

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 126 (2005) 437-443

www.elsevier.com/locate/fluor

Formation and skeletal transformations of perfluoroindan-1.3-dione in the reaction of perfluoroindan with SiO₂/SbF₅

Yaroslav V. Zonov, Victor M. Karpov*, Vyacheslav E. Platonov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia

Received 8 July 2004; received in revised form 28 September 2004; accepted 28 September 2004 Available online 15 December 2004

Dedicated to Professor Richard D. Chambers, on the occasion of 70th birthday

Abstract

Perfluoroindan-1-one (2) is obtained in the reaction of perfluoroindan (1) with SiO_2/SbF_5 at 70 °C. Compound 1 heated with SiO_2/SbF_5 at 130 °C and then treated with water, gives 3-hydroxy-perfluoro-3-methylphthalide (4). Ketone 2 is converted, under the action of SbF₅ at 130 °C, to perfluoro-2-ethylbenzoic acid (9) and disproportionates to compound 1 and perfluoroindan-1,3-dione (3); the latter is transformed to phthalide 4 under the reaction conditions.

© 2004 Elsevier B.V. All rights reserved.

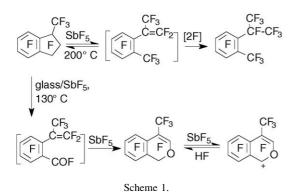
Keywords: Skeletal transformations; Perfluoroindan; Perfluoroindan-1-one; Perfluoroindan-1,3-dione; Silicon dioxide; Antimony pentafluoride; NMR spectroscopy

1. Introduction

Perfluorinated benzocycloalkenes (benzocyclobutene, indan, tetralin) and their perfluoroalkyl and perfluoroaryl derivatives, when heated with antimony pentafluoride, undergo skeletal transformations leading to cleavage, expansion or contraction of the alicyclic ring of benzocycloalkenes [1–4] (see also [1–7] in Ref. [2]). For example, when heated with SbF₅ in a nickel bomb, perfluoro-1-methylindan is transformed to perfluoro-2-isopropyltoluene [1], and when heated with SbF₅ in a glass ampoule, it reacts with glass as a source of inorganic oxides to give perfluoro-4-methyl-1H-isochromene [5] (Scheme 1).

Apparently, the reaction with glass proceeds via intermediate formation of perfluoro-3-methylindan-1-one. On the other hand, selective "hydrolysis" of CF_3 groups in perfluorinated methyl- and propenyl-benzene derivatives

proceeds under the action of SiO_2/SbF_5 to give the corresponding acids in a good yield [6].

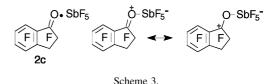

In this connection it seemed reasonable to study the reaction of perfluorobenzocycloalkenes with silica in the presence of SbF_5 and transformations of the carbonyl derivatives of perfluorobenzocycloalkenes under the action of antimony pentafluoride. This work describes the reactions of perfluoroindan (1) with SiO_2 and with a glass in an SbF_5 medium and transformations of perfluoroindan-1-one (2) and perfluoroindan-1,3-dione (3) under the action of antimony pentafluoride.

It should be noted that the carbonyl group of perfluorinated 3-methylindenone, 1-methylindan-2-one, indan-2-one [7] and indanone **2** [8] is involved in the reactions with H_2O_2 in the HF–SbF₅ system to form sixmembered oxygen containing heterocyclic compounds. When heated with antimony pentafluoride, perfluorinated ketones [9] and vinylketones [10] having a CF₃ group in the position β to the carbonyl group undergo intramolecular cyclization to give derivatives of oxolane and 2,5-dihydrofuran, respectively.

^{*} Corresponding author. Fax: +7 383 234 4752.

E-mail address: karpov@nioch.nsc.ru (V.M. Karpov).

