Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Comparative study of synthesis and characterization of monodispersed SiO₂ @ Y_2O_3 :Eu³⁺ and SiO₂ @ Y_2O_3 :Eu³⁺ @ SiO₂ core-shell structure phosphor particles

Yuan-Xiang Fu, Yan-Hui Sun*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China

ARTICLE INFO

Article history: Received 24 January 2008 Received in revised form 9 March 2008 Accepted 12 March 2008 Available online 29 April 2008

Keywords: Coating materials Rare earth alloys and compounds Precipitation Optical properties Luminescence

ABSTRACT

Monodispersed SiO₂ @ Y₂O₃:Eu³⁺ and SiO₂ @ Y₂O₃:Eu³⁺ @ SiO₂ nanospheres contain SiO₂ as core and Y₂O₃:Eu³⁺ as shell or another SiO₂ shell coated on the surface of SiO₂ @ Y₂O₃:Eu³⁺ particles were synthesized, respectively. The synthesis of core-shell particles SiO₂ @ Y₂O₃:Eu³⁺ involved the SiO₂ core ultrasonically dispersed into a certain amount of polyethylene glycol solution, and the deposition of Y₂O₃:Eu³⁺ on the surface of SiO₂ core through homogeneous precipitation of Y³⁺ and Eu³⁺ using urea as precipitator. More over, the particles SiO₂ @ Y₂O₃:Eu³⁺ as core was ultrasonically dispersed into a certain amount of ethanol and followed by sol-gel processing of tetraethoxysilane to form another silica shell. The morphology structures and sizes of the resulting particles were analyzed by SEM and TEM, which indicated that the resulting particles dispersed regularly and the microstructures of the particles are clearly core-shell or core-shell after heat treatment at 900 °C. Photoluminescence determination showed that both the phosphors can be excited by ultra violet at 254 nm which showed red-shift. Under the excitation at 254 nm, the Eu³⁺ ion mainly shows its characteristic red (612 nm, ⁵D₀-⁷F₂) emission in the particles from Y₂O₃:Eu³⁺ shell. The emission intensity of Eu³⁺ was affected by the SiO₂ core or shell in some extent.

© 2008 Elsevier B.V. All rights reserved.

ALLOYS AND COMPOUNDS

1. Introduction

Recently, the synthesis of core-shell nanostructures has emerged as an attractive research area in material chemistry since the morphology and the size of the core-shell materials can be tailored easily by changing the core materials' shape, size or the shell's thickness [1]. More over, coating relative inexpensive cores with the expensive shell materials or coating expensive shells on the inexpensive cores materials can lower the cost of the functional materials [2]. Especially, the shell material such as SiO₂ with an optical transparency can protect the surface of the functional materials such as the noble metals, magnetic compounds and phosphor materials from contaminating by some impurity in surroundings [3].

Silica is frequently used in core-shell structured materials, as either a core or a shell because of their inexpensiveness, easiness to get spherical particles with narrow size distribution, chemical inertness, and optical transparency [3]. If the silica spheres are coated with phosphor layers, a kind of core-shell phosphor materials with spherical morphology will be obtained, and the size of the

* Corresponding author. E-mail address: sunyanhui0102@163.com (Y.-H. Sun). phosphor particles can be controlled by the size of the silica core or the thickness of the shell and the number of coating cycles. Coating particles with silica as a shell is a promising strategy which presents several advantages especially in the field of biological and imaging applications. Apart ensuring core protection and water-solubility, the silica shell realizes two crucial functions. The first consists in allowing functionalization by biological groups since silica can be derived by organoalkoxysilanes containing reactive organic groups (e.g. amine, thiol and isothiocyanate). The second is increasing the optical response of luminescing cores used as optical tags [3].

