

A Divergent and Stereoselective Approach for the Syntheses of Some Polyhydroxylated Indolizidine and Pyrrolizidine Iminosugars

Anugula Rajender,^[a] Jalagam Prasada Rao,^[a] and Batchu Venkateswara Rao*^[a]

Keywords: Natural products / Azasugars / Nitrogen heterocycles / Total synthesis / Diastereoselectivity

A common, divergent, and efficient approach to the syntheses of (+)-steviamine (9), (-)-1-deoxy-8a-epi-castanospermine (10), (+)-trihydroxyindolizidine (11), (+)-3,7a-di-epi-hya-cinthacine A1 (12), and (-)-2-epi-lentiginosine (4) was achieved by starting from D-ribose-derived intermediate 13.

Introduction

Iminosugars (azasugars or iminocyclitols) are small molecules of both synthetic and natural origin that mimic carbohydrates in biological systems. Structurally, they are the nitrogen analogues of monosaccharides, in which the oxygen atom in the ring is replaced by a nitrogen atom. Iminosugars are important in their ability to inhibit glycoprocessing enzymes,^[1] which play an important role in several metabolic processes.^[2] The polyhydroxylated indolizidines and pyrrolizidines (see Figure 1) belong to a class of iminosugars that are known for their interesting therapeutic applications.^[3]

The natural product (–)-steviamine (1) is the first example of this new class of indolizidine alkaloids that inhibits the α -galactosaminidase (GalNAcase) enzyme^[4] and may be used for the treatment of Schindler/Kanzaki disease.^[5] Interestingly, the synthetic compound (+)-steviamine (9) was found to inhibit the α -rhamnosidase enzyme.^[4] Inhibitiors of this enzyme are potential therapeutic agents for the treatment of bacillary dysentery, cancer,^[6a] tuberculosis, and leprosy.^[6b]

(+)-Castanospermine (2) and its congeners play a pivotal role in inhibiting the progression of multiple sclerosis,^[7] cancer,^[8] and diabetes.^[9] (+)-Hyacinthacine A1 (5),^[10] (–)-swainsonine (3), and its isomers^[11] are known for their gly-cosidase inhibitory activity. (–)-Swainsonine (3) has also been screened for the treatment of life-threatening diseases such as HIV, cancer, and immunological disorders.^[12]

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201201342.

The key steps involved in these syntheses are a highly diasteroselective Grignard addition to a ribosylimine, a onepot stereoselective intramolecular reductive amination, a selectve deprotection of a silyl ether, and a ring-closing metathesis (RCM) reaction.

Figure 1. Some naturally occurring polyhydroxylated indolizidine and pyrrolizidine alkaloids.

(–)-2-*epi*-Lentiginosine (**4**) is a potent inhibitor of α -mannosidase and has an IC₅₀ value of 4.6 μ M.^[13] The synthetic compound (–)-trihyroxyindolizidine (**11**) was found to be a selective inhibitor of rat intestinal sucrase.^[14] Because of the interesting biological activities of these iminosugars, numerous synthetic approaches have been developed, thus far, that use different strategies.^[15,16] Herein, we present a divergent and highly stereoselective approach for the syntheses of various polyhydroxylated indolizidine and pyrrolizidine iminosugars (see Figure 2). A divergent approach to synthesize small molecules is a challenging task for the synthetic chemists. This approach provides a number of diverse molecules in a few short steps, which is a great help for a drug discovery program.

 [[]a] Organic and Biomolecular Chemistry Division, CSIR – Indian Institute of Chemical Technology, Hyderabad 500607, India Fax: +91-040-27193003
 E-mail: venky@iict.res.in drb.venky@gmail.com
 Homepage: http://www.iictindia.org/

FULL PAPER

Figure 2. Iminosugars synthesized from 14.

In the course of developing synthetic approaches towards these biologically active compounds,^[17] we recently communicated a flexible and highly stereoselective method for the syntheses of *erythro* isomers $14^{[18]}$ and $15^{[19]}$ (see Scheme 1) through a Grignard addition to *N*-glycosylamine 13. In this publication, we present some logical functional group manipulations of 14 and 15 to construct different indolizidine and pyrrolizidine rings (see Figure 2).

Scheme 1. Synthesis of key intermediates **14** and **15** from D-ribose (TBS = *tert*-butyldimethylsilyl).

the (*E*) isomer of α , β -unsaturated ketone **17** (see Scheme 2). Next, we successfully carried out a one-pot stereoselective intramolecular reductive amination^[20] and selective deprotection of the triethylsilyl (TES) group^[21] by using 10% Pd/ C and ammonium formate in methanol at reflux to give piperidine derivative **18**.^[22] The secondary alcohol in **18** was treated with MsCl and pyridine to give a mesylated compound, which then underwent an intramolecular S_N2 reaction to afford indolizidine **19** in 70% yield.^[23] The synthesis of steviamine (**9**) was achieved by treatment of compound **19** with aqueous HCl in methanol, which was followed by

Results and Discussion

We envisaged the syntheses of steviamine (9), 1-deoxy-8a-*epi*-castanospermine (10), indolizidine 11, 3,7a-di-*epi*hyacinthacine A1 (12), and 2-*epi*-lentiginosine (4) to start from intermediate 14 and an alternative synthesis of 12 to start from key intermediate 15.

For the synthesis of steviamine (9, see Figure 2), the amino functionality in 14 was converted to N(Bn)Cbz derivative 16 (Cbz = benzyloxycarbonyl) by using our earlier procedure.^[18] The ozonolysis of the terminal olefin in 16 afforded an aldehyde. The crude aldehyde was subjected to a Wittig olefination by treating with Ph₃P=CHCOCH₃ in toluene and heating the reaction mixture at reflux to afford

Scheme 2. Synthesis of compounds **9**, **10**, and **12** starting from **14**. Reagents and conditions: (a) see ref.^[18]; (b) (i) O₃, CH₂Cl₂, -78 °C and then Me₂S, 0 °C, 2 h; (ii) Ph₃P=CHCOCH₃, toluene, reflux, 85% (over two steps); (c) HCOONH₄, 10% Pd/C, MeOH, reflux, 3 h, 80%; (d) pyridine, MsCl, room temp., 3 h, 70%; (e) HCl (6 M), MeOH, r.t. for **9** and reflux for **10**, 12 h, 90% for **9** and 90% for **10**; (f) CbzCl, NaHCO₃, MeOH, 0 °C to r.t., 2 h, 90%; (g) MOMCl (MOM = methoxymethyl), *N*,*N*-diisopropylethylamine (DIPEA), 4-(dimethylamino)pyridine (DMAP), CH₂Cl₂, 0 °C to r.t., 95%; (h) BH₃·Me₂S, tetrahydrofuran (THF), 0 °C to r.t., 2 h, then NaOH, H₂O₂, 0 °C, 2 h, 86% for **22** and 80% for **24** and 86% for **26** (over two steps).

purification by ion-exchange chromatography. The analytical data of compound **9** was in good accordance with the reported values.^[4]

1-Deoxy-8a-epi-castanospermine (10) is a synthetically known analogue of castanospermine (2).^[24] To synthesize compound 10, compound 14 was treated with CbzCl and NaHCO₃ in MeOH to furnish carbamate 20 in 90% yield. Masking of the secondary alcohol in 20 as a MOM ether by using MOMCl and DIPEA in CH₂Cl₂ afforded 21 in 95% yield. Hydroboration/oxidation of the terminal olefin in 21 was carried out by treatment with BH₃·Me₂S in THF and then treatment with NaOH/H2O2 to provide the desired primary alcohol 22 in 86% yield. Cleavage of the silyl ether in 22 by using Bu₄NF afforded diol 23 in a good yield. Mesylation of the diol functionality in 23 by treatment with MsCl, NEt₃, and DMAP in CH₂Cl₂ provided the dimesyl product, which upon hydrogenolysis with 10% Pd/C in methanol gave indolizidine derivative 24 in 90% yield. Finally, the removal of the isopropylidene acetal and MOM ether group in 24 was accomplished by adding aqueous HCl in methanol and heating at reflux. Purification of the resultant salt by an ion-exchange resin afforded the desired final product 10 in 90% yield. The spectral and physical data for **10** were in good agreement with the reported values.^[24] Compound 20 was treated with BH₃·Me₂S in THF, which was followed by treatment with NaOH/H₂O₂ to afford diol 25 in 80% yield. Mesylation of diol 25 with MsCl and pyridine gave the dimesyl derivative, which was immediately subjected to hydrogenolysis with H₂ in presence of 10% Pd/ C in methanol to give the desired pyrrolizidine 26 in 86% yield. The conversion of pyrrolidine 26 into 3,7a-di-epi-hyacinthacine A1 (12) is reported in the literature.^[25]

Our next goal was to synthesize compounds 11, 12, and 4 under ring-closing metathesis (RCM)^[26] conditions (see Scheme 3). To obtain the diene precursors for the preparation of the pyrrolizidine and indolizidine rings, the amino group in 14 and 15 underwent a chemoselective allylation by using allyl bromide and K₂CO₃ in CH₃CN and heating at reflux to furnish diene precursors 27 and 32 in 75 and 70% yield, respectively. Diene 27 and 32 were then subjected to an olefin metathesis by using 10 mol-% of the firstgeneration Grubbs catalyst in CH2Cl2 and heating at reflux to afford 28 and 33 in 80 and 85% yield, respectively. Hydrogenolysis of 28 and 33 by using 10% Pd/C in MeOH and then mesylation with MsCl in pyridine gave compounds 29 and 26, respectively, in good yields. Finally, compound 29 was globally deprotected by treatment with aqueous HCl. Filtration of the resultant reaction mixture through ion-exchange chromatography gave indolizidine 11. The spectral and physical data for 11 were in good agreement with the reported values.^[14]

To synthesize (–)-2-*epi*-lentiginosine (4, see Scheme 3), compound **28** was treated with Bu_4NF in THF to afford diol **30** in 85% yield. The oxidative cleavage of diol **30** by using silica-supported sodium periodate^[27] in CH₂Cl₂/H₂O (4:1) gave an aldehyde, which upon hydrogenation with catalytic 10% Pd/C in MeOH afforded bicyclic indolizidine **31** in 55% yield. The spectral and physical data of com-