^{0022-1139/\$ –} see front matter \odot 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2004.09.035

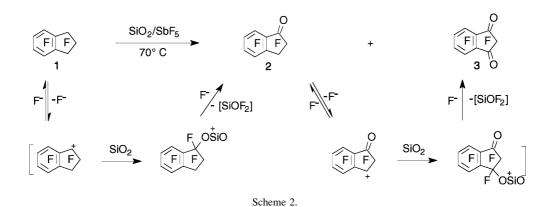


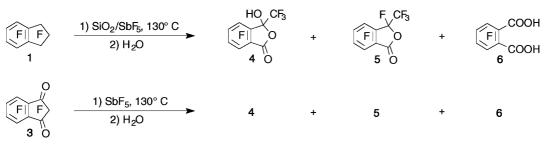
We have found that reaction of indan **1** with SiO₂ (SiO₂ was prepared by heating of silica gel at 400–450 °C) in the presence of 1.5 mol of SbF₅ per 1 mol of compound **1** at 70 °C (5 h) gives indanone **2** and small amount of indandione **3**. Increase in the reaction time (13 h) leads to a small increase of diketone **3** yield. Decrease of SbF₅ from 1.5 to 0.5 mol per 1 mol of indan **1** lowers the conversion of the latter (Scheme 2).

The formation of indanone **2** and diketone **3** can be rationalized by a mechanism involving the interaction of the perfluoroindan-1-yl cation initially generated [11] and perfluoroindan-3-one-1-yl cation with SiO_2 according to the Scheme 2.

Formation of indanone 2 as the dominant component in comparison with diketone 3 from indan 1 could be explained by the fact that indanone 2 gives complex 2c (its formation will be discussed below) with antimony pentafluoride (Scheme 3). As a result, the reaction of indanone 2 with SiO₂/SbF₅ should be difficult as compared with indan 1. On the other hand, the complexing decreases the amounts of "free" SbF₅, and the reaction of indan 1 with SiO₂ is impeded.

The reaction of indan **1** with SiO₂ (70–75 °C) in the presence of 3 mol of SbF₅ per 1 mol of compound **1** gives, after treatment reaction mixture with water, indanone **2**, indandione **3** together with 3-hydroxy-perfluoro-3-methylphthalide (**4**). The reaction at 130 °C forms com-


pound 4 with perfluoro-3-methylphthalide (5) and a small amount of tetrafluorophthalic acid (6). The latter is the main product of the reaction at 180 °C. Phthalides 4, 5 are, probably, formed via intermediate diketone 3. Indeed, a separate experiment has shown that the reaction of diketone 3 with antimony pentafluoride gives phthalides 4 and 5 with small amounts of acid 6 (Scheme 4).


Transformation of diketone **3** to products **4**, **5** in the presence of antimony pentafluoride, possibly, proceeds in the following way (Scheme 5). At first complex **3c** is formed from diketone **3** and SbF₅. The five-membered cycle of the complex **3c** may undergo ring opening to give the intermediate **7**. The latter is further fluorinated yielding perfluoro-2-acetylbenzoyl fluoride (**5a**) and then product **5**, or/and intermediate **7** is transformed into perfluoro-3-methylenephthalide (**8**) which is fluorinated to product **5**. Hydrolysis of compounds **5** and **5a** leads to phthalide **4**.

It has been shown that indanone 2 also undergoes skeletal transformations under the action of SbF_5 at high temperature. Thus, indanone 2, heated with antimony pentafluoride at 130 °C (2 h) and then treated with water, gives a mixture of perfluoro-2-ethylbenzoic acid (9), phthalides 4, 5 and indan 1. The reaction mixture also contains unchanged ketone 2 (Scheme 6).

Transformation of indanone 2 in the presence of SbF_5 to the acid 9 may be represented by Scheme 6. At first compound 2 with SbF_5 seems to generate the cation 10. The five-membered cycle of the latter may undergo ring opening analogous to that in perfluoro-1-methylindan (Scheme 1) and indan 1 under the action of SbF_5 [1]. This yields the benzoyl type ion 11, which adds fluoride anion and then undergoes fluorination to form product 12. Hydrolysis of the latter gives the acid 9.

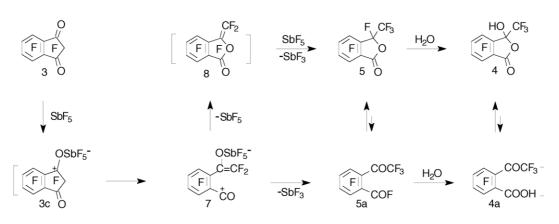
Fluorination of indanone 2 to product 12 under the action of antimony pentafluoride with cleavage of the bond C(O)– CF_2 in indanone 2 (not in the cation 10) seems unlikely,

because perfluoro-3,3-diethylindan-1-one (13) is the only product of the reaction of perfluoro-1,1-diethylindan (14) with SiO_2/SbF_5 at 130 °C (Scheme 6).