It is well known that europium-doped Y_2O_3 phosphor (Y_2O_3 : Eu³⁺) has been widely used in lighting and cathode ray tubes as a red-emitting phosphor [4]. Recent researches have indicated that it is also the promising candidate for field emission display (FED) devices [5]. For the FED applications, it is highly desirable to offer spherical phosphors with controllable diameters and narrow size distributions [6]. For that purpose, core–shell particles have attracted a great deal of interest because of their difference from those of single-component materials [7–9]. The controlled coating of particles with homogeneous and organized layers without aggregation remains a challenge for material scientists. Spherical morphology of the phosphor is good for high brightness and high resolution. Additionally, high packing densities and low scattering of light can also be obtained by using spherical phosphors. So far,

^{0925-8388/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2008.03.055

many synthetic routes have been developed to control the size and distribution of phosphor particles, such as spray pyrolysis [10] and urea homogeneous precipitation [11]. However, the obtained phosphor particles are still far from the ideally monodisperse spherical morphology. On the other hand, the chemical properties of the phosphor material usually are unstable, the surface of the phosphor material has many unsaturated bond and easily absorbed some impurity which cut down the luminescence property of the phosphors [3]. So coating some shells on the surface of phosphor materials is essential in precondition of not affected the photoluminescence.

Up to now, there are many investigations of phosphor materials coated on the SiO₂ core and resulting the SiO₂ @ $Y_2O_3:Eu^{3+}$ [7–9], SiO₂ @ YBO₃:Eu³⁺ [12], SiO₂ @ YVO₄:Dy³⁺, Sm³⁺ [13], SiO₂ @ YAG:Ce³⁺, Tb³⁺ [14] and so on, while there are few investigations involves the coating of SiO₂ shells on the surface of phosphors. Much investigations for SiO₂ as shells are focused on the metal or magnetic materials such as Fe₂O₃ @ SiO₂ [15], Ag @ SiO₂ [16], Au @ SiO₂ [17] and so on.

Very recently, the synthesis and application of multilayered nanostructures containing multiple shells also have begun to draw attention in synthesis of noble metal core-shell structures such as SiO₂ @ Ag @ SiO₂ [18] and SiO₂ @ Au @ SiO₂ [19]. While the presence of multiple nanoparticles anchored on solid substrates in close proximity could result in unique magnetic and optical coupling [20], the encapsulation of metal or phosphor nanoparticles by SiO₂ as in such core-shell-shell nanostructures could also provide an alternative way to increase the metal or phosphors nanoparticles' stability from aggregation or possible thermal coalescence at higher temperatures [21].

Despite their unique properties and promising potential applications, to the best of our knowledge, there are few investigations on the synthesis of core-shell-shell nanostructure have been reported on the phosphor materials so far.

In this paper, we reported a detail synthesis of core-shell-shell nanoparticles SiO₂ @ Y_2O_3 :Eu³⁺@ SiO₂ containing a silica core, Y_2O_3 :Eu³⁺ nanoparticles shell and a second silica shell with a tunable size around the surface of Y_2O_3 :Eu³⁺, and characterized their structure, morphology and photoluminescence property. As a comparison, the synthesis of core-shell phosphor particles of SiO₂ @ Y_2O_3 :Eu³⁺, the pure Y_2O_3 :Eu³⁺ powder phosphors are reported too.

2. Experimental

The starting materials used in the experiments were tetraethoxysilane (TEOS, 28% SiO₂, Tianjin No. 1 Chemicals Co., Ltd.), Y_2O_3 and Eu_2O_3 (99.99%, Shanghai Yuelong Nonferrous Metals Ltd.), NH_4OH (25 wt.%, A.R., Guangzhou Donghong Chemicals Co., Ltd.), HNO_3 (A.R., Guangzhou Donghong Chemicals Co., Ltd.), Polyethylene glycol (PEG, molecular weight 10,000, A.R., Sanland-Chem. Inernational Incorp.) and ethanol (A.R., Guangzhou Donghong Chemicals Co., Ltd.).

2.1. Synthesis of silica cores

Monodispersed silica spheres were prepared with the procedure originally described by Stöber et al. [22] except that the reaction condition was changed in some aspects, i.e., hydrolysis of TEOS in an ethanol solution containing water and ammonia. In a typical experiment, 5 mL TEOS was added to 75 mL ethanol solution of water and ammonia. The 80 mL mixture solution containing 0.279 mol/L TEOS, 2.55 mol/L H₂O, and 1.15 mol/L ammonia was stirred at 29 °C for 4 h. The resulting silica spheres were centrifugally separated from the suspension and ultrasonically washed with distilled water and ethanol.

