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ABSTRACT: We report a catalytic strategy that 

generates rhodium-carbynoids by selective diazo 

activation of designed carbyne sources. We found that 

rhodium-carbynoid species provoke C(sp2)−C(sp2) bond 

scission in alkenes by inserting a monovalent carbon 

unit between both sp2-hybridized carbons. This skeletal 

remodeling process access synthetically useful allyl 

cation intermediates that conduct to valuable allylic 

building blocks upon nucleophile attack. Our results rely 

on the formation of cyclopropyl-I(III) intermediates able 

to undergo electrocyclic ring-opening, following the 

Woodward-Hoffmann-DePuy rules.  

For more than half a century, the discovery of new 

metal-carbon bond-forming strategies has been 

cornerstone in the development of transition-metal 

catalysis.1 The catalytic generation of organometallic 

species with metal-carbon single/double bonds, such as 

metal−L (L = alkyl, alkenyl, alkynyl, aryl) or metal-

carbene (metal=L) is widely used in reaction discovery 

and development. However, while metal-carbynes − the 

organometallic species with a metal-carbon triple bond 

(metal≡L) −,2 have been key catalysts in alkyne 

metathesis,3 their catalytic generation and general 

application in catalytic carbyne transfer has been largely 

unexplored, mainly due to the lack of suitable 

monovalent carbon sources (Figure 1A).4 Surprisingly, 

methodologies circumventing this problem by generating 

metal-carbynoids as equivalent reactive species of 

metal-carbynes, have not been reported. 

Recently, our group demonstrated the first catalytic 

generation of diazomethyl radicals [N2=C(•)–R] as 

carbyne equivalents by means of photoredox catalysis.5,6 

This work highlighted the under-appreciated ability of 

neutral carbynes to form three new bonds7 and provided 

the fundaments of an “assembly-point” coupling for 

chiral center construction, through a C−H bond 

diazomethylation reaction in aromatic feedstocks and 

drug molecules. Key on this work was the use of stable 

carbyne sources decorated with a hypervalent iodine 

moiety [I(III)(Ar)(OTf)] and a diazo functionality (=N2).8 

We recently questioned whether well-known dirhodium 

catalysts in diazo activation,9 might generate Rh-

carbynoids as I(III)−substituted Rh-carbenes (Figure 1B). 

Considering the outstanding leaving group ability of the 

I(III) moiety10 and weakness of the hypervalent bond, we 

anticipated that the electrophilic carbon center of the Rh-

carbynoid would emulate the carbene/carbocation 

behavior of a monovalent cationic carbyne (:+C−R), and 

enable a novel route to allylic cations from alkenes, by 

the insertion of the monovalent carbon unit in the 

C(sp2)−C(sp2) bond (Figure 1B). 

 

Figure 1. Catalytic cleavage of C(sp2)−C(sp2) with 

Rh-carbynoids 

Such process, that involves a - & -bond activation of 

the alkene double bond and uses both sp2-hybridized 

carbons as functional groups, would be a rare example 

of a catalytic cleavage of strong double C−C bonds 

(BDE, H2C=CH2 = 174.1 kcal/mol), besides processes of 

metathesis11,12 or rearrangements.13 It would also 
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represent a new way for catalytic skeletal remodeling, 

complementing “cut and sew” and deconstructive 

transformations based on single C−C bond 

functionalization.14 Notably, accessing allyl 

intermediates by C(sp2)−C(sp2) bond cleavage would 

represent a complementary, but clearly different strategy, 

to the well-established transition-metal-catalyzed 

allylations15 or allylic C−H bond functionalizations.16 

Herein, we disclose the successful development of a Rh-

catalyzed carbyne transfer platform for the catalytic 

cleavage of C(sp2)−C(sp2) bonds that provides a novel 

route to allylic building blocks.  

We envisioned that the selective diazo activation of 

reagent 2 with a paddlewheel dirhodium complex L4Rh2 

would conduct to a highly electrophilic Rh-carbynoid 3 

(Scheme 1). The latter species would cyclopropanate an 

alkene and generate a transient cyclopropyl−I(III) 

intermediate 4. In analogy to the well-known ring-

opening of cyclopropyl tosylates or cyclopropyl 

bromides with silver salts,17 4 would open in concert 

with the departure of the I(III) leaving group through a 

disrotatory mode, following the Woodward-Hoffmann-

DePuy rules.18 This process would lead to a putative 

allylic cation 5 able to provide the desired allylic 

product 6 by nucleophile attack, or diene 7 by proton 

elimination. 