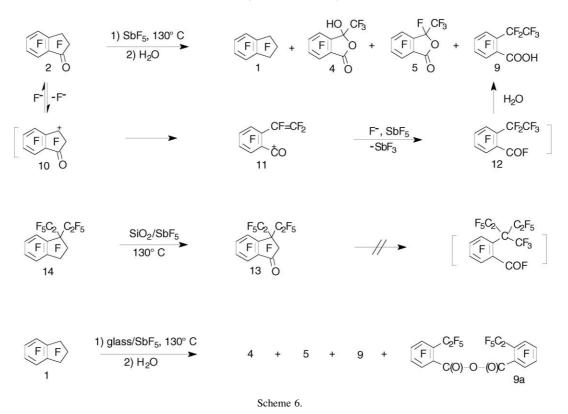
Formation of the products 1, 4, 5 in the reaction of indanone 2 with antimony pentafluoride could be explained by disproportionation of ketone 2 to indan 1 and indandione 3 (Scheme 7), which gives products 4 and 5 under the reaction conditions, that was shown above.

When a solution of ketone 2 in indan 1 was heated with SbF_5 , ketone 2 disproportionated to a lesser extent as compared with ketone 2 in the absence of indan 1. As a result, the acid 9 is formed in higher yield. When heated with antimony pentafluoride at 130 °C in a glass ampoule during a lengthy period of time (35 h), indan 1 reacts with glass to give, after hydrolysis, acid 9 and, unexpectedly, perfluoro-2-ethylbenzoic anhydride 9a only with a small admixture of compounds 4 and 5 (Scheme 6). This may be explained by the smaller relative rate of the reaction of indan 1 with glass as compared with SiO_2 and, as a consequence, formation of ketone 2 in small concentration can occur. As a result, ketone 2 is transformed rather to acid 9 (first reaction order for 2, Scheme 6), than disproportionating to indan 1 and diketone 3 (second reaction order for 2, Scheme 7).

3. Experimental


IR spectra were taken on a Bruker Vector 22 IR spectrophotometer. UV spectra were measured on a Hewlett

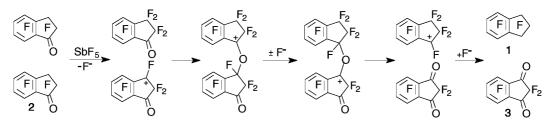
Packard 8453 UV spectrophotometer. ¹⁹F NMR and ¹H spectra were recorded on a Bruker WP-200 SY instrument (188.3 and 200 MHz, respectively) whereas ¹³C NMR spectrum of the compound **4** was recorded on a Bruker AM 400 instrument (100.6 MHz). Chemical shifts are given in δ ppm downfield from C₆F₆ (¹⁹F) and TMS (¹H and ¹³C); C₆F₆ (-162.9 ppm from CCl₃F), (Me₃Si)₂O, CHCl₃ (0.04 and 7.24 ppm from TMS) and CDCl₃ (76.9 from TMS) were used as internal standards. The molecular masses of the compounds were determined by high-resolution spectrometry on a Finnigan Mat 8200 instrument (EI 70 eV). Contents (yields) of products in the reaction mixtures were established by GLC and ¹⁹F NMR spectroscopic data.


The structures of the compounds were established by elemental analysis, HRMS and spectral characteristics. Assignment of signals in the ¹⁹F NMR spectra was made on the basis of chemical shifts of the signals, their fine structure and integral intensities. Compounds **2**, **3**, **6** were identified by comparison of the ¹⁹F NMR data with data for authentic samples [12,13].

Formally, compounds 4 and 5 could exist as phthalides 4, 5 and/or their open-chain forms 4a and 5a, respectively (Scheme 5). According to the ¹⁹F NMR spectrum, compound 5 exists in the phthalide form. Signals at 4.71 ppm (OH, ¹H NMR) and at 99.3 ppm (C-3, ¹³C NMR) testify to phthalide form of compound 4. This is in accord with the fact that in a solution and in the solid state 2-acetylbenzoic acid exists in the phthalide form [14,15].