2.2. Coating of SiO₂ cores with Y₂O₃:Eu³⁺ shells

A certain amount of Y_2O_3 and Eu_2O_3 powders were, respectively, dissolved in excessive nitric acid to form $Y(NO_3)_3$ and $Eu(NO_3)_3$ solutions. A certain quantity of silica spheres (0.3 g) was ultrasonically dispersed in 100 mL aqueous solution containing yttrium nitrate (2×10^{-2} mol/L), europium nitrate (1.2×10^{-3} mol/L), urea (2 mol/L) and certain amount of PEG. The dispersions were then aged at 92 °C under

continuous stirring for 3 h. The resulting precursors were separated by centrifugation, washed by distilled water and ethanol for several times, and then dried at 100 °C for 4 h. At last, the samples were heated at 900 °C in air for 3 h to produce the final particles SiO₂ @ Y₂O₃:Eu³⁺.

2.3. Synthesis core-shell-shell particles SiO₂ @ Y₂O₃:Eu³⁺ @ SiO₂

A certain quantity of SiO₂ @ Y₂O₃:Eu³⁺ spheres obtained from the above step were ultrasonically dispersed in 40 mL ethanol, and then 4 mL TEOS, 10 mL ammonia and 8 mL distilled water were added into the reaction vessel in subsequently. After addition, the reaction lasted for 8 h at 40 °C under vigorous stirring. Then the resulting precursors were separated by centrifugation, washed by distilled water and ethanol for several times, and then dried at 100 °C for 4 h. At last, the samples were heated at 900 °C in air for 3 h to produce the final particles.

2.4. Coating mechanism

The silica submicrospheres prepared by the Stöber method possess an interesting substrates for the deposition of metals, oxides and functional polymers due to the narrow size distribution, the easily modified surface with silanol composition and extent of hydrogen bonding, and the isotropic interactions in an aqueous or organic suspension help to form ordered arrays on substrates [23]. The homogeneous precipitation method is a simple method for prepare monodispersed colloidal particles and uniform coated particles. In this manuscript, a continuous europiumdoped yttrium oxide shell was coated on the surface of nanometer spherical silica by a homogeneous precipitation method, which leads to obtain SiO₂ @ $Y_2O_3:Eu^{3+}$ core–shell submicrospheres. Further more, the obtained particles SiO₂ @ $Y_2O_3:Eu^{3+}$ as core were ultrasonically dispersed into a certain amount of ethanol and followed by sol–gel processing of tetraethoxysilane to form another silica shell to obtain the core–shell particles SiO₂ @ $Y_2O_3:Eu^{3+}$ @ SiO₂. The schematic representation of the precipitation method for preparing SiO₂ @ $Y_2O_3:Eu^{3+}$ core–shell submicrospheres and SiO₂ @ $Y_2O_3:Eu^{3+}$ @ SiO₂ particles are given in Schemes 1 and 2.

The surface Si–OH groups play an important role for bonding the metal ions (Y, Eu) and the –NH₂ groups in urea from the coating precursor and forming the $(Y_{1-x}Eu_x)_2(OH)CO_3$ compounds on the SiO₂ surfaces in the following surface reaction process when heating the solution to 92 °C in which the urea began to decompose to NH₄OH and H₂CO₃. Further more, in the following annealing process, the compounds $(Y_{1-x}Eu_x)_2(OH)CO_3$ decomposed into $Y_2O_3:Eu^{3+}$ and deposited on the surface of SiO₂. In this way, the core–shell structured SiO₂ @ $Y_2O_3:Eu^{3+}$ materials have been obtained, and the whole process is shown in Scheme 1.

In the precursor solution, polyethyleneglycol (PEG, molecular, 10,000) is added as across–linking agent, the two–OH groups in PEG can connect with the $-NH_2$

Scheme 1. Formation process of SiO₂ @ Y₂O₃:Eu³⁺ core-shell particles.

groups in urea via hydration and making them more homogeneously distributed in the solution. The PEG concentration will affect the viscosity of the precursor solution. Low viscosity of the solution will result in easy deposition of a thin layer of Y_2O_3 : Eu³⁺ on the SiO₂ particles, and proper increasing of the solution viscosity can increase the thickness of Y_2O_3 : Eu³⁺ layer [13].

2.5. Characterization of the particles

The X-ray diffraction (XRD) of the powder samples was examined on a Rigaku-Dmax 2500 diffractometer using Cu K\alpha radiation λ = 0,15405 nm). The morphologies of SiO₂ @ Y₂O₃:Eu³⁺ and SiO₂ @ Y₂O₃:Eu³⁺ @ SiO₂ submicrospheres produced were observed using Quanta 400, Philips scanning electronic microscope (SEM) and transmission electron microscope (JEOL JEM-2010 (TEM)). The excition and emission spectra of samples were obtained using a Hitachi F-4500 FL Spectrophotometer with a 150 W xenon lamp.