Scheme 1. Mechanistic hypothesis 

 

Initial successful results were found when a solution of 

2a in dichloromethane was added to cyclohexene (5 

equivalents) and Rh2(Oct)4 (1 mol%) at −50 ºC during 1 

hour. Then, Bu4NBr (3 equiv.) was added at −50 ºC and 

the resulting mixture stirred for 60 min. With this 

protocol allyl bromide 7a was obtained in a promising 

18% yield (Table 1, entry 1). The use of the more 

sterically demanding catalysts Rh2(Adc)2 or Rh2(esp)2 

(Du Bois catalyst)19 provided significantly superior 

levels of efficiency of 7a (30-48 % yield, respectively) 

and the formation of diene 7a in less than 10% yield 

(entry 2,3). After identifying Rh2(esp)2 as the most 

promising catalyst, we questioned whether the nature of 

reagent 2 could have a substantial impact in the 

efficiency of the process. Firstly, we realized that the 

pseudocyclic structure of reagent 2a was crucial for 

enabling the synthesis of allylic bromide 7a. No 

conversion to 7a was observed for cyclic reagent 2b 

(entry 4) and very poor yields were obtained for the 

linear analogue 2b (entry 5). Finally, we were pleased to 

find that pseudocyclic reagents 2d,e with BF4 and PF6 

counterions, dramatically improved the efficiency of the 

C(sp2)−C(sp2) cleaving process (entry 6,7). We also 

appreciated that excess of alkene 1a was needed to reach 

good efficiency. A experiment carried out with 

equimolecular ratio of 1a and 2e, showed a poorer yield 

for 6a/7a (entry 8, 45/7% yield) and 30% of 

cyclohexene was detected. This might suggests that such 

excess ensures full conversion in the ligand transfer 

event between the corresponding Rh-carbynoid 3 and 

cyclohexene (the cyclopropanation), preventing the 

evolution of 3 through undesired pathways.20 The use of 

Bu4PBr or TMSBr as bromide source did not provide 

better results (entry 9,10).21 

Table 1. Optimization studies 

 

Having the optimized conditions in hand, we evaluated 

the nucleophile scope by using cyclohexene and reagent 

2e (Table 2A). We were delighted to see that our 

methodology worked well for a broad and diverse range 

of simple nucleophiles that created: (i) carbon-halogen 

bonds with Bu4NBr (6a), and Et3N·3HF (6b); (ii) 

carbon-oxygen bonds with methanol (6c), 

tetrabutylammonium acetate (6d), water (6e), and 

TEMPO (6f); (iii) carbon-sulfur bonds with thiols (6g); 
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and (iv) carbon-nitrogen bonds with Bu4NSCN (6h), 

tert-butyl carbamate (6i), Bu4NN3 (6j), and 4-

methoxyaniline (6k). Moreover, our strategy permitted 

the use of a diverse range of carbon nucleophiles, 

enabling C–H arylation processes with electron-rich 

arenes (6l−n) or heterocycles (6o), allylation with allyl-

SnBu3 (6p), alkylation with the trimethylsilyl enol ether 

derived from acetophenone (6q), or amidation with the 

combination of tert-butylisocyanide, pyridine oxide and 

water (6r). It is noteworthy the high degree of 

complexity introduced into both C(sp2)−C(sp2) carbons 

in the constructive cleaving process: one new single 

C−C bond and one new double C−C bond are created, in 

addition to the formation of a chiral center at one of the 

sp2-hybridized carbons of cyclohexene using some of 

the most simple and abundant nucleophiles. 

Table 2. Scope of the catalytic cleavage of C(sp2)−C(sp2) bonds for allylic building block synthesisa 
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Next, we wondered whether we could convert olefin 

petrochemical feedstocks and styrenes into allylic 

building blocks. We embarked on this journey by firstly 

evaluating ethylene, the most widely produced chemical 

feedstock by the petrochemical industry with an annual 

global production above 134 million tones. We were 

glad to find that our methodology was able to convert 

ethylene into allyl bromide 6s with high efficiency 

(Table 2B). To the best of our knowledge, this is the first 

example of a catalytic constructive scission in ethylene 

that provokes the conversion to an allyl bromide. This 

result can be explained by the initial formation of 

CO2Et
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6m  85%

with thiophenol
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6v R = Bu, 88% (l:b = 7:1), l = 3:1 (Z:E)

6w  R = Ph, 98% (l:b = >20:1) 10:1 (Z:E)
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a Perfomed with alkene (1.0 mmol, 5 equiv.), reagent 2e (0.2 mmol, 1 equiv.), CH2Cl2 (0.1 M) and nucleophile (3-20 equiv). Yield in parenthesis of the diene 7. See supporting information for experimental details.

6ab R = allyl, n = 6
       51%,1.3:1 (Z:E)

6y R = Ph, X = N3 

 70% (18%) 16:1 (Z:E)
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intermediate 8, subsequent electrocyclic ring-opening 

and bromide attack to the resulting allyl cation 9. Also, 

our process worked well with propylene, the most 

important feedstock of the α-olefin family. In this case, 

allyl bromide 6t was obtained with a 14:1 

linear/branched selectivity and in 89% yield (Table 2B). 