Scheme 3. Syntheses of compounds 4 and 11 from 14 and compound 12 from 15. Reagents and conditions: (a) allyl bromide, K_2CO_3 , CH_3CN , reflux, 12 h, 75% for 27, 70% for 32; (b) 10 mol-% Grubbs first-generation catalyst, CH_2Cl_2 , reflux, 12 h, 80% for 28, 85% for 33; (c) (i) 10% Pd/C, H₂, MeOH, cat. NaHCO₃, 12 h; (ii) MsCl, pyridine, r.t., 2 h, 74% for 29, 68% for 26 (over two steps); (d) HCl (6 M), r.t., 12 h, 85%; (e) Bu₄NF, THF, r.t., 1 h, 85%; (f) (i) SiO₂/NaIO₄, CH₂Cl₂/H₂O (4:1), 0 °C, 30 min; (ii) 10% Pd/C, H₂, MeOH, 12 h, 55% (over two steps).

pound **31** were in good agreement with the reported values.^[28] The conversion of the compound **31** into (-)-2-*epi*-lentiginosine (**4**) is reported in the literature.^[28]

Conclusions

We have successfully demonstrated our aforementioned strategy for the syntheses of different bicyclic iminosugars (see Figure 2) by using inexpensive and readily available D-ribose as the starting material. The key features of this strategy are its high diastereoselectivity, the stereocontrolled nucleophilic Grignard addition to a *N*-glycosylamine, a one-pot stereoselective intramolecular reductive amination, a selective silyl ether deprotection, a selective mesylation, a cyclization, and a RCM. This strategy provides the desired products in good yields and is also useful for building a library of compounds with improved therapeutic activities.

Experimental Section

General Methods: The moisture- and oxygen-sensitive reactions were carried out under nitrogen in flame- or oven-dried glassware

with magnetic stirring. Standard techniques were used to purify the solvents and reagents prior to use. Solutions were dried with Na₂SO₄ and then concentrated under reduced pressure. TLC was performed with Merck Kiesel gel 60, F254 plates (layer thickness 0.25 mm). Column chromatography was performed with silica gel (60-120 and 100-200 mesh), and ethyl acetate and hexane were used as the eluents. Melting points were determined with a Fisher Johns melting point apparatus. IR spectra were recorded with a Perkin-Elmer RX-1 FTIR system. The ¹H NMR (300 and 500 MHz) and ¹³C NMR (75 and 100 MHz) spectroscopic data were recorded with Bruker Avance-300 and Varian-400 instruments. Chemical shifts were reported in ppm with respect to TMS as the internal standard. ¹H NMR spectroscopic data are reported as chemical shifts in ppm, which is followed by multiplicity [singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m)], number of proton(s), and coupling constants (J, in Hz). Optical rotations were measured with a JASCO digital polarimeter. Accurate mass measurements were performed with a Q STAR mass spectrometer (Applied Biosystems, USA).

(R)-1-{(4R,5S)-5-[(S)-1-(Benzylamino)allyl]-2,2-dimethyl-1,3-dioxolan-4-yl}-2-(tert-butyldimethylsilyloxy)ethanol (15): To a solution of N-glycosylamine 13 (2 g, 4.75 mmol) in dry THF (10 mL) was added dropwise vinylmagnesium bromide (1.0 M solution in THF, 23.7 mL) at -78 °C under nitrogen. The reaction mixture was warmed to room temp., and after stirring at r.t. for 2 h, the mixture was quenched with a saturated solution of NH₄Cl. The resulting solution was extracted with ethyl acetate (2×50 mL). The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄, and concentrated in vacuo. The resulting crude material was purified by silica gel column chromatography (10% ethyl acetate in hexane) to give compound 15 (1.54 g, 72% yield) as a syrup. $[a]_{D}^{26} = -12.6 \ (c = 1.3, \text{ CHCl}_3)$. IR (neat): $\tilde{v}_{\text{max}} = 2931, 2857, 1459$, 1379, 1214, 1068, 916, 836, 750, 667 cm⁻¹. ¹H NMR (500 MHz, $CDCl_3$): $\delta = 7.36-7.17$ (m, 5 H, Ph), 5.69 (m, 1 H, -CH=CH₂), 5.36 $(d, J = 10.1 \text{ Hz}, 1 \text{ H}, -CH = CH_2), 5.18 (d, J = 17.2 \text{ Hz}, 1 \text{ H},$ -CH=C H_2), 4.16 (dd, J = 5.5, 9.6 Hz, 1 H, 5-H), 3.91 (dd, J = 5.5, 9.6 Hz, 1 H, 4-H), 3.85 (dd, J = 2.0, 10.5 Hz, 1 H, CH₂OTBS), 3.82 (d, J = 12.1 Hz, 1 H, NCH₂Ph), 3.72 (dd, J = 2.0, 10.5 Hz, 1 H, -CH₂OTBS), 3.60 (d, J = 12.1 Hz, 1 H, NCH₂Ph), 3.60 [m, 1 H, -CH(OH)CH₂OTBS], 3.32 (t, *J* = 9.6 Hz, 1 H, -NCHCH=CH₂), 1.35 (s, 3 H, CH₃), 1.28 (s, 3 H, CH₃), 0.92 (s, 9 H, tBuSi), 0.09 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 138.1 (-CH=CH₂), 136.3 (C_q-Ph), 128.8, 128.6, 127.5 (Ph), 118.6 (-CH=CH₂), 108.5 [(CH₃)₂C(O)₂], 79.2 (C-5), 77.2 (C-4), 69.4 (-CH₂OTBS), 65.0 [-CH(OH)CH₂OTBS], 60.7 (NCHCH=CH₂), 50.6 (-NCH₂Ph), 27.8 (-CH₃), 26.0 [-SiC(CH₃)₃], 25.6 (-CH₃), 18.5 $[-SiC(CH_3)_3], -5.2 (-SiCH_3), -5.3 (-SiCH_3) ppm. MS (ESI): m/z =$ 422 [M + H]⁺. HRMS (ESI): calcd. for $C_{23}H_{40}NO_4Si$ [M + H]⁺ 422.27102; found 422.2711.

Benzyl Benzyl[(*S*,*E*)-1-{(4*S*,5*S*)-5-[(*R*)-3,3-diethyl-8,8,9,9-tetramethyl-4,7-dioxa-3,8-disiladecan-5-yl]-2,2-dimethyl-1,3-dioxolan-4yl}-5-oxohex-3-enyl]carbamate (17): Through a solution of terminal olefin 16 (1.0 g, 1.46 mmol) in CH₂Cl₂ (15 mL) at -78 °C was passed ozone gas for 20 min (until the solution changed to light blue). The reaction mixture was treated with dimethyl sulfide (0.52 mL, 7.3 mmol) at -78 °C and then stirred for another 30 min. The reaction mixture was extracted with CH₂Cl₂ (2 × 50 mL), and the combined organic layers were washed with brine and dried with the anhydrous Na₂SO₄. The organic layers were concentrated under reduced pressure to obtain the crude aldehyde, which was used in the next step without purification. To the solution of the crude aldehyde in dry toluene (10 mL) was added Ph₃P=CHCOCH₃ (0.69 g, 2.19 mmol) at r.t., and the reaction mixture was heated at reflux for 2 h. The solvent was removed under reduced pressure to give the crude product, which was purified by silica gel column chromatography (8% ethyl acetate in hexane) to yield the (E) isomer of α , β -unsaturated ketone 17 (0.9 g, 85% yield) as a thick colorless syrup. $[a]_{D}^{26} = -8.6$ (*c* = 0.23, CHCl₃). IR (neat): $\tilde{v}_{max} = 2985$, 2932, 1697 (NCOOCH₂Ph), 1497, 1370, 1251, 1067, 985, 836, 748, 698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, major rotamer): δ = 7.45– 7.10 (m, 10 H, 2 Ph), 6.65 (m, 1 H, -CH=CHCOCH₃), 5.70 (d, J = 15.8 Hz, 1 H, -CH=CHCOCH₃), 5.41-4.79 (m, 2 H, NCOOCH₂Ph), 4.77–4.48 (m, 2 H, -NCH₂Ph), 4.36–4.15 (m, 3 H, 5-H and -CH₂OTBS), 4.08–3.52 (m, 3 H, 4-H, -CHOTES, and NCHCH₂CH=CH), 2.62–2.32 (m, 2 H, -CH₂CH=CH), 2.09 (s, 3 H, COCH₃), 1.44 (s, 3 H, CH₃), 1.22 (s, 3 H, CH₃), 1.02–0.88 [m, 9 H, Si(CH₂CH₃)₃], 0.89 (s, 9 H, tBuSi), 0.75–0.50 [m, 6 H, Si(CH₂)₃], 0.10–0.01 (m, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃, major rotamer): $\delta = 198.5$ (COCH₃), 156.7 (NCOOPh), 146.1 (-*C*H=CHCOCH₃), 139.5 (C_q-Ph), 136.4 (C_q-Ph), 132.8 (-CH=CHCOCH₃), 128.4, 128.2, 128.0, 127.7, 127.3, 126.7 (Ph), 107.7 [(CH₃)₂C(O)₂], 79.5 (C-5), 76.8 (C-4), 72.1 (-CH₂OTBS), 67.1 (-CHOTES), 64.7 (NCOOCH2Ph), 55.7 (NCHCH2CH=CH), 46.7 (NCH₂Ph), 33.2 (CH₂CH=CH), 26.1 (COCH₃), 25.9 (CH₃), 24.4 (CH₃), 18.2 [SiC(CH₃)₃], 6.8 [Si(CH₂CH₃)₃], 4.9 [Si(CH₂CH₃)₃], -5.5 (Si*C*H₃) ppm. MS (ESI): m/z = 748 [M + Na]⁺. HRMS (ESI): calcd. for C₄₀H₆₃NO₇NaSi₂ [M + H]⁺ 748.40353; found 748.40426.