3. Results and discussion

3.1. XRD results

X-ray diffraction patterns of bare silica spheres (a), SiO₂ @ Y_2O_3 :Eu³⁺ core–shell samples (b), and SiO₂ @ Y_2O_3 :Eu³⁺ @ SiO₂ samples (c) are shown in Fig. 1. The bare silica is amorphous, as evident from the presence of a broader hump in Fig. 1(a). In Fig. 1(b), SiO₂ @ Y_2O_3 :Eu³⁺ core–shell sample presents three sharp peaks at

Fig. 1. X-ray diffraction patterns for SiO_2 (a), SiO_2 @ $Y_2O_3{:}Eu^{3+}$ (b) and SiO_2 @ $Y_2O_3{:}Eu^{3+}$ @ SiO_2 (c).

 $2\theta = 29.2^{\circ}$, 48.5° and 38.4°, which indicates that $Y_2O_3:Eu^{3+}$ crystal grows well. While the other peaks of $Y_2O_3:Eu^{3+}$ could not observed here may be enshroud by the background of SiO₂. SiO₂ @ $Y_2O_3:Eu^{3+}$ @ SiO₂ sample in Fig. 1(c) illustrates the same patterns as that of SiO₂ @ $Y_2O_3:Eu^{3+}$ except that the typical peaks were weak than that of SiO₂ @ $Y_2O_3:Eu^{3+}$. This can be explained as that the silica shell coated on the surface of the $Y_2O_3:Eu^{3+}$.

From the XRD patterns in Fig. 1(b) and (c), no other phase is detected which suggesting that no reaction occurred between the SiO₂ and the $Y_2O_3:Eu^{3+}$ shells even after annealing at 900 °C. The formation of $Y_2O_3:Eu^{3+}$ layer is due to the reaction of Y, Eu ions on silica surface at high-temperature, as shown in Scheme 1. The literature showed that if annealed at 1000 °C or higher a reaction between the Y_2O_3 shell and SiO₂ core will occur, resulting in the formation of impurity like Y_2SiO_5 phase in the samples [13]. So we limit the annealing temperature at 900 °C in this work.

In general, the nanocrystallite size can be estimated from the Scherrer formula: $D_{hkl} = K\lambda/(\beta \cos \theta)$, where λ is the X-ray wavelength (0.15405 nm), β is the full-width at half-maximum, θ is the diffraction angle, K is Scherrer constant (0.89), and D_{hkl} means the size along (h k l) direction. Here we take diffraction data along the (2 2 2) plane at $2\theta = 29.2^{\circ}$ to calculate the size of the nanocrystallites, and the estimated average crystallite sizes of Y_2O_3 :Eu³⁺ are 45 nm for pure powders, 9.85 nm for crystallite sizes of Y_2O_3 :Eu³⁺ in SiO₂ @ Y_2O_3 :Eu³⁺ in SiO₂ @ SiO₂ particle, which agrees well with the results in the SEM and TEM coating shell.

3.2. SEM results

Fig. 2 shows the SEM micrographs of bare silica (a), pure Y₂O₃:Eu³⁺ (b), SiO₂ @ Y₂O₃:Eu³⁺ (c) and SiO₂ @ Y₂O₃:Eu³⁺ @ SiO₂ (d). From the SEM micrograph of Fig. 2(a), we can observed that the formed SiO₂ consists of spherical particles of average size 300 nm and these particles are non-aggregated and dispersed uniformly. In contrast, the pure Y₂O₃:Eu³⁺ powders in Fig. 2(b) contains irregular morphology particles with a wide size distribution from about 50 nm to 250 nm and these particles are aggregated obviously. After functionalizing the silica particles as core with Y₂O₃:Eu³⁺ coatings as shell, the resulting SiO₂ @ Y_2O_3 :Eu³⁺ in Fig. 2(c) and SiO₂ @ Y_2O_3 :Eu³⁺ particles as core with SiO₂ as another shells resulting $SiO_2 @ Y_2O_3$: Eu³⁺ @ SiO₂ in Fig. 2(d) still keep the morphology as the silica particle, i.e. these particles are still spherical with a smooth surface and non-aggregated. The size became larger after the coating process, it is obvious that the size is 320 nm for $SiO_2 @ Y_2O_3$: Eu³⁺ and about 380 nm for SiO₂ @ Y₂O₃:Eu³⁺ @ SiO₂ which agreeing well with the XRD results. It should be mentioned that minor amount of the irregular fine particles like the pure Y_2O_3 :Eu³⁺ powders can be observed in Fig. 2(c) and (d). Furthermore, the dispersivity of the functionalizing particles were much uniform than that of pure Y_2O_3 :Eu³⁺ powders.