The 4:1 selectivity observed in favor for the Z isomer in 

the linear isomer, is suggesting the preferential 

formation of 10, where substituent R and I(III) moiety are 

in relative syn disposition. Subsequently, the 

electrocyclic ring-opening by disrotatory mode would 

conduct to 11 − the R group rotates inwardly− which 

undergo bromide attack at the less hindered electrophilic 

carbon site (α position). Moreover, while similar 

efficiencies and selectivities were obtained for 1-butene 

(6u) and 1-hexene (6v), the reaction with styrene 

provided excellent yield and selectivities in favor of the 

linear isomer 6w. On the other hand, we anticipated that 

1,2-disubstituted alkenes such as (E)-2-butene and β-

methyl-styrene would potentially challenge our 

methodology: the formation of 12 and subsequent 

electrocyclic ring-opening, would provide a 

trisubstituted allyl cation 13 with two similar 

electrophilic sites (α & α´ position), and mixtures of 

allyl bromides could be formed (Table 2B). However, 

we were delighted to find that the reaction gave allyl 

bromides 6x and 6y with a high regio- and 

stereoselectivity. Furthermore, our insertion reaction 

enabled ring expansion in larger rings, including 

cycloheptene (6z), cyclooctene (6aa) and cyclododecene 

(6ab). 

An important feature of our C(sp2)−C(sp2) cleavage 

process is the ability to transform alkenes into others 

with a higher substitution. We believed that we could 

provide a new approach for the synthesis of synthetic 

challenging tetrasubstituted olefins, which lack a general 

synthesis approach and are present in drug molecules 

and molecular motors.22 Based on previous results, we 

anticipated that 1,1-disubstituted olefins, which are 

commercially available or easy to make from ketones by 

ylide olefination, could be suitable substrates to reach 

the tetrasubstituted olefin core. We were pleased to find 

that commercial methylenecyclohexane and α-

methylstyrene could be efficiently converted into tetra-

substituted olefins 6ac and 6ad by using Bu4NO2CPh 

and Bu4NN3 as nucleophile, respectively (Table 2B). It is 

noteworthy the high degree of stereoselectivity observed 

for 6ad (14:1, Z:E), which can be rationalized based on 

the preferential formation of an analogue of 10 having 

both Ph ring and I(III) moiety in syn disposition. 

The strategic advantage of inserting a monovalent 

carbon unit into a C(sp2)−C(sp2) bond was further 

exploited to induce cyclization reactions (Scheme 2). 

Simple alkenes with a remote alcohol nucleophile and 

natural product derivatives were selectively cyclized 

with moderate to excellent yields (14–18, 52-91% 

yield). Based on the previous results, we believe that the 

cyclization reactions involve the selective catalytic 

generation of carbocations 19–21 that selectively evolve 

to the heterocyclic products through exo (19,20,22) and 

endo cyclizations (21). 

Scheme 2. C(sp2)−C(sp2) bond cleavage enables cyclizationsa 
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Finally, we wanted to provide evidence of cyclopropyl 

hypervalent iodine intermediates 4, despite the well-

known thermodynamic instability of alkyl-I(III) species.23 

Initial efforts towards the isolation of cyclopropyl−I(III) 

intermediates from mono (styrene) and di-substituted 

olefins (cyclohexene) at −50 ºC were unsuccessful. It is 

known that the electrocyclic ring-opening in substituted 

cyclopropyl tosylates is kinetically favored over the non-

substituted derivatives.17a With this information, we 

hoped that trapping the corresponding cyclopropyl−I(III) 

intermediate derived from ethylene could be more 

feasible. By using reagent 2f and Rh2(Adc)4 as catalyst, 

we were glad to isolate at room temperature 

cyclopropyl−I(III) compound 23 as a relative stable white 

solid in 56% yield, whose structure was confirmed by 

single-crystal x-ray diffraction analysis (Scheme 3). To 

the best of our knowledge, this is the first isolable 

alkyl−I(III) compound of this class, and we believe this 

result may inspire future endeavors for the design of 

novel hypervalent alkyl−I(III) reagents. As a control 

experiment, we demonstrated that the treatment of 23 

with Bu4NBr gave the expected allyl bromide 24 with 

high efficiency (Scheme 3). 

 

 

 

 

 

 

Scheme 3. Synthesis of cyclopropyl−I(III) compound 

23 

 

In summary, we have developed a Rh-catalyzed carbyne 

transfer platform for the catalytic cleavage of 

C(sp2)−C(sp2) bonds. We have demonstrated that this 

process is able to convert feedstock alkenes, styrenes 

and a broad diversity of simple nucleophiles into 

valuable allylic building blocks. The value of the 

constructive scission of C(sp2)−C(sp2) bonds in alkenes 

for the synthesis of more substituted ones is remarkable 

and is well exemplified with the synthesis of all-carbon 

tetrasubstituted alkenes from readily available starting 

materials. The isolation of a cyclopropyl-I(III) 

compound, which opens following the Woodward-

Hoffmann-DePuy rules, clearly proves the involvement 

of these species as intermediates in the reaction. We 

believe that the insertion of a monovalent carbon unit in 

C(sp2)−C(sp2) bonds underscores an opportunity as tool 

in skeletal editing that will be relevant to reach 

previously unattainable chemical space in drug 

discovery.24 
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