(R)-2-(tert-Butyldimethylsilyloxy)-1-{(4R,5S)-2,2-dimethyl-5-[(2S,6S)-6-methylpiperidin-2-yl]-1,3-dioxolan-4-yl}ethanol (18): To a solution of α , β -unsaturated ketone 17 (0.50 g, 0.68 mmol) in MeOH (10 mL) were added 10% Pd/C (10 mg) and ammonium formate (0.17 g, 2.72 mmol), and the resulting solution was heated at reflux for 3 h. After completion of the reaction, the mixture was filtered through a pad of Celite, which was then washed with MeOH (2×10 mL). The filtrate was concentrated by using a rotary evaporator, and purification of the crude residue by silica gel column chromatography (30% ethyl acetate in hexane) afforded 18 (0.2 g, 80% yield) as a thick colorless syrup. $[a]_{D}^{26} = +35.8 (c = 0.66, c = 0.66)$ CHCl₃). IR (neat): $\tilde{v}_{max} = 3437, 2924, 1450, 1379, 1215, 1066, 868,$ 769, 667 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 3.98 (dd, J = 4.9, 10.3 Hz, 1 H, 5-H), 3.79-3.71 (m, 2 H, -CH₂OTBS), 3.59 (dd, J =4.9, 10.3 Hz, 1 H, 4-H), 3.52 [m, 1 H, -CH(OH)CH₂OTBS], 2.82 $(ddd, J = 1.9, 10.3 Hz, 1 H, NCHCH_2CH_2-), 2.60 [m, 1 H,$ NCH(CH₃)], 1.91-1.76 [m, 2 H, NCH(CH₃)CH₂- and NCHCH₂-], 1.62 (m, 1 H, NCHCH₂CH₂-), 1.40 [m, 1 H, NCH(CH₃)CH₂-], 1.27 (s, 3 H, CH₃), 1.20 (s, 3 H, CH₃), 1.05 (m, 1 H, NCHCH₂CH₂-), 1.01 (d, J = 6.4 Hz, 3 H, 10-H), 0.96–0.86 (m, 1 H, NCHC H_2 -), 0.83 (s, 9 H, tBuSi), 0.01 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 107.7 [(CH_3)_2 C(O)_2], 80.5 (C-5), 77.3 (C-4), 69.9$ [-CH(OH)CH₂OTBS], 65.3 (CH₂OTBS), 56.1 [NCH(CH₃)CH₂-], 51.7 (NCHCH₂CH₂-), 34.4 [NCH(CH₃)CH₂-], 29.5 (NCHCH2CH2-), 27.9 (NCHCH2CH2-), 26.0 [SiC(CH3)3], 25.3 (CH₃), 24.0 (CH₃), 22.5 [NCH(CH₃)], 18.6 [SiC(CH₃)₃], -5.2 (SiCH₃) ppm. MS (ESI): $m/z = 374 [M + H]^+$. HRMS (ESI): calcd. for $C_{19}H_{40}NO_4Si \ [M + H]^+ 374.27177$; found 374.27211.

(3a*R*,4*S*,6*S*,9a*S*,9b*S*)-4-[*(tert*-Butyldimethylsilyloxy)methyl]-2,2,6-trimethyloctahydro[1,3]dioxolo[4,5-*a*]indolizidine (19): To a stirred solution of compound 18 (0.1 g, 0.26 mmol) in pyridine (5 mL) was added dropwise MsCl (0.03 mL, 0.40 mmol), and the reaction mixture was stirred at r.t. for 12 h. The solvent was evaporated under reduced pressure, and the resulting crude material was purified by column chromatography (20% ethyl acetate in hexane) to give bicyclic indolizidine 19 (0.068 g, 70% yield). [*a*]_D²⁶ = +16.9 (*c* = 1.88, CHCl₃). IR (neat): $\tilde{v}_{max} = 2920$, 2851, 1464, 1214, 743, 667 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 4.69$ (dd, J = 5.4, 7.3 Hz, 1 H, 1-H), 4.20 (dd, J = 5.4, 7.3 Hz, 1 H, 2-H), 3.89 (m, 1 H, -CH₂OTBS), 3.75–3.63 (m, 2 H, -CH₂OTBS and 3-H), 2.88 (m, 1 H, 8a-H), 2.62 (m, 1 H, 5-H), 2.00 (m, 1 H, 6-H_a), 1.72 (m, 1 H,

6-H_b), 1.66–1.51 (m, 2 H, 8-H_a and 8-H_b), 1.45 (s, 3 H, CH₃), 1.30 (s, 3 H, CH₃), 1.29–1.0 (m, 2 H, 7-H_a and 7-H_b), 1.17 (d, J =5.8 Hz, 3 H, 5a-H), 0.90 (s, 9 H, tBuSi), 0.06 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 113.6 [(CH₃)₂C(O)₂], 84.3 (C-1), 77.9 (C-2), 63.1 (C-8a), 61.4 (C-3), 58.1 (-CH₂OTBS), 52.6 (C-5), 34.4 (C-7), 30.3 (C-8), 25.9 [SiC(CH₃)₃ and CH₃], 24.5 (CH₃), 23.9 (C-7), 20.7 (C-5a), 18.2 [SiC(CH₃)₃], -5.5 (SiCH₃) ppm. MS (ESI): $m/z = 356 \,[M + H]^+$. HRMS (ESI): calcd. for C₁₉H₃₈NO₃Si [M + H]⁺ 356.26203; found 356.26155.

(1S,2R,3S,5R,8aS)-Octahydro-3-(hydroxymethyl)-5-methylindolizidine-1,2-diol (9): Aqueous HCl (6 M solution, 1 mL) was added to compound 19 (0.05 g, 014 mmol) in MeOH (2 mL) at room temp. The reaction mixture was stirred for 12 h and then concentrated in vacuo. The residue was dissolved in a small amount of distilled water, and the resulting solution was neutralized with aqueous NaOH (2 M solution). The crude product was purified by an acid resin column [DOWEX 50WX8, 100-200 mesh, distilled water and then NH₄OH (1 \times solution)] to give 9 (0.025 g, 90%) yield) as a yellow oil. $[a]_{D}^{26} = -32.4$ (c = 1.0, MeOH); ref.^[4] $[a]_{D}^{22} =$ -34.0 (*c* = 1.0, MeOH). IR (neat): \tilde{v}_{max} = 3316, 2943, 2831, 1449, 1219 cm⁻¹. ¹H NMR (300 MHz, D₂O): δ = 4.27 (t, J = 7.2 Hz, 1 H, 1-H), 3.98-3.80 (m, 2 H, -CH₂OTBS), 3.73 (t, J = 6.6 Hz, 1 H, 2-H), 3.48 (m, 1 H, 3-H), 2.82 (m, 1 H, 5-H), 2.65 (m, 1 H, 8a-H), 1.92 (m, 1 H, 8-H_a), 1.79–1.60 (m, 2 H, 6-H_a and 7-H_a), 1.40–1.14 (m, 3 H, 6-H_b, 8-H_b, and 7-H_b), 1.09 (d, J = 6.0 Hz, 3 H, 5a-H) ppm. ¹³C NMR (75 MHz, D₂O): δ = 73.2 (C-1), 68.5 (C-2), 66.2 (C-3), 60.7 (-CH2OTBS), 56.0 (C-5), 52.4 (C-8a), 32.5 (C-6), 28.4 (C-8), 22.9 (C-7), 18.5 (C-5a) ppm. MS (ESI): m/z = 202 $[M + H]^+$. HRMS (ESI): calcd. for $C_{10}H_{20}NO_3 [M + H]^+$ 202.14479; found 202.14377.

Benzyl Benzyl[(S)-1-{(4S,5R)-5-[(R)-2-(tert-butyldimethylsilyloxy)-1-hydroxyethyl]-2,2-dimethyl-1,3-dioxolan-4-yl}but-3-enyl]carbamate (20): To a stirred suspension of N-benzyl compound 14 (1.0 g, 2.30 mmol) in MeOH (10 mL) were added NaHCO₃ (0.77 g, 9.20 mmol) and CbzCl (0.39 mL, 2.76 mmol) at 0 °C. The reaction mixture was warmed to r.t., was stirred for 2 h, and then was filtered through a pad of Celite. The filtrate was concentrated in vacuo. The residue was purified by column chromatography (5% ethyl acetate in hexane) to afford 20 (1.18 g, 90% yield) as a thick colorless liquid. $[a]_D^{26} = +2.1$ (c = 0.59, CHCl₃). IR (neat): $\tilde{v}_{max} =$ 3483, 2930, 1692 (NCOOCH₂Ph), 1456, 1369, 1213, 1059, 910, 834, 751, 696 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, major rotamer): δ = 7.49–7.01 (m, 10 H, 2 Ph), 5.84–5.48 (m, 1 H, -CH=CH₂), 5.25– 4.74 (m, 5 H, -CH=CH₂, NCOOCH₂Ph, and 5-H), 4.69-4.40 (m, 2 H, -NCH₂Ph), 4.27 (m, 1 H, 4-H), 3.98–3.52 [m, 4 H, -CH₂OTBS, -CH(OH)CH₂OTBS, and NCHCH₂CH=CH₂], 2.75 (br. s, 1 H, OH), 2.50–2.10 (m, 2 H, NCHCH₂CH=CH₂), 1.37 (s, 3 H, CH₃), 1.22 (s, 3 H, CH₃), 0.90 (s, 9 H, tBuSi), 0.07 (s, 6 H, SiMe₂) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 157.1 (NCOOPh), 139.5 (C_a-Ph), 135.1 (-CH=CH₂), 127.9, 127.7, 127.1, 126.5 (Ph), 116.7 (-CH=CH₂), 108.1 [(CH₃)₂C(O)₂], 79.6 (C-5), 69.1 (C-4), 67.1 [NCOOCH₂Ph and -CH(OH)CH₂OTBS], 64.6 (-CH₂OTBS), 54.7 (NCHCH₂), 46.8 (NCH₂Ph), 33.6 (CH₂CH=CH₂), 26.8 (CH₃), 25.8 [SiC(CH₃)₃], 24.6 (CH₃), 18.2 [SiC(CH₃)₃], -5.4 (SiCH₃), -5.4 (SiCH₃) ppm. MS (ESI): $m/z = 570 [M + H]^+$. HRMS (ESI): calcd. for $C_{32}H_{48}NO_6Si [M + H]^+$ 570.32699; found 570.32454.