Assignment of signals in the ¹⁹F NMR spectrum of complex 2c (signals were not well resolved) was made by

Scheme 5.


analogy with that for 1-chlorooctafluoroindan-1-yl [16], polyfluorinated benzyl [17] and diphenylmethyl cations [18], for which changes in chemical shift in going from precursor to ion $(\Delta \delta_{\rm F})$ are attributed to direct participation of fluorine atoms in charge distribution and in an conjugation. It should be noted that for the benzene moiety of complex **2c** down-field $\Delta \delta_{\rm F}$ resemble those of 1-chlorooctafluoroindan-1-yl cation [16], a smaller scale of $\Delta \delta_{\rm F}$ can be due to a less positive charge transfer onto ring.

3.1. Reaction of perfluoroindan (1) with SiO_2/SbF_5 at 70 °C

1. A mixture of 3.37 g of compound 1, 0.6 g of SiO₂ and 3.68 g of SbF₅ (molar ratio, 1:0.88:1.5) was stirred at 70 °C for 5 h. The mixture was poured into 5% hydrochloric acid (0–5 °C) and extracted with CH₂Cl₂ and then with ether. The extracts were dried over MgSO₄. The solvents were distilled off to give 2.51 g (yield 80%) of indanone **2** (from CH₂Cl₂ extract) and 0.41 g of

organic and inorganic products (from ether extract). By sublimation of the latter at 70–75 °C (15 Torr, then 2 Torr) a mixture (0.2 g), containing 73% of indanone **2** and 27% of indandione **3** (GLC), was isolated.

- 2. Analogously to the previous procedure, the reaction of indan **1** (3.64 g), SiO₂ (0.64 g) and SbF₅ (3.97 g) (molar ratio, 1:0.88:1.5) gave (70 °C, 13 h) 2.64 g (yield 78%) of indanone **2** (from CH₂Cl₂ extract) and 0.32 g of indandione **3** (from ether extract).
- 3. Analogously to procedure (1), the reaction of indan 1 (3.58 g), SiO₂ (0.63 g) and SbF₅ (1.2 g) (molar ratio, 1:0.88:0.5) gave (70 °C, 4 h) 2.8 g of a mixture containing 39% (yield 33%) of 2 and 59% (46%) of indan 1.
- 4. Analogously to procedure (1), the reaction of indan 1 (16.62 g), SiO₂ (1.17 g) and SbF₅ (24.18 g) (molar ratio, 1:0.51:2) gave (70 °C, 9 h) 13.12 g (yield 85%) of indanone 2.
- 5. A mixture of compound 1 (1.42 g), SiO_2 (0.46 g) and SbF_5 (3.25 g) (molar ratio, 1:1.54:3) was stirred at

Scheme 7.

70–75 °C for 4.5 h. The mixture was poured into 5% hydrochloric acid (0–5 °C) and extracted with ether. The solvent was distilled off to give 1.08 g of product, containing compounds **2**, **3** and **4** in the ratio 38:43:19 (19 F NMR), yield 31, 34 and 15%, respectively.

3.2. Reaction of perfluoroindan (1) with SiO_2/SbF_5 at 130 and 180 °C

1. A mixture of compound 1 (2.48 g), SiO_2 (0.55 g) and SbF₅ (5.42 g) (molar ratio, 1:1.1:3) was stirred at 90 $^{\circ}$ C for 0.5 h. Then for 0.5 h the temperature of the bath was raised to 130 °C, and the mixture was kept at this temperature for 2 h. The mixture was poured into 5% hydrochloric acid (0-5 °C) and extracted with CH₂Cl₂ and then with ether. The extracts were dried over MgSO₄. The ether was distilled off and the residue was sublimed to give 0.11 g of a mixture of compounds 3, 4 and **6** in the ratio 9:24:67 (19 F NMR). The CH₂Cl₂ extract, contained phthalides 4 and 5 in the ratio 27:73 (¹⁹F NMR), was washed with aqueous solution of NaHCO₃ and dried over MgSO₄. The solvent was distilled off to give 1.39 g (yield 57%) of compound 5, which was additionally purified by short-path distillation (80 °C, 40 Torr). The aqueous solution was acidified with HCl, extracted with CH₂Cl₂ and dried over MgSO₄. The solvent was distilled off to give 0.48 g (yield 20%) of compound 4, which was sublimed (130 °C, 20 Torr).

