009, 74, 6163; e) F. Z. Peng, Z. H. Shao, B. M. Fan, H.; Li. G. P. Song, H. B. Zhang, J. Org. Chem. 2008, 73, 5202; f) Y. Xu, A. Cordova, Chem. Commun. 2006, 460; g) A. Hamza, G. Schubert, T. Soos, I. Imre Papai, J. Am. Chem. Soc. 2006, 128, 13151; h) T. Masahiro, U. Hitoshi, Y. Yusuke, J. Am. Chem. Soc. 2006, 128, 1454; i) N. Mase, K. Watanabe, H. Yoda, K. Takabe, F. Tanaka, C. F. Barbas, J. Am. Chem. Soc. 2006, 128, 4966; j) L. Zu, J. Wang, H. Li, W. Wang, Org. Lett. 2006, 8, 3077; k) S.

Mossé, M. Laars, K. Kriis, T. Kanger, A. Alexakis, *Org. Lett.* **2006**, *8*, 2559; l) H. Huang, E. N. Jacobsen, *J. Am. Chem. Soc.* **2006**, *128*, 7170; m) P. J. Nichols, J. A. DeMattei, B. R. Barnett, N. A. LeFur, T. S. Chuang, A. D. Piscopio, K. Koch, *Org. Lett.* **2006**, *8*, 1495; n) D. G. Iiya, W. Masahito, H. Wang, I. Takao, *J. Am. Chem. Soc.* **2010**, *132*, 16637.

[15] A. G. Kochura, T. M. Ivanova, S. J. Hinder, J. F. Watts, A. A. Sidorov, M. A. Kiskin, V. M. Novotortsev, I. L. Eremenko, J. Electron Spectrosc. Relat. Phenom. 2011, 184, 501.

Received: July 6, 2012 Published online: October 2, 2012

www.chemeurj.org