Benzyl Benzyl[(S)-1-{(4S,5S)-2,2-dimethyl-5-[(R)-8,8,9,9-tetramethyl-2,4,7-trioxa-8-siladecan-5-yl]-1,3-dioxolan-4-yl}but-3-enyl]carbamate (21): To the solution of alcohol 20 (0.80 g, 1.40 mmol) in dichloromethane (10 mL) were added N,N-diisopropylethylamine (1.51 mL, 8.40 mmol), MOMCl (0.34 mL, 4.20 mmol), and a catalytic amount of DMAP at 0 °C. The resulting mixture was warmed to r.t. and then stirred overnight. After completion of reaction, water and brine solution were added to the reaction mixture. The organic layer was separated, dried with anhydrous NaSO₄, and then concentrated in vacuo. The residue was purified by silica gel column chromatography (3% ethyl acetate and hexane) to give MOM ether **21** (0.82 g, 95% yield) as a thick, syrupy liquid. $[a]_{D}^{26}$ = -20.1 (c = 0.12, CHCl₃). IR (neat): \tilde{v}_{max} = 2929, 2855, 1697 (NCOOCH₂Ph), 1458, 1369, 1214, 1102, 770, 667 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, major rotamer): $\delta = 7.47-7.05$ (m, 10 H, 2 Ph), 5.72 (m, 1 H, -CH=CH₂), 5.06 (s, 2 H, NCOOCH₂Ph), 5.01-4.74 (m, 6 H, -CH=CH₂, -NCH₂Ph, and -OCH₂OCH₃), 4.48-4.20 (m, 3 H, and 5-H, 4-H, and CH₂OTBS), 4.10-3.62 (m, 2 H, and NCHCH₂CH=CH₂), 3.45 (s, 3 H, OCH₂OCH₃), 3.22 (s, 1 H, -CHOMOM), 2.50-2.01 (m, 2 H, -CH₂CH=CH₂), 1.42 (s, 3 H, CH₃), 1.22 (s, 3 H, CH₃), 0.90 (s, 9 H, tBuSi), 0.07 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃, major rotamer): δ = 157.0 (NCOOCH₂Ph), 139.7 (C_q-Ph), 136.4 (-CH=CH₂), 135.2

(C_q-Ph), 128.5, 128.3, 128.2, 127.6, 127.1, 126.5 (Ph), 116.9 (-CH=CH₂), 108.0 [(CH₃)₂C(O)₂], 96.9 (OCH₂OCH₃), 79.6 (C-5), 77.4 (C-4), 74.8 (-CHOMOM), 67.6 (NCOOCH₂Ph), 62.7 (-CH2OTBS), 55.9 (OCH2OCH3), 55.4 (NCHCH2CH=CH2), 46.8 (NCH₂Ph), 33.6 (-CH₂CH=CH₂), 26.1 (CH₃), 25.8 [SiC(CH₃)₃], 24.3 (CH₃), 18.3 [SiC(CH₃)₃], -5.5 (SiCH₃) ppm. MS (ESI): m/z = 614 $[M + H]^+$. HRMS (ESI): calcd. for $C_{34}H_{52}NO_7Si [M + H]^+$ 614.35361; found 614.35076.

Benzyl Benzyl[(S)-1-{(4S,5S)-2,2-dimethyl-5-[(R)-8,8,9,9-tetramethyl-2,4,7-trioxa-8-siladecan-5-yl]-1,3-dioxolan-4-yl}-4hydroxybutyl|carbamate (22): To a solution of olefin 21 (0.70 g, 1.14 mmol) in dry THF was added BH₃·Me₂S (0.16 mL, 1.71 mmol) dropwise at 0 °C, and the stirring was continued for 2 h at room temp. The resulting solution was quenched by the addition of NaOH (10% aqueous solution, 3 mL) and then by H_2O_2 (30%) solution, 2 mL) at 0 °C, and the resulting mixture was stirred for another 2 h. Water (10 mL) was added to the reaction mixture, and the resulting mixture was extracted with ethyl acetate (20 mL). The organic layer was washed with brine, and the solvent was evaporated on a rotary evaporator. The crude product was purified by silica gel column chromatography (15% ethyl acetate in hexane) to afford **22** (0.62 g, 86% yield) as a syrup. $[a]_{D}^{26} = -31.8$ (c = 1.33, CHCl₃). IR (neat): \tilde{v}_{max} = 3457, 2935, 2856, 1695 (NCOOCH₂Ph), 1256, 1102, 835, 699 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, major rotamer): δ = 7.44–7.07 (m, 10 H, 2 Ph), 5.12 (s, 2 H, NCOOCH₂Ph), 4.73-4.43 (m, 3 H, OCH₂OCH₃ and 5-H), 4.33 (s, 2 H, -NCH₂Ph), 4.03 (m, 1 H, 4-H) 3.86–3.33 (m, 5 H, -CH₂OTBS, -CH₂OH, and -CHOMOM) 3.45 (s, 3 H, -OCH₃), 3.24 (m, 1 H, NCHCH₂-), 1.72-1.20 [m, 4 H, -(CH₂)₂CH₂OH], 1.39 (s, 3 H, CH₃), 1.19 (s, 3 H, CH₃), 0.86 (s, 9 H, tBuSi), 0.06–0.01 (m, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃, major rotamer): $\delta = 157.2$ (NCOOCH₂Ph), 139.8 (C_q-Ph), 136.2 (C_q-Ph), 128.4, 128.3, 128.1, 127.9, 127.4, 126.8, 126.6 (Ph), 108.0 [(CH₃)₂C(O)₂], 96.8 (OCH₂OCH₃), 79.9 (C-5), 77.2 (C-4), 74.9 (-CHOMOM), 67.1 (NCOOCH₂Ph), 62.7 (-CH₂OH), 62.3 (-CH₂OTBS), 55.9 (OCH₂OCH₃), 55.6 (NCHCH₂-), 46.6 (-NCH₂Ph), 28.7 (NCHCH₂-), 26.1 (CH₃), 25.8 [SiC(CH₃)₃], 25.2 (NCHCH₂CH₂-), 24.5 (CH₃), 18.2 [SiC(CH₃)₃], -5.5 (SiCH₃) ppm. MS (ESI): m/z =632 $[M + H]^+$. HRMS (ESI): calcd. for $C_{34}H_{54}NO_8Si [M + H]^+$ 632.36400; found 632.36132.

Benzyl Benzyl[(S)-4-hydroxy-1-{(4S,5S)-5-[(R)-2-hydroxy-1-(methoxymethoxy)ethyl]-2,2-dimethyl-1,3-dioxolan-4-yl}butyl]carbamate (23): To a stirred solution of 22 (0.5 g, 0.79 mmol) in THF (5 mL) was added Bu₄NF (1.0 M solution in THF, 0.79 mL) at room temp.

The reaction mixture was stirred for 1 h and then was concentrated. The resulting crude compound was purified by column chromatography (60% ethyl acetate in hexane) to provide diol 23 (0.39 g, 95% yield) as a thick colorless liquid. $[a]_D^{26} = -1.77$ (c = 0.33, CHCl₃). IR (neat): v_{max} = 3447, 2927, 1691 (NCOOCH₂Ph), 1454, 1211, 1112, 1067, 700 cm⁻¹. ¹H NMR (300 MHz, CDCl₃, major rotamer): δ = 7.51–7.15 (m, 10 H, 2 Ph), 5.16 (s, 2 H, NCOOCH₂Ph), 4.80–4.51 (m, 4 H, -NCH₂Ph and -OCH₂OCH₃), 4.29 (dd, J = 3.0, 6.7 Hz, 1 H, 5-H), 4.03 (dd, J = 3.0, 6.7 Hz, 1 H, 4-H), 3.91 (m, 1 H, -CHOMOM), 3.73 (m, 1 H, -CH₂OH), 3.68–3.47 [m, 3 H, -CH(MOM)C H_2 OH and -C H_2 OH], 3.44 (s, 3 H, OCH₂OC H_3), 3.35 (m, 1 H, NCHCH₂-), 1.80–1.20 [m, 4 H, -(CH₂)₂CH₂OH], 1.42 (s, 3 H, CH₃), 1.22 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃, major rotamer): $\delta = 157.4$ (NCOOCH₂Ph), 139.8 (C_a-Ph), 136.2 (C_q-Ph), 128.7, 128.4, 128.0, 127.4, 126.9 (Ph), 108.4 [(CH₃)₂C(O)₂], 97.3 (OCH₂OCH₃), 80.7 (C-5), 79.6 (C-4), 76.2 (-CHOMOM), 67.6 (NCOOCH2Ph), 64.3 [-CH(MOM)CH2OH], 62.4 (-CH₂OH), 55.9 (OCH₂OCH₃), 55.2 (NCHCH₂-), 46.5 (NCH₂Ph), 29.0 (NCHCH₂-), 26.2 (CH₃), 25.4 (NCHCH₂CH₂-), 24.4 (CH₃) ppm. MS (ESI): $m/z = 540 [M + Na]^+$. HRMS (ESI): calcd. for $C_{28}H_{39}NO_8Na [M + Na]^+ 540.25853$; found 540.25679.

(3aR,4R,9aS,9bS)-4-(Methoxymethoxy)-2,2-dimethyloctahydro-[1,3]dioxolo[4,5-g]indolizidine (24): To a solution of diol 23 (0.3 g, 0.58 mol) in dry CH₂Cl₂ (4 mL) were added NEt₃ (0.20 mL, 1.45 mmol), MsCl (0.06 mL, 0.87 mmol), and a catalytic amount of DMAP at 0 °C. The reaction mixture was stirred for 15 min at 0 °C. The organic layer was washed with brine, separated, and concentrated in vacuo. The crude dimesylated product was subjected to hydrogenation by using 10% Pd/C (30 mg) in MeOH (5 mL), as the reaction mixture was stirred for 12 h. The mixture was filtered through a pad of Celite, which was then washed with MeOH (2×10 mL). The filtrate was concentrated, and the crude residue was purified by silica gel column chromatography (80% ethyl acetate in hexane) to give bicyclic indolizidine 24 (0.145 g, 90% yield) as a colorless liquid. $[a]_D^{26} = +20.05$ (c = 0.71, CHCl₃). IR (neat): $\tilde{v}_{max} = 2932, 2822, 1217, 1041, 755 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): δ = 4.78 (s, 2 H, OCH₂OCH₃), 4.42 (dd, J = 4.5, 8.3 Hz, 1 H, 8-H), 4.04 (ddd, J = 5.3, 10.2 Hz, 1 H, 6-H), 3.87 (dd, J = 4.5, 8.3 Hz, 1 H, 7-H), 3.42 (s, 3 H, OCH₂OCH₃), 3.10 $(dd, J = 5.3, 10.2 Hz, 1 H, 5-H_a), 3.05 (ddd, J = 2.6, 10.2 Hz, 1 H,$ $3-H_a$), 2.39–2.00 (m, 4 H, 8a-H, $5-H_b$, $1-H_a$, and $2-H_a$), 1.93–1.67 (m, 2 H, 3-H_b and 2-H_b), 1.46 (m, 1 H, 1-H_b), 1.55 (s, 3 H, CH₃), 1.40 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 109.6 [(CH₃)₂C(O)₂], 96.2 (OCH₂OCH₃), 79.0 (C-7), 74.6 (C-8), 73.0 (C-6), 64.8 (OCH₂OCH₃), 55.5 (C-8a), 53.4 (C-3), 51.7 (C-5), 28.5 (C-1), 28.3 (CH₃), 26.3 (CH₃), 21.5 (C-2) ppm. MS (ESI): m/z = 258 $[M + H]^+$. HRMS (ESI): calcd. for $C_{13}H_{24}NO_4 [M + H]^+$ 258.17109; found 258.16998.