3.3. TEM results

The TEM photograph of the core-shell structure SiO₂ @ $Y_2O_3:Eu^{3+}$ in Fig. 3(a) can be observed clearly due to the different electron penetrability for cores and shells. The monodispersed SiO₂ @ $Y_2O_3:Eu^{3+}$ spheres about 320 nm in diameter contained SiO₂ black core of 300 nm in diameter and $Y_2O_3:Eu^{3+}$ gray color shell with an average thickness of about 10 nm can be observed from Fig. 3(a) and the magnified image of a single sphere in Fig. 3(b). Fig. 4(a) and (b) shows the uniform size distribution and clear core-shell-shell structure of SiO₂ @ $Y_2O_3:Eu^{3+}$ @ SiO₂ particles. The SiO₂ cores are black spheres with an average size of 300 nm

Fig. 2. SEM micrographs of SiO₂ (a), Y₂O₃:Eu³⁺ (b), SiO₂ @ Y₂O₃:Eu³⁺ (c) and SiO₂ @ Y₂O₃:Eu³⁺ @ SiO₂ (d) samples.

in diameter, and the shell have dark color with an average thickness of 10 nm is Y_2O_3 :Eu³⁺ shell and the gray color with an average thickness of 30 nm is SiO₂ shell.

In addition, there are some irregular powders can be seen in Fig. 3(a) and Fig. 4(a) like that in the SEM photographs, which indicated that the coating was not completely in this study.

Fig. 5 shows the energy dispersive X-ray spectrum performed on the particles $SiO_2 @ Y_2O_3$: $Eu^{3+} @ SiO_2$, and the composition analysis of the particles suggests the existence of Si (from the cores and the outside shell), O (from the cores and the shells), Y (from the inner shell) as well as Cu and C (from the Cu gridding for measurement).

The Eu element was not detected clearly due to its low concentration below 5% (but it can be detected by the emission spectra, see Section 3.4). This provides additional evidence for the formation of coatings of crystalline SiO₂ @ Y_2O_3 :Eu³⁺ @ SiO₂ particles.

3.4. Photoluminescence properties

The excitation and emission spectra of SiO₂ @ Y_2O_3 :Eu³⁺ and SiO₂ @ Y_2O_3 :Eu³⁺ @ SiO₂ samples are shown in Figs. 6 and 7, respectively. As a comparison, the excitation and emission spectra of pure Y_2O_3 :Eu³⁺ was also showed in Figs. 6 and 7.

Fig. 3. TEM micrographs of core-shell nanospheres SiO₂ @ Y₂O₃:Eu³⁺ (a) and the magnified image of a single sphere (b) for the samples.

Fig. 4. TEM micrographs of core-shell-shell nanospheres SiO₂ @ Y₂O₃:Eu³⁺ @ SiO₂ (a) and the magnified image of a single sphere (b) for the samples.

Fig. 5. Energy dispersive X-ray spectrum for the sample SiO_2 @ $Y_2O_3{:}Eu^{3+}$ @ SiO_2 particles.