3-Hydroxy-perfluoro-3-methylphthalide (4): mp 99– 100 °C (benzene–hexane). UV (C₂H₅OH) λ_{max} , nm (lg ε): 228 (3.91), 278 (3.30). IR (CCl₄) ν , cm⁻¹: 3549, 3382 (OH); 1826, 1796 (C=O); 1521, 1506 [fluorinated aromatic ring (FAR)]. ¹H NMR (200 MHz, CDCl₃): δ 4.71 (s, OH). ¹³C NMR (100.6 MHz, CDCl₃): δ 160.8 (s, C-1), 146.1 (dt, ¹J_{CF} = 267 Hz, ²J_{CF} = 14 Hz) and 143.5 (dt, ¹J_{CF} = 263 Hz, ²J_{CF} = 14 Hz, C-5 and C-6), 144.5 (dd, ¹J_{CF} = 267 Hz, ²J_{CF} = 13 Hz) and 142.9 (dd, ¹J_{CF} = 264 Hz, ²J_{CF} = 13 Hz, C-4 and C-7), 123.4 (d, ²J_{CF} = 14 Hz) and 110.8 (d ²J_{CF} = 12 Hz, C-3a and C-7a), 120.6 (q, ¹J_{CF} = 286 Hz, CF₃), 99.3 (q, ²J_{CF} = 37 Hz, C-3). ¹⁹F NMR (188.3 MHz, CDCl₃): δ 79.7 (3F, CF₃), 26.8 (1F, F-7), 26.3 (1F, F-4), 23.1 (1F, F-5), 17.0 (1F, F-6); J_{CF3}-F(4) = 13 Hz, J_{4.5} = 20 Hz, J_{4.6} = 7 Hz, J_{4.7} = 20 Hz, J_{5.6} = 18 Hz, J_{5.7} = 11 Hz, J_{6.7} = 20 Hz. Anal. Calcd. for C₉HF₇O₃: C, 37.3; H, 0.3; F, 45.8%. Found: C, 37.3; H, 0.3; F, 45.9%.

Perfluoro-3-methylphthalide (**5**): liquid. UV (hexane) λ_{max} , nm (lg ε): 230 (3.96), 282 (3.45). IR (CCl₄) ν, cm⁻¹: 1844 (C=O); 1522, 1508 (FAR). ¹⁹F NMR (188.3 MHz, CCl₄): δ 79.7 (3F, CF₃), 36.6 (1F, F-3), 28.9 (1F, F-7), 28.3 (1F, F-4), 23.7 (1F, F-5), 19.3 (1F, F-6); $J_{CF_3-F(3)} = 5$ Hz, $J_{CF_3-F(4)} = 15$ Hz, $J_{3,4} = 3$ Hz, $J_{3,6} = 3$ Hz, $J_{4,5} = 20$ Hz, $J_{4,6} = 8$ Hz, $J_{4,7} = 19$ Hz, $J_{5,6} = 17$ Hz, $J_{5,7} = 11$ Hz, $J_{6,7} = 20$ Hz. HRMS *m/z*, 291.9771 (M⁺). Calcd. for C₉F₈O₂ = 291.9771.

- 2. Analogously to the previous procedure, a mixture of indan 1 (1.46 g), SiO₂ (0.33 g) and SbF₅ (3.19 g) (molar ratio, 1:1.1:3) was heated at 85 °C (2 h) and then at 130 °C (3 h). The mixture was treated with 5% hydrochloric acid (0–5 °C), extracted with ether and dried over MgSO₄. The ether solution contained compounds 4, 5 and 6 in the ratio 42:52:6 (¹⁹F NMR). An amount of 5 ml of 5% hydrochloric acid was added into the solution and the mixture was stirred at room temperature for 10 h. The ether solution was dried over MgSO₄. The solvent was distilled off to give 1.3 g of product containing compounds 4 and 6 in the ratio 94:6 (¹⁹F NMR).
- 3. A mixture of indan 1 (1.19 g), SiO₂ (0.53 g) and SbF₅ (2.6 g) (molar ratio, 1:2.2:3) was heated at 85 °C (2 h). Then for 4 h a temperature was raised to 180 °C, and the mixture was kept at this temperature for 3 h. The mixture was treated with 5% hydrochloric acid (0–5 °C), extracted with ether and dried over MgSO₄. The solvent was distilled off to give after sublimation (130 °C, 1 Torr) 0.8 g of product containing compounds **4** and **6** in the ratio 8:92 (¹⁹F NMR).