(6*R*,7*R*,8*S*,8*aS*)-Octahydroindolizine-6,7,8-triol (10): To the stirred suspension of compound 24 (0.1 g, 0.39 mmol) in MeOH (2 mL) was added aqueous HCl (6 M solution, 2 mL), and the reaction mixture was stirred and heated at reflux for 12 h. The solvent was evaporated on a rotary evaporator. Distilled water (1 mL) was added to the crude residue, and the resulting solution was neutralized with aqueous NaOH (2 M solution). The solution was concentrated in vacuo. The residue was purified by an acid resin column [DOWEX 50WX8, 100–200 mesh, distilled water and then NH₄OH (1 M solution)] to give 10 (0.06 g, 90% yield) as a white solid. M.p. 165–167 °C; ref.^[24] m.p. 166–168 °C. [a]_D²⁶ = –36.1 (c = 1.0, H₂O); ref.^[24] [a]_D²² = –36.3 (c = 1.0, H₂O). IR (neat): \tilde{v}_{max} = 3415, 2922, 2853, 1459, 1388, 1046, 770 cm⁻¹. ¹H NMR (500 MHz, D₂O): δ = 3.99 (br. s, 1 H, 7-H), 3.82 (br. d, J = 8.9 Hz, 1 H, 6-H), 3.50 (d, J = 10 Hz, 1 H, 8-H), 3.16 (m, 1 H, 3-H_a), 3.03 (m, 1 H, 5-H_a), 2.75

(m, 1 H, 8a-H), 2.61 (m, 1 H, 5-H_b), 2.54 (m, 1 H, 3-H_b), 2.03 (m, 1 H, 1-H_a), 1.89–1.70 (m, 2 H, 2-H_a and 1-H_b), 1.47 (m, 1 H, 2-H_b) ppm. ¹³C NMR (75 MHz, D₂O): δ = 74.0 (C-8), 73.7 (C-7), 70.0 (C-6), 64.8 (C-8a), 55.7 (C-5), 52.6 (C-3), 29.3 (C-1), 23.3 (C-2) ppm. MS (ESI): m/z = 174 [M + H]⁺. HRMS (ESI): calcd. for C₈H₁₆NO₃ [M + H]⁺ 174.11285; found 174.11247.

Benzyl Benzyl[(S)-1-{(4S,5R)-5-[(R)-2-(tert-butyldimethylsilyloxy)-1-hydroxyethyl]-2,2-dimethyl-1,3-dioxolan-4-yl}-4-hydroxybutyl]carbamate (25): Compound 25 was prepared using the procedure developed for the preparation of compound 22. The crude product was purified by silica gel chromatography (17% ethyl acetate in hexane) to yield **25** (80% yield). $[a]_D^{26} = -18.14$ (c = 2.76, CHCl₃). IR (neat): v_{max} = 3445, 2929, 2857, 1681 (NCOOCH₂Ph), 1460, 1374, 1254, 1058, 836, 775, 697 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, major rotamer): δ = 7.49–7.01 (m, 10 H, 2 Ph), 5.28–4.91 (m, 3 H, NCOOCH₂Ph and OH), 4.65 (s, 2 H, CH₂Ph), 4.30 (m, 1 H, 5-H), 3.96 (m, 1 H, 4-H), 3.81-3.56 (m, 4 H, -CH₂OH, and -CH₂OTBS), 3.55-3.29 [m, 2 H, -CH(OH)CH₂OTBS and NCHCH₂-], 1.84-1.38 [m, 4 H, -(CH₂)₂CH₂OH], 1.36 (s, 3 H, CH₃), 1.10 (s, 3 H, CH₃), 0.90 (s, 9 H, tBuSi), 0.08 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 157.3 (NCOOCH₂Ph), 139.5 (C_q-Ph), 136.2 (C_q-Ph), 128.2, 128.0, 127.9, 127.8, 127.1, 126.5 (Ph), 108.0 [(CH₃)₂C(O)₂], 80.0 (C-5), 76.1 (C-4), 69.0 (-NCOOCH2Ph), 67.3 [-CH(OH)-CH₂OTBS], 64.1 (-CH₂OTBS), 61.3 (-CH₂OH), 53.7 (NCHCH₂-), 46.5 (-NCH₂Ph), 28.3 (-CH₂CH₂OH), 27.0 (CH₃), 25.8 [SiC-(CH₃)₃], 24.6 (CH₃), 23.9 (NCHCH₂-), 18.2 [SiC(CH₃)₃], -5.5 $(SiCH_3)$, -5.4 $(SiCH_3)$ ppm. MS (ESI): $m/z = 588 [M + H]^+$. HRMS (ESI): calcd. for C₃₂H₅₀NO₇Si [M + H]⁺ 588.33435; found 588.33511.

(3aR,4S,8aS,8bS)-4-[(tert-Butyldimethylsilyloxy)methyl]-2,2-dimethylhexahydro-3aH-[1,3]dioxolo[4,5-a]pyrrolizidine (26): Compound 26 was prepared using the procedure developed for the preparation of compound 24. The crude product was purified by column chromatography (20% ethyl acetate in hexane) to give compound **26** as a yellow oil (86% yield). $[a]_D^{26} = +26.90$ (c = 1.44, CHCl₃); ref.^[25] $[a]_D^{25} = +29.7$ (c = 0.209, CHCl₃). IR (neat): $\tilde{v}_{max} =$ 2932, 2858, 1464, 1378, 1078, 1254, 837 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 4.74 (dd, J = 5.0, 5.8 Hz, 1 H, 2-H), 4.50 (d, J = 5.8 Hz, 1 H, 1 -H), 3.93 (dd, J = 7.1, 9.9 Hz, 1 H,-CH₂OTBS), 3.67 (dd, J = 5.8, 9.9 Hz, 1 H, -CH₂OTBS), 3.43 (dd, $J = 2.2, 11.9 \text{ Hz}, 1 \text{ H}, 5 \text{-H}_{a}$, 3.02 -- 2.86 (m, 2 H, 3-H and 7a-H), 2.72 (dd, J = 5.7, 11.9 Hz, 1 H, 5-H_b), 1.95–1.80 (m, 2 H, 7-H_a and 6-H_a), 1.68 (m, 1 H, 7-H_b), 1.51 (s, 3 H, CH₃), 1.36 (m, 1 H, 6-H_b), 1.28 (s, 3 H, CH₃), 0.89 (s, 9 H, *t*BuSi), 0.07 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 110.9 [(CH₃)₂-C(O)2], 83.1 (C-1), 81.7 (C-2), 72.2 (-CH2OTBS), 68.5 (C-3), 63.0 (C-7a), 53.1 (C-5), 28.2 (C-7), 26.5 (CH₃), 25.9 [SiC(CH₃)₃], 24.7 (CH₃), 24.1 (C-6), 18.3 [SiC(CH₃)₃], -5.4 (SiCH₃), -5.3 (SiCH₃) ppm. MS (ESI): $m/z = 328 [M + H]^+$. HRMS (ESI): calcd. for $C_{17}H_{34}NO_3Si [M + H]^+$ 328.22964; found 328.23025.

(*R*)-1-[(4*R*,5*S*)-5-{(*S*)-1-[Allyl(benzyl)amino]but-3-enyl}-2,2-dimethyl-1,3-dioxolan-4-yl]-2-(*tert*-butyldimethylsilyloxy)ethanol (27): To amino compound 14 (1.5 g, 3.44 mmol) in acetonitrile (15 mL) were added allyl bromide (0.58 mL, 6.89 mmol) and K₂CO₃ (1.42 g, 10.3 mmol) at 0 °C. The reaction mixture was warmed to r.t. and then heated at reflux for 12 h. The resulting mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The crude residue was dissolved in water, and the resulting solution was extracted with ethyl acetate (2×50 mL). The combined organic extracts were concentrated in vacuo. Purification of the crude residue by column chromatography (5% ethyl acetate in hexane) afforded **27** (1.23 g, 75% yield) as yellow oil. $[a]_D^{26} = +25.6$ (*c* =