Here, it should be mentioned that the three PL spectra were determined in the same amount of rare earth oxide and the identical ratio of Y:Eu. That is, we used the same amount of Y^{3+} and Eu^{3+} to prepare the pure $Y_2O_3:Eu^{3+}$ powders as that to coat the SiO₂ surfaces and to prepare the core-shell-shell particles SiO₂ @

The excitation spectrum was performed by monitoring the emission of $Eu^{3+5}D_0 - {}^7F_2$ transition at 612 nm. It can be seen clearly that the excitation spectrum consists of a broad band with maximum at 254 nm, which can be attributed to the charge-transfer band (CTB) between O^{2-} and Eu^{3+} [9]. Here the excitation peak is shifted toward the red from 250 nm in the pure Y₂O₃:Eu³⁺ in this study and in the literature in core-shell SiO₂ @ Y₂O₃:Eu³⁺ [9] to 254 nm in this study. We know the excitation of Eu³⁺ belongs to the charge-transfer state transition, which is related to the stability of the electron of the surrounding O^{2-} and the position of the excitation peak depends on the nature of surrounding O^{2-} ions [24]. In a crystal lattice, an O^{2-} ion is stabilized by surrounding positive ions. However, as crystallite sizes decreasing from 45 nm for pure $Y_2O_3:Eu^{3+}$ to 9.85 nm and 9.42 nm for SiO₂ @ $Y_2O_3:Eu^{3+}$ and SiO₂ @ Y_2O_3 :Eu³⁺ @ SiO₂, respectively, the surrounding of O²⁻ ions in Y_2O_3 were changed a lot. From XRD results in Fig. 1(b) and (c), the reflection peak intensity of Y₂O₃:Eu³⁺ in the core-shell particles

Fig. 6. Excitation spectra of Y_2O_3 :Eu³⁺ (a), SiO₂ @ Y_2O_3 :Eu³⁺ (b) and SiO₂ @ Y_2O_3 :Eu³⁺ @ SiO₂ (c).

Fig. 7. Emission spectra of Y_2O_3 : Eu³⁺ (a), SiO₂ @ Y_2O_3 : Eu³⁺ (b) and SiO₂ @ Y_2O_3 : Eu³⁺ @ SiO₂ (c).

became very weak and the width of half peak became more wide compared with that of pure $Y_2O_3:Eu^{3+}$ (the XRD pattern of pure $Y_2O_3:Eu^{3+}$ was not shown in this study). This indicated the parameter of the $Y_2O_3:Eu^{3+}$ crystal cell is more smaller. As crystallite size decreases, the surface-to-volume ratio of atoms increases and the degree of disorder of the nanostructured system increases. In that case, the O^{2-} is less stable. As a result, it requires less energy to remove an electron from an O^{2-} ion; therefore, the charge-transfer state band is shifted toward lower energy [25].

Upon excitation of the CTB at 254 nm, the obtained emission spectrum is composed of ${}^5D_{0,1}-{}^7F_J$ (J=0, 1, 2, 3) emission lines of Eu³⁺ (Fig. 7), dominated by the hypersensitive red emission ${}^5D_0-{}^7F_2$ transition of Eu³⁺ at 612 nm. The other emission peaks located at 535 (${}^5D_1-{}^7F_1$), 579 (${}^5D_0-{}^7F_0$), 589, 595, 600 (${}^5D_0-{}^7F_1$), and 653 nm (${}^5D_0-{}^7F_3$) are labeled in Fig. 7, which were very close to that in the pure Y₂O₃:Eu³⁺ and core–shell SiO₂ @ Y₂O₃:Eu³⁺ in literature [9]. In cubic Y₂O₃:Eu³⁺, there are two crystallographic sites for Eu³⁺: one is with C₂ symmetry and another with S₆ symmetry. Eu³⁺ at C₂ site contributes ${}^7D_0-{}^7F_{0,1,2}$ transitions to the main part of visual luminescence of Y₂O₃:Eu³⁺ (580–640 nm). However, the ${}^5D_0-{}^7F_1$ transition lines are allowed for both C₂ and S₆ sites, are expected to arise from Eu³⁺ (C₂) and Eu³⁺ (S₆) sites simultaneously. The crystal field splitting of Eu³⁺ 5D₀- ${}^7F_{1,2}$ transitions can be seen clearly, indicating that the Y₂O₃:Eu³⁺ layer is well crystallized on the surface of SiO₂ particles (agreeing well with the XRD and TEM results in Sections 3.1 and 3.3).