3.3. Reaction of perfluoroindan (1) with glass in the presence of SbF_5 at 130 °C

A mixture of compound 1 (1.03 g) and SbF₅ (3.0 g) (molar ratio, 1:4) in a sealed ampoule was heated at 130-135 °C for 35 h. The mixture was treated with 5% hydrochloric acid (0-5 °C), stirred at 30 °C for 3 h and extracted with CH2Cl2. The extract was washed with aqueous solution of NaHCO3 and dried over MgSO4. The solvent was distilled off to give 0.36 g of a mixture of compounds 1, 5 and 9a in the molar ratio 34:34:32 (¹⁹F NMR). The mixture was spontaneously evaporated in the air to dryness to give 0.18 g (yield 17%) of compound 9a. The aqueous solution was acidified with HCl, extracted with CH₂Cl₂ and dried over MgSO₄. The solvent was distilled off to give 0.48 g of a mixture of compounds 4 and 9 in the ratio 10:90 (¹⁹F NMR). The yield of acid **9** is 41%. Analytical samples of compounds 9 and 9a were prepared by sublimation (80 °C, 1 Torr) and (110 °C, 3 Torr), respectively, and then crystallization.

Perfluoro-2-ethylbenzoic acid (**9**): mp 83.5–84.5 °C (hexane). UV (C₂H₅OH) λ_{max} , nm (lg ε): 271 (3.34). IR (CCl₄) ν , cm⁻¹: 3502, 3080 (OH); 1774, 1733 (C=O); 1528, 1482 (FAR). ¹H NMR (200 MHz, CCl₄): δ 11.14 (s, OH). ¹⁹F NMR (188.3 MHz, CCl₄): δ 77.6 (3F, CF₃), 53.0 (2F, CF₂), 29.3 (1F, F-3), 23.8 (1F, F-6), 16.8 (1F, F-5), 12.9 (1F, F-4); $J_{CF_3-CF_2} = 2$ Hz, $J_{CF_3-F(3)} = 15$ Hz, $J_{CF_2-F(3)} = 22$ Hz, $J_{3,4} = 21$ Hz, $J_{3,5} = 10$ Hz, $J_{3,6} = 11$ Hz, $J_{4,5} = 20$ Hz, $J_{4,6} = 6$ Hz, $J_{5,6} = 22$ Hz. HRMS *m*/*z*, 311.9833 (M⁺). Calcd. for C₉HF₉O₂ = 311.9829.

Perfluoro-2-ethylbenzoic anhydride (**9a**): mp 86.5– 87.5 °C (hexane). UV (hexane) λ_{max} , nm (lg ε): 271 (3.40). IR (CCl₄) ν, cm⁻¹: 1845, 1796 (C=O); 1528, 1481 (FAR). ¹⁹F NMR (188.3 MHz, CCl₄): δ 77.5 (3F, CF₃), 53.2 (2F, CF₂), 30.1 (1F, F-3), 24.3 (1F, F-6), 17.5 (1F, F-5), 14.7 (1F, F-4); $J_{CF_3-CF_2} = 2$ Hz, $J_{CF_3-F(3)} = 15$ Hz, $J_{CF_2-F(3)} = 21$ Hz, $J_{3,4} = 21$ Hz, $J_{3,5} = 10$ Hz, $J_{3,6} = 11$ Hz, $J_{4,5} = 20$ Hz, $J_{4,6} = 6$ Hz, $J_{5,6} = 21$ Hz. HRMS *m*/*z*, 605.9560 (M⁺). Calcd. for C₁₈F₁₈O₃ = 605.9564.

3.4. Reaction of perfluoroindan-1,3-dione (3) with SbF_5

A mixture of compound **3** (0.6 g) and SbF₅ (1.53 g) (molar ratio, 1:3) in a sealed ampoule was heated at 130 °C for 2 h. The mixture was treated with 5% hydrochloric acid (0–5 °C), extracted with CH₂Cl₂ and then with ether. The extracts were dried over MgSO₄. The solvents were distilled off to give 0.62 g (yield 90%) of a mixture of phthalides **4** and **5** in the ratio 20:80 (¹⁹F NMR) from CH₂Cl₂ extract, and 0.02 g of the acid **6** from ether extract.