1.66, CHCl₃). IR (neat): \tilde{v}_{max} = 2929, 2856, 1460, 1250, 1064, 778 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.16 (m, 5 H, Ph), 6.00 (m, 1 H, NCH₂CH=CH₂), 5.80 (m, 1 H, -CH=CH₂), 5.57 (br. s, 1 H, OH), 5.22–5.11 (m, 2 H, NCH₂CH=CH₂), 5.09–4.97 (m, 2 H, -CH=CH₂), 4.35 (dd, J = 6.1, 8.3 Hz, 1 H, 5-H), 4.15 (dd, J = 6.1, 9.4 Hz, 1 H, 4-H), 3.83 (d, J = 13.2 Hz, 1 H, -NC H_2 Ph), 3.75 (dd, J = 2.2, 10.5 Hz, 1 H, -CH₂OTBS), 3.64 (dd, J = 4.5, 10.5 Hz, 1 H, -CH₂OTBS), 3.55 (d, J = 13.2 Hz, 1 H, -NCH₂Ph), 3.38 [m, 1 H, -CH(OH)CH₂OTBS], 3.32–3.14 (m, 2 H, $NCH_2CH=CH_2$ and $NCHCH_2$ -), 3.08 (dd, J = 7.9, 13.9 Hz, 1 H, NCH₂CH=CH₂), 2.54–2.31 (m, 2 H, -CH₂CH=CH₂), 1.36 (s, 3 H, CH₃), 1.28 (s, 3 H, CH₃), 0.91 (s, 9 H, tBuSi), 0.08 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 138.0 (C_a-Ph), 137.4 (NCH₂CH=CH₂), 134.9 (-CH₂CH=CH₂), 129.8, 128.3, 127.4 (C-Ph), 119.0 (NCH₂CH=CH₂), 115.8 (-CH₂CH=CH₂), 107.7 [(CH₃)₂C(O)₂], 77.4 (C-5), 77.1 (C-4), 69.1 (-CH₂OTBS), 65.0 [-CH(OH)CH₂OTBS], 58.1 (NCH₂Ph), 54.7 (NCH₂CH=CH₂), 54.1 (NCHCH₂-), 31.2 (CH₂CH=CH₂), 27.6 (CH₃), 26.0 [SiC-(CH₃)₃], 25.2 (CH₃), 18.2 [SiC(CH₃)₃], -5.2 (SiCH₃), -5.1 (SiCH₃) ppm. MS (ESI): $m/z = 476 [M + H]^+$. HRMS (ESI): calcd. for C₂₇H₄₆NO₄Si [M + H]⁺ 476.31763; found 476.31906.

(R)-1-{(4R,5S)-5-[(S)-1-Benzyl-1,2,3,6-tetrahydropyridin-2-yl]-2,2-dimethyl-1,3-dioxolan-4-yl}-2-(tert-butyldimethylsilyloxy)ethanol (28): To a solution of diene 27 (0.92 g, 1.93 mmol) in dry CH₂Cl₂ (250 mL) was added Grubbs' first-generation catalyst (0.16 g, 0.19 mmol), and the resulting purple solution turned to brown after 10 min. The reaction mixture was stirred and heated at reflux for another 12 h, and then the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography (3% ethyl acetate in hexane) to give compound 28 (0.69 g, 80% yield) as a light brown oil. $[a]_D^{26} = +12.9$ (c = 1.18, CHCl₃). IR (neat): $\tilde{v}_{max} = 2927, 2854, 1458, 1249, 751, 666 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.20 (m, 5 H, Ph), 5.88 (br. d, J = 10.5 Hz, 1 H, NCH₂CH=CH-), 5.55 (br. d, J = 10.5 Hz, 1 H, NCH₂CH=CH-), 4.33 (dd, J = 5.6, 10.2 Hz, 1 H, 5-H), 4.19 (dd, J = 5.6, 9.4 Hz, 1 H, 4-H), 3.85 (dd, J = 2.2, 10.5 Hz, 1 H,-CH₂OTBS), 3.78 (d, J = 12.4 Hz, 1 H, CH₂Ph), 3.73 (m, 1 H, -CH₂OTBS), 3.71 (d, J = 12.4 Hz, 1 H, CH₂Ph), 3.63 [m, 1 H, -CH(OH)CH₂OTBS], 3.26 (m, 1 H, NCH₂CH=CH-), 3.14-3.05 (m, 2 H, NCHCH₂CH=CH- and NCH₂CH=CH-), 2.47-2.22 (m, 2 H, NCHCH₂CH=CH-), 1.36 (s, 3 H, CH₃), 1.30 (s, 3 H, CH₃), 0.93 (s, 9 H, tBuSi), 0.10 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 136.8 (C_q-Ph), 129.5, 128.5, 127.5 (C-Ph), 124.5 (NCHCH₂CH=CH-), 122.7 (NCHCH₂CH=CH-), 107.8 [(CH₃)₂C(O)₂], 77.6 (C-5), 76.6 (C-4), 69.8 [-CH(OH)CH₂OTBS], 65.3 (-CH₂OTBS), 55.5 (-NCH₂Ph), 54.7 (NCH₂CH=CH₂-), 45.2 (NCHCH₂CH=CH-), 28.0 (NCHCH₂CH=CH-), 26.0 [SiC(CH₃)₃], 25.5 (CH₃), 21.1 (CH₃), 18.6 [SiC(CH₃)₃], -5.1 (SiCH₃) ppm. MS (ESI): $m/z = 448 [M + H]^+$. HRMS (ESI): calcd. for C₂₅H₄₂NO₄Si $[M + H]^+$ 448.28610; found 448.28776.

(3a*R*,4*S*,9a*S*,9b*S*)-4-[(*tert*-Butyldimethylsilyloxy)methyl]-2,2-dimethyloctahydro-[1,3]dioxolo[4,5-*a*]indolizidine (29): To a solution of compound 28 (0.16 g, 0.35 mmol) in MeOH (3 mL) were added 10% Pd/C (20 mg) and NaHCO₃ (5 mg), and the reaction mixture was stirred under an atmosphere of H₂ for 12 h. The reaction mixture was filtered through a pad of Celite, which was then washed with MeOH (2×10 mL), and the filtrate was concentrated in vacuo. To a solution of the crude residue in pyridine (5 mL) was added MsCl (0.04 mL, 0.53 mmol) dropwise at room temp. The resulting mixture was stirred overnight, and the pyridine was evaporated in vacuo. The residue was purified by silica gel chromatography (20% ethyl acetate in hexane) to give the protected bicyclic indolizidine **29** (0.09 g, 74% yield) as a colored oil. $[a]_{D}^{26} = +37.70$ $(c = 2.75, CHCl_3). IR (neat): \tilde{v}_{max} = 2929, 2855, 1464, 1375, 1254, 1086, 839 cm^{-1}. ^{1}H NMR (300 MHz, CDCl_3): <math>\delta = 4.62$ (t, J = 6.0 Hz, 1 H, 1-H), 4.14 (dd, J = 1.1, 6.0 Hz, 1 H, 2-H), 3.80 (dd, J = 4.9, 10.5 Hz, 1 H, -CH₂OTBS), 3.67 (dd, J = 6.0, 10.5 Hz, 1 H, -CH₂OTBS), 3.67 (dd, J = 6.0, 10.5 Hz, 1 H, -CH₂OTBS), 3.67 (dd, J = 6.0, 10.5 Hz, 1 H, 3-H), 2.99 (dd, J = 1.8, 11.3 Hz, 1 H, 5-H_b), 2.80 (m, 1 H, 8a-H), 1.79 (m, 1 H, 8-H_a), 1.69–1.08 (m, 5 H, 6-H_a, 7-H_a, 8-H_b, 6-H_b, and 7-H_b), 1.44 (s, 3 H, CH₃), 1.26 (s, 3 H, CH₃), 0.89 (s, 9 H, *t*BuSi), 0.06 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 111.2$ [(CH₃)₂C(O)₂], 83.4 (C-1), 79.4 (C-2), 63.8 (-CH₂OTBS), 62.0 (C-3), 61.7 (C-8a), 46.6 (C-5), 25.9 (CH₃), 25.8 [SiC(CH₃)₃], 25.0 (C-6), 24.4 (C-8), 24.2 (CH₃), 19.7 (C-7), 18.0 [SiC(CH₃)₃], -5.5 (SiCH₃) ppm. MS (ESI): m/z = 342 [M + H]⁺. HRMS (ESI): calcd. for C₁₈H₃₆NO₃Si [M + H]⁺ 342.24536; found 342.24590.

(1S,2R,3S,8aS)-3-(Hydroxymethyl)-octahydroindolizidine-1,2-diol (11): To compound 29 (0.05 g, 0.14 mmol) in MeOH (2 mL) was added aqueous HCl (6 M solution, 1 mL), and the resulting solution was stirred at room temp for 12 h. The reaction mixture was concentrated in vacuo to obtain the crude product, which was dissolved in distilled water (1 mL). The resulting solution was neutralized with aqueous NaOH (2 M solution) and then was concentrated. Purification by an acid resin column [DOWEX 50WX8, 100-200 mesh, distilled water and then aqueous NH₄OH (2 м solution)] gave 11 (0.023 g, 85% yield) as a yellow oil. $[a]_{D}^{26} = +7.1$ (c = 1.0, H₂O); ref.^[14] $[a]_{D}^{22}$ = -8.7 (c = 1.2, H₂O). IR (neat): \tilde{v}_{max} = 3315, 2943, 2831, 1449, 1019, 771 cm⁻¹. ¹H NMR (500 MHz, D₂O): $\delta = 4.34$ (t, J = 6.2 Hz, 1 H, 1-H), 3.82 (t, J = 5.8 Hz, 1 H, 2-H), 3.78-3.65 (m, 2 H, -CH₂OH), 3.37 (m, 1 H, 5-H_a), 3.04-2.90 (m, 2 H, 5-H_b, 3-H), 2.80 (ddd, J = 3.7, 9.4 Hz, 1 H, 8a-H), 1.73 (m, 1 H, 8-H_a), 1.62 (m, 1 H, 6-H_a), 1.57–1.37 (m, 2 H, 7-H_a and 8-H_b), 1.35–1.13 (m, 2 H, 6-H_b and 7-H_b) ppm. ¹³C NMR (75 MHz, D_2O): $\delta = 73.6$ (C-1), 69.7 (C-2), 64.6 (-*C*H₂OH), 64.2 (C-2), 57.8 (C-8a), 48.0 (C-5), 24.6 (C-6), 20.9 (C-7), 20.7 (C-8) ppm. MS (ESI): $m/z = 188 [M + H]^+$. HRMS (ESI): calcd. for C₉H₁₈NO₃ [M + H]⁺ 188.12798; found 188.12812.