Further more, it can be seen that the photoluminescent intensities of the two samples (b) and (c) are affected by the addition of SiO₂ spheres both from Figs. 6 and 7. In Fig. 6, the relative excitation spectrum intensity is decreasing in the order of $Y_2O_3:Eu^{3+} > SiO_2 @ Y_2O_3:Eu^{3+} = SiO_2 @ Y_2O_3:Eu^{3+} > SiO_2 @ Y_2O_3:Eu^{3+} = SiO_2 @ Y_2O_3:Eu^{3+}$

The literature investigation results showed that with the increase of amount of silica spheres, the PL intensities of the particles become weaker and weaker [26] due to the volume percentage of the interface is increased, which result the increase of the defects such as hanging M–O bonds, unexpected impurities, and imperfect crystals, and then these defects destroy the periodical arrangement of atoms, and many nonradiative centers are then formed in the interface. The enhancement of nonradiative relaxation will result in the obvious decrease of PL intensities.

While Lin and co-workers [9] give the result that the PL intensity of one layer Y_2O_3 :Eu³⁺ coated on SiO₂ particles increases with the increase of SiO₂ core particle size due to the decrease of surface defects and surface hanging bonds in larger particles because of their smaller surface area [27].

So the surface of Y_2O_3 :Eu³⁺ coated by SiO₂ will decrease the defects in the surface of the phosphor materials and enhance the emission intensity and efficiency of PL. But in this work the PL intensity of SiO₂ @ Y_2O_3 :Eu³⁺ @ SiO₂ is a little weaker than that of Y_2O_3 :Eu³⁺ and SiO₂ @ Y_2O_3 :Eu³⁺ material. This may be explained as that the emitting volume of Y_2O_3 :Eu³⁺ is decreased by coating another SiO₂ shell compared to the pure Y_2O_3 :Eu³⁺ and core–shell SiO₂ @ Y_2O_3 :Eu³⁺ (9,12,13). It is believed that if we only coating SiO₂ shell on the Y_2O_3 :Eu³⁺ core, the PL intensity should be increased compared to that of SiO₂ @ Y_2O_3 :Eu³⁺ material. This is investigated in the next step.

On the other hand, the silica shell affecting the optical response of luminescing cores was recently investigated for two different mechanisms [28,29]. One is the influence of the coating was based on the reduction of the luminescence quenching of the surface hydroxil groups, and this enhancement of luminescence brought by coating strongly depends on the nature of the core [28]. It can be significant in the case of Mn-doped ZnS [28] or only slightly pronounced in Eu doped YVO₄ [30]. In some cases as pure Eu_2O_3 [31] or CdSe/ZnS [28], the luminescence is, on the contrary, found to be slightly decreased or severely dropped just like that in this study the emission intensity of SiO₂ @ Y₂O₃:Eu³⁺@ SiO₂ is less than that SiO₂ @ Y₂O₃:Eu³⁺. Another mechanism is explained that the luminescence enhancement of the core-shell naoparticles is due to the energy transfer between the two parts of a core-shell nanocomposite, the silica shell acting as an antenna which absorbs the light and transfers it to the core then enhancing the optical response [29]. But the latter mechanism was happened when the excitation wavelength is shorter than 250 nm because the silica is found to absorb significantly below 250 nm [32]. In this study, the energy transfer between SiO₂ shell and the core SiO₂ @ Y₂O₃:Eu³⁺ composites did not found because the excitation wavelength is 254 nm which can not be absorbed well by SiO₂ shell.

4. Conclusions

In summary, we have demonstrated a simple approach for the synthesis of core-shell structure $SiO_2 @ Y_2O_3:Eu^{3+}$ and core-shell-shell particles like sandwich structure $SiO_2 @ Y_2O_3:Eu^{3+}$ @ SiO_2 with uniform size distribution and spherical morphology. Photoluminescence studies show that the existence of silica as core or shell have some extent affect on the luminescence property of $Y_2O_3:Eu^{3+}$ shell. One can change the size of SiO_2 core or $Y_2O_3:Eu^{3+}$ shell to obtain the best photoluminescence property.