3.5. Reaction of perfluoroindan-1-one (2) with SbF_5

- 1. A mixture of compound **2** (0.94 g) and SbF₅ (2.22 g) (molar ratio, 1:3) in a sealed ampoule was heated at 130 °C for 3 h. The mixture was poured into 5% hydrochloric acid (0–5 °C), extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 0.88 g of a mixture, containing (¹⁹F NMR) 31% (yield 27%) of **1**, 19% (17%) of **2**, 12% (10%) of **4**, 19% (17%) of **5**, 19% (16%) of **9**.
- 2. To a mixture of indan 1 (1.22 g, 4.09 mmol) and SbF₅ (2.12 g, 9.78 mmol) stirred at 130 °C, ketone 2 (0.67 g, 2.44 mmol) was added for 1 h. Then indan 1 (0.3 g, 1.01 mmol) was added to the mixture and the latter was stirred at 130 °C for 2.5 h. The mixture was poured into 5% hydrochloric acid (0–5 °C) and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 2.13 g of a mixture, containing (¹⁹F NMR) 66% of 1, 1% of 2, 3% (yield 10%) of 4, 4% (11%) of 5, 26% (74%) of 9.

3.6. Complex (2c) of perfluoroindan-1-one (2) with SbF_5

To 1.15 g of SbF₅ placed in an ampoule for recording of NMR spectra 0.18 g of ketone **2** (molar ratio, **2**:SbF₅ = 1:8) was added. The mixture was stirred and ¹⁹F NMR spectrum of the solution was recorded at +20 °C. The spectrum contained ill-resolved signals of complex **2c**. SO₂ClF (0.2 g) was added to the mixture at -15 °C and ¹⁹F NMR spectrum of the solution was measured at +20 °C. The spectrum contained bad-resolved signals of complex **2c** as well. ¹⁹F NMR (188.3 MHz, SbF₅–SO₂ClF), SO₂ClF (262.8 ppm from C₆F₆) was used as internal standard: δ ($\Delta\delta$) 62.0 (33.8) (1F, F-5), 58.1 (4.1) (2F, F-3), 56.0 (25.5) (1F, F-7), 47.5 (9.7) (2F, F-2), 34.5 (8.0) (1F, F-4), 27.5 (7.2) (1F, F-6).

The solution was poured into 5% hydrochloric acid and extracted with CH₂Cl₂. The extract was dried over MgSO₄.

The solvent was distilled off to give 0.13 g (yield 72%) of indanone 2.

3.7. Reaction of perfluoro-1,1-diethylindan (14) with SiO_2/SbF_5

A mixture of 2.73 g of compound **14**, 0.2 g of SiO₂ and 3.56 g of SbF₅ (molar ratio, 1:0.61:3) was stirred at 130–135 °C for 3 h. The mixture was poured into 5% hydrochloric acid (0–5 °C) and extracted with CH₂Cl₂. The extract was dried over MgSO₄. The solvent was distilled off to give 2.54 g (yield 97%) of ketone **13**.

Perfluoro-3,3-diethylindan-1-one (**13**): bp 58 °C (3 torr). UV (hexane) λ_{max} , nm (lg ε): 253 (4.10), 289 (3.46), 294 (3.46). IR (CCl₄) ν , cm⁻¹: 1781 (C=O); 1513 (FAR). ¹⁹F NMR (188.3 MHz, CH₂Cl₂): δ 85.7 (6F, m, 2CF₃), 58.3 (4F, m, 2CF₂), 50.7 (2F, m, F-2), 35.8 (1F, m, F-4), 30.2 (1F, F-7), 27.6 (1F, F-5); 19.0 (1F, F-6); $J_{4,5}$ = 19 Hz, $J_{4,6}$ = 10 Hz, $J_{4,7}$ = 16 Hz, $J_{5,6}$ = 19 Hz, $J_{5,7}$ = 13 Hz, $J_{6,7}$ = 21 Hz. HRMS *m*/*z*, 475.9742 (M⁺). Calcd. for C₁₃F₁₆O = 475.9694.

References

- V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, Bull. Soc. Chim. Fr. (1986) 980–985.
- [2] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, V.R. Sinyakov, J. Fluor. Chem. 107 (2001) 53–57.
- [3] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, V.R. Sinyakov, J. Fluor. Chem. 117 (2002) 73–81.
- [4] V