(R)-1-{(4R,5S)-5-[(S)-1-Benzyl-1,2,3,6-tetrahydropyridin-2-yl]-2,2-dimethyl-1,3-dioxolan-4-yl}ethane-1,2-diol (30): To a stirred solution of compound 28 (0.2 g, 0.447 mmol) in THF (2 mL) was added Bu₄NF (1.0 M solution in THF, 0.44 mL) at r.t., and the resulting mixture was stirred for 1 h. After evaporation of the solvent in vacuo, the crude product was purified by column chromatography (25% ethyl acetate in hexane) to afford diol 30 (0.127 g, 85% yield) as a yellow oil. $[a]_{D}^{26} = +25.70 (c = 0.5, \text{CHCl}_{3}).$ IR (neat): $\tilde{v}_{max} = 3422, 2929, 2855, 1452, 1376, 1218, 1065,$ 743 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.20 (m, 5 H, Ph), 5.91 (br. d, J = 10.2 Hz, 1 H, NCH₂CH=CH-), 5.58 (br. d, J= 10.2 Hz, 1 H, NCH₂CH=CH-), 4.42 (dd, J = 5.6, 9.8 Hz, 1 H, 5-H), 4.21 (dd, J = 5.6, 8.6 Hz, 1 H, 4-H), 3.88–3.67 [m, 5 H, -CH₂OH, -CH(OH)CH₂OH, and NCH₂Ph], 3.32 (m, 1 H, NCH₂CH=CH-), 3.14–3.05 (m, 2 H, NCH₂CH=CH- and NCHCH=CH-), 2.55-2.24 (m, 2 H, NCHCH2CH=CH-), 1.40 (s, 3 H, CH₃), 1.34 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 136.4 (C_q-Ph), 129.3, 128.4, 127.5 (Ph), 124.4 (NCH_2CH=CH-),$ 122.2 (NCH₂CH=*C*H-), 107.9 [(CH₃)₂*C*(O)₂], 78.3 (C-5), 77.0 (C-4), 68.6 [-CH(OH)CH₂OH], 64.3 (-CH₂OH), 55.8 (-NCH₂Ph), 54.2 (NCH₂CH=CH-), 45.0 (NCHCH₂CH=CH-), 29.5 (NCHCH₂CH=CH-), 27.7 (CH₃), 25.2 (CH₃) ppm. MS (ESI): m/z = 334 $[M + H]^+$. HRMS (ESI): calcd. for $C_{19}H_{28}NO_4 [M + H]^+$ 334.20262; found 334.20128.

(3aR,9aS,9bS)-2,2-Dimethyloctahydro-[1,3]dioxolo[4,5-*a*]indolizidine (31): Silica-supported NaIO₄ (0.128 g, 0.60 mmol) was added to diol 30 (0.1 g, 0.30 mmol) in CH₂Cl₂/H₂O (2 mL/0.5 mL) at 0 °C, and the resulting mixture was stirred for 30 min. The reaction mixture was then filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The resulting crude aldehyde was then subjected to hydrogenation with 10% Pd/C (18 mg) in MeOH (2 mL) for 12 h. Again, the reaction mixture was filtered through a pad of Celite, which was then washed with MeOH $(2 \times 5 \text{ mL})$. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (80% ethyl acetate in hexane) to provide bicyclic indolizidine 31 (0.033 g, 55% yield) as a colorless oil. $[a]_{D}^{26} = -47.50$ (c = 0.5, CHCl₃); ref.^[28] $[a]_{D}^{25} = -49.7$ $(c = 0.49, \text{CHCl}_3)$. IR (neat): $\tilde{v}_{\text{max}} = 2929, 2856, 1462, 1254,$ 750 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 4.65$ (dd, J = 6.7, 11.8 Hz, 1 H, 2-H), 4.18 (t, J = 6.7 Hz, 1 H, 1-H), 3.36 (dd, J = 6.7, 9.8 Hz, 1 H, 3-H_a), 2.96 (br. d, J = 11.8 Hz, 1 H, 5-H_a), 2.31 $(dd, J = 5.0, 9.8 Hz, 1 H, 3-H_b), 2.23-2.00 (m, 2 H, 5-H_b and 8a-$ H), 1.91 (m, 1 H, 8-H_a), 1.75 (m, 1 H, 7-H_a), 1.63–1.20 (m, 4 H, 6-H_a, 8-H_b, 7-H_b, and 6-H_b), 1.46 (s, 3 H, CH₃), 1.27 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 114.0$ [(CH₃)₂C(O)₂], 84.1 (C-1), 77.2 (C-2), 68.8 (C-8a), 59.6 (C-3), 52.4 (C-5), 28.4 (C-6), 27.1 (CH₃), 25.0 (C-8), 24.3 (CH₃), 23.7 (C-7) ppm. MS (ESI): $m/z = 220 \text{ [M + Na]}^+$. HRMS (ESI): calcd. for C₁₁H₁₉NO₂Na [M + Na]⁺ 220.1323; found 220.1325.

(R)-1-[(4R,5S)-5-{(S)-1-[Allyl(benzyl)amino]allyl}-2,2-dimethyl-1,3-dioxolan-4-yl]-2-(tert-butyldimethylsilyloxy)ethanol (32): By using the same procedure as described for 27, compound 15 was used as the starting material to afford compound 32 (70% yield). $[a]_{D}^{26} = -20.0 \ (c = 0.10, \text{ CHCl}_3)$. IR (neat): $\tilde{v}_{\text{max}} = 3075, 2931, 2856$, 1250, 1065, 837, 777 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.36– 7.16 (m, 5 H, Ph), 6.05 (br. s, 1 H, OH), 5.92-5.69 (m, 2 H, NCH₂CH=CH₂ and NCHCH=CH₂), 5.45 (dd, J = 1.7, 10.2 Hz, 1 H, NCHCH= CH_2), 5.23–5.11 (m, 3 H, NCHCH= CH_2 and NCH₂CH=CH₂), 4.39 (dd, J = 5.5, 9.5 Hz, 1 H, 5-H), 4.23 (dd, J = 5.5, 9.5 Hz, 1 H, 4-H), 3.91 (d, J = 12.8 Hz, 1 H, NCH₂Ph), 3.75 (dd, J = 2.1, 10.8 Hz, 1 H, -CH₂OTBS), 3.64 (dd, J = 4.5, 10.7 Hz, 1 H, $-CH_2OTBS$), 3.51 [dd, J = 2.1, 10.8 Hz, 1 H, -CH(OH)- $CH_{2}OTBS$], 3.37–3.27 (m, 2 H, NCHCH=CH₂ and NCH₂CH=CH₂), 3.24 (d, J = 12.8 Hz, 1 H, NCH₂Ph), 2.86 (dd, J $= 9.0, 13.4 \text{ Hz}, 1 \text{ H}, \text{NC}H_2\text{CH}=\text{CH}_2), 1.29 \text{ (s, 3 H, CH}_3), 1.26 \text{ (s, }$ 3 H, CH₃), 0.92 (s, 9 H, tBuSi), 0.09 (s, 3 H, SiMe₂), 0.08 (s, 3 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 136.9 (C_q-Ph), 134.6 (NCHCH=CH₂), 131.6 (NCH₂CH=CH₂), 129.9, 128.5, 127.6 (Ph), 121.0 (NCH₂CH=CH₂), 119.6 (NCHCH=CH₂), 108.7 [(CH₃)₂C(O)₂], 77.5 (C-5), 76.2 (C-4), 69.0 [-CH(OH)CH₂OTBS], 65.0 (-CH₂OTBS), 61.8 (NCH₂Ph), 54.6 (NCH₂CH=CH₂), 53.4 (NCHCH=CH₂), 27.7 (CH₃), 26.0 [SiC(CH₃)₃], 25.6 (CH₃), 18.5 $[SiC(CH_3)_3], -5.2 (SiCH_3), -5.1 (SiCH_3) ppm. MS (ESI): m/z = 462$ $[M + H]^+$. HRMS (ESI): calcd. for C₂₆H₄₄NO₄Si $[M + H]^+$ 462.30162; found 462.30341.

(*R*)-1-{(4*R*,5*S*)-5-[(*S*)-1-Benzyl-2,5-dihydro-1*H*-pyrrol-2-yl]-2,2dimethyl-1,3-dioxolan-4-yl}-2-(*tert*-butyldimethylsilyloxy)ethanol (33): By using the same procedure as described for 28, compound 32 was used as the starting material to afford compound 33 (85% yield). [a]_D²⁶ = -6.6 (c = 1.82, CHCl₃). IR (neat): \tilde{v}_{max} = 2988, 2931, 1455, 1253, 771 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.40–7.18 (m, 5 H, Ph), 6.01 (dd, J = 2.2, 5.3 Hz, 1 H, NCH₂CH=CH-), 5.86 (br. d, J = 5.3 Hz, 1 H, NCH₂CH=CH-), 4.18 (dd, J = 5.2, 9.0 Hz, 1 H, 5-H), 3.98–3.86 (m, 3 H, 4-H, -CH₂OTBS and NCH₂Ph), 3.83–3.70 [m, 3 H, -CH₂OTBS, -CH(OH)CH₂OTBS, and NCHCH=CH-], 3.46 (d, J = 12.8 Hz, 1 H, -NCH₂Ph), 3.43 (d, J = 12.8 Hz, 1 H, NCH₂CH=CH-), 3.29 (d, J = 12.8 Hz, 1 H, NCH₂CH=CH-), 1.45 (s, 3 H, CH₃), 1.30 (s, 3 H, CH₃), 0.93 (s, 9 H, *t*BuSi), 0.11 (s, 6 H, SiMe₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 137.4 (C_q-Ph), 130.1 (NCH₂CH=CH-), 129.7, 128.4, 127.6, 127.4 (Ph and NCH₂CH=*C*H-), 108.8 [(CH₃)₂*C*(O)₂], 78.8 (C-4), 76.9 (C-5), 71.4 [-*C*H(OH)CH₂OTBS], 69.6 (-*C*H₂OTBS), 65.0 (N*C*H₂CH=CH-), 60.6 (N*C*H₂Ph), 56.5 (N*C*HCH=CH-), 28.3 (CH₃), 25.9 [SiC(*C*H₃)₃], 25.7 (CH₃), 18.4 [Si*C*(CH₃)₃], -5.3 (Si*C*H₃), -5.2 (Si*C*H₃) ppm. MS (ESI): m/z = 434 [M + H]⁺. HRMS (ESI): calcd. for C₂₄H₄₀O₄NSi [M + H]⁺ 434.27094; found 434.27211.

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectra for all compounds synthesized.

Acknowledgments

A. R. thanks the University Grants Commission (UGC), New Delhi, and J. P. R. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi for the fellowship. We also thank the Director of CSIR-IICT for the constant support and encouragement.