References

- [1] X. Teng, D. Black, N.J. Watkins, Y. Gao, H. Yang, Nano. Lett. 3 (2003) 261-263.
- [2] Y. Yin, Y. Liu, B. Gates, Y. Xia, Chem. Mater. 13 (2001) 1146-1148.
- [3] C. Graf, D.L.J. Vossen, A. Imhof, A. van Blaaderen, Langmuir 19 (2003) 6693-6700.
- [4] T. Hase, T. Kano, E. Nakazawa, H.Y. Amamoto, Adv. Electron. Electron Phys. 79 (1990) 271–273.
- [5] V.A. Bolchouchine, E.T. Goldburt, B.N. Levonovitch, V.N. Litchmanova, N.P. Sochtine, J. Lumin. 87/89 (2000) 1277–1280.
- [6] G. Wakefield, E. Holland, P.J. Dobson, J.L. Hutchison, Adv. Mater. 13 (2001) 1557–1559.
- [7] H. Wang, C.K. Lin, X.M. Liu, J. Lin, Appl. Phys. Lett. 87 (2005) 181907-181910.
- [8] H.J. Feng, Y. Chen, F.Q. Tang, Mater. Lett. 60 (2006) 737-739.
- [9] H. Wang, M. Yu, C.K. Lin, X.M. Liu, J. Lin, J. Phys. Chem. (C) 111 (2007) 11223–11230.
- [10] K.Y. Jung, D.Y. Lee, Y.C. Kang, H.D. Park, J. Lumin. 105 (2003) 127–130.
- [11] X. Jing, T.G. Ireland, C. Gibbons, D.J. Barber, J. Silver, A. Vecht, G. Fern, P. Trogwa, D. Morton, J. Electrochem. Soc. 146 (1999) 4546–4551.
- [12] C.K. Lin, D.Y. Kong, X.M. Liu, H. Wang, M. Yu, J. Lin, Inorg. Chem. 46 (2007) 2674–2681.
- [13] H. Wang, M. Yu, C.K. Lin, J. Lin, J. Colloid Interf. Sci. 300 (2006) 176-182.
- [14] X.M. Liu, J. Lin, J. Nanopart Res. 9 (2007) 869-875.
- [15] K.C. Barick, D. Bahadur, Bull. Mater. Sci. 29 (2006) 595–598.
- [16] K. Aslan, M. Wu, R.J. Lakowicz, C.D. Geddes, J. Fluoresc. 17 (2007) 127-131.
- [17] C. Graf, D.L.J. Vossen, A. Imhof, A.V. Blaaderen, Langmuir 19 (2003) 6693-6700.
- [18] N. Liu, B.S. Prall, V.I. Klimov, J. Am. Chem. Soc. 128 (2006) 15362–15363.
- [19] J.H. Kim, J.S. Kim, H. Choi, S.M. Lee, B.H. Jun, K.N. Yu, E. Kuk, Y.K. Kim, D.H. Jeong, M.H. Cho, Y.S. Lee, Anal. Chem. 78 (2006) 6967–6973.
- [20] A.F. Gross, M.R. Diehl, K.C. Beverly, E.K. Richman, S.H. Tolbert, J. Phys. Chem. B 107 (2003) 5475–5482.
- [21] K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel, J. Am. Chem. Soc. 124 (2002) 2312-2313.
- [22] W. Stöber, A. Fink, E. Bohn, J. Colloid Interf. Sci. 26 (1968) 62–65.
- [23] G.X. Liu, G.Y. Hong, D.X. Sun, J. Colloid Interf. Sci. 278 (2004) 133-138.
- [24] D.K. Williams, B. Bihari, B.M. Tissue, J. Phys. Chem. B 102 (1998) 916-918.
- [25] Y. Tao, G.W. Zhao, W.P. Zhang, S.D. Xia, Mater. Res. Bull. 32 (1997) 501-506.

- [26] H.J. Feng, Y. Chen, F.Q. Tang, J. Ren, Mater. Lett. 60 (2006) 737–740.
 [27] J. Dhanaraj, R. Jagannathan, T.R.N. Kutty, C.H. Lu, J. Phys. Chem. B 105 (2001) 11098-11100.
- [28] D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zancher, S. Weiss, A.P. Alivisatos, J. Phys. Chem. B 105 (2001) 8861-8864.
- [29] C. Louis, S. Roux, G. Ledoux, C. Dujardin, O. Tillemen, B.L. Cheng, P. Perriat, Chem. Phy. Lett. 429 (2006) 157–160.
- [30] A. Huignard, V. Buissette, A.C. Franville, T. Gacoin, J.P. Boilot, J. Phys. Chem. B 107 (2003) 6754-6757.
- [31] J. Feng, B.D. Hummock, I.M. Kennedy, G. Shan, A. Maqueira, US Patent 2003/0180780.
- [32] B. Mercier, C. Dujardin, G. Ledoux, C. Louis, O. Tillement, P. Perriat, J. Appl. Phys. 96 (2004) 650–653.