- a) R. J. Nash, A. Kato, C.-Y. Yu, G. W. J. Fleet, *Future Med. Chem.* 2011, 3, 1513–1521; b) N. Asano, *Cell. Mol. Life Sci.* 2009, 66, 1479–1492; c) P. Compain, O. R. Martin (Eds.), *Iminosugars: From Synthesis to Therapeutic Applications*, Wiley-VCH, Weinheim, Germany, 2007; d) A. E. Stütz (Ed.), *Iminosugars as Glycosidase Inhibitors*, Wiley-VCH, Weinheim, Germany, 1999.
- [2] B. Winchester, *Glycobiology* 2005, 15, 1R–15R.
- [3] G. Horne, F. X. Wilson, J. Tinsley, D. H. Williams, R. Storer, *Drug Discovery Today* 2011, 16, 107–118, and references cited therein.
- [4] X. G. Hu, B. Bartholomew, R. J. Nash, F. X. Wilson, G. W. J. Fleet, S. Nakagawa, A. Kato, Y. M. Jia, R. V. Well, C.-Y. Yu, Org. Lett. 2010, 12, 2562–2565.
- [5] a) N. E. Clark, S. C. Garman, J. Mol. Biol. 2009, 393, 435– 447; b) O. Staretz-Chacham, T. C. Lang, M. E. LaMarca, D. Krasnewich, E. Sidransky, *Pediatrics* 2009, 123, 1191–1207.
- [6] a) J. E. H. Chua, P. A. Manning, R. Morona, *Microbiology* 1999, 145, 1649–1659; b) H.-G. Zhu, T. M. Zollner, A. Klein-Franke, F. A. J. Anderer, *J. Cancer Res. Clin. Oncol.* 1994, 120, 383–388; c) B. G. Davis, A. Hull, C. Smith, R. J. Nash, A. A. Watson, D. A. Winkler, R. C. Griffiths, G. W. J. Fleet, *Tetrahedron: Asymmetry* 1998, 9, 2947–2960.
- [7] S. Walter, K. Fassbender, E. Gulbins, Y. Liu, M. Rieschel, M. Herten, T. Bertsch, B. Engelhardt, J. Neuroimmunol. 2002, 132, 1–10.
- [8] R. Pili, J. Chang, R. A. Partis, R. A. Mueller, F. J. Chrest, A. Passaniti, *Cancer Res.* 1995, 55, 2920–2926.
- [9] H. Nojima, I. Kimura, F. J. Chen, Y. Sugihara, M. Haruno, A. Kato, N. Asano, J. Nat. Prod. 1998, 61, 397–400.
- [10] N. Asano, H. Kuroi, K. Ikeda, H. Kizu, Y. Kameda, A. Kato, I. Adachi, A. A. Watson, R. J. Nash, G. W. J. Fleet, *Tetrahedron: Asymmetry* **2000**, *11*, 1–8.
- [11] a) P. R. Dorling, C. R. Huxtable, S. M. Colegate, *Biochem. J.* 1980, 191, 649–651; b) A. D. Elbein, R. Solf, P. R. Dorling, K. Vosbeck, *Proc. Natl. Acad. Sci. USA* 1981, 78, 7393–7397; c) G. P. Kaushal, T. Szumilo, I. Pastuszak, A. D. Elbein, *Biochemistry* 1990, 29, 2168–2176; d) I. Pastuszak, G. P. Kaushal, K. A. Wall, Y. T. Pan, A. Sturm, A. D. Elbein, *Glycobiology* 1990, 1, 71–82; e) S. Chooprayoon, Ch. Kuhakarn, P. Tuchinda, V. Reutrakul, M. Pohmakotr, *Org. Biomol. Chem.* 2011, 9, 531–537, and references cited therein.
- [12] a) P. E. Goss, M. A. Baker, J. P. Carver, J. W. Dennis, *Clin. Cancer Res.* **1995**, *1*, 935–944; b) Z. Li, X. Xu, Y. Huang, L. Ding, Z. Wang, G. Yu, D. Xu, W. Li, D. Tong, *Int. J. Biol. Sci.* **2012**, *8*, 394–405.
- [13] a) J. Louvei, C. Botuha, F. Chemla, F. Ferreira, A. Perez-Luna, E. Demont, *Eur. J. Org. Chem.* 2010, 2921–2926; b) M. Haraguchi, S. L. Gorniak, K. Ikeda, Y. Minami, A. Kato, A. A. Wat-

son, R. J. Nash, R. J. Molyneux, N. Asano, J. Agric. Food Chem. 2003, 51, 4995–5000.

- [14] L. Gómez, X. Garrabou, J. Joglar, J. Bujons, T. Parella, C. Vilaplana, P. J. Cardonac, P. Clapés, Org. Biomol. Chem. 2012, 10, 6309–6321.
- [15] For recent reviews and some selected articles for the syntheses of pyrrolizidine and indolizidine iminosugars, see: a) G. D'Adamio, A. Goti, C. Parmeggiani, F. Cardona, E. M. Clavijo, I. Robina, Eur. J. Org. Chem. 2011, 7155-7162; b) E. A. Brock, S. G. Davies, J. A. Lee, P. M. Roberts, J. E. Thomson, Org. Lett. 2011, 13, 1594–1597; c) I. Izquierdo, M. T. Plaza, J. A. Tamayo, F. Franco, F. S. Cantalejo, Tetrahedron 2010, 66, 3788-3794; d) X. Garrabou, L. Gómez, J. Joglar, J. Bujons, P. Clapes, S. Gil, T. Parella, Chem. Eur. J. 2010, 16, 10691-10706; e) I. Delso, T. Tejero, P. Merino, A. Goti, Tetrahedron 2010, 66, 1220-1227; f) E. G. Bowen, D. J. Wardrop, Org. Lett. 2010, 12, 5330-5333; g) T. Ritthiwigrom, S. G. Pyne, R. J. Nash, Tetrahedron 2010, 66, 9340-9347; h) F. Cardona, A. Goti, A. Brandi, Eur. J. Org. Chem. 2007, 1551-1565; i) J.-J. Zhuang, J.-L. Ye, H.-K. Zhang, P.-Q. Huang, Tetrahedron 2012, 68, 1750-1755; j) D. J. Wardrop, S. L. Waidyarachchi, Nat. Prod. Rep. 2010, 27, 1431-1468, and references cited therein.
- [16] For references for the syntheses of pyrrolidine, piperidine, and indolizidine iminosugars by nucleophilic additions of organometallics to the related N-glycosylhydroxylamines, see: a) A. Dondoni, D. Perrone, *Tetrahedron Lett.* 1999, 40, 9375–9378; b) A. Dondoni, P. P. Giovannini, D. Perrone, J. Org. Chem. 2002, 67, 7203–7214; c) A. Dondoni, D. Perrone, *Tetrahedron* 2003, 59, 4261–4273; d) A. Dondoni, A. Nuzzi, J. Org. Chem. 2006, 71, 7574–7557; e) M. Bonanni, M. Marradi, S. Cicchi, C. Faggi, A. Goti, Org. Lett. 2005, 7, 319–322; f) M. Bonanni, M. Marradi, S. Cicchi, A. Goti, Synlett 2008, 197–202.
- [17] a) J. S. Reddy, B. V. Rao, J. Org. Chem. 2007, 72, 2224–2227;
 b) B. Chandrasekhar, J. P. Rao, B. V. Rao, P. Naresh, Tetrahedron Lett. 2011, 52, 5921–5925;
 c) Y. Jagadeesh, K. Ramak-

rishna, B. V. Rao, *Tetrahedron: Asymmetry* **2012**, *23*, 967–702, and references cited therein.

- [18] a) J. P. Rao, B. V. Rao, J. L. Swarnalatha, *Tetrahedron Lett.* **2010**, 51, 3083–3087; b) A. Rajender, J. P. Rao, B. V. Rao, *Tetrahedron: Asymmetry* **2011**, 22, 1306–1311.
- [19] G. S. Rao, B. V. Rao, Tetrahedron Lett. 2011, 52, 4861–4864.
- [20] S. Randl, S. Blechert, Tetrahedron Lett. 2004, 45, 1167–1169.
- [21] D. Rotulo-Sims, J. Prunet, Org. Lett. 2002, 4, 4701-4704.
- [22] K. S. A. Kumar, V. D. Chaudhari, V. G. Puranik, D. D. Dhavale, *Eur. J. Org. Chem.* 2007, 4895–4901.
- [23] J.-B. Behr, C. M. Evina, N. Phung, G. Guillerm, J. Chem. Soc. Perkin Trans. 1 1997, 1597–1601.
- [24] H. Zhang, Y.-K. Ni, G. Zhao, Y. Ding, Eur. J. Org. Chem. 2003, 1918–1922.
- [25] J. Rehak, L. Fisera, J. Kozísek, L. Bellovicova, *Tetrahedron* 2011, 67, 5762–5769.
- [26] a) U. K. Pandit, H. S. Overkleeft, B. C. Borer, H. Bieräugel, *Eur. J. Org. Chem.* 1999, 959–968; b) R. H. Grubbs, T. M. Trnka, in: *Ruthenium in Organic Synthesis* (Ed.: S. I. Murahashi), Wiley-VCH, Weinheim, Germany, 2004, chapter 6, pp. 153–178; c) H. Ovaa, R. Stragies, G. A. Van der Marel, *Chem. Commun.* 2000, 1501–1502; d) A. Deiters, S. F. Martin, *Chem. Rev.* 2004, 104, 2199–2238; e) H. Wakamatsu, Y. Sato, R. Fujita, M. Mori, *Adv. Synth. Catal.* 2007, 349, 1231–1246; f) M. Bonanni, M. Marradi, F. Cardona, S. Cicchi, A. Goti, *Beilstein J. Org. Chem.* 2007, 3, DOI: 10.1186/1860-5397-3-44; g) A. J. Murray, P. J. Parsons, P. Hitchcock, *Tetrahedron* 2007, 63, 6485–6492.
- [27] E. R. García, M. A. Brimble, P. Vogel, Eur. J. Org. Chem. 2006, 3845–3855.
- [28] M.-P. Heitz, L. E. Overman, J. Org. Chem. 1989, 54, 2591– 2598.

Received: October 10, 2012 Published Online: February 11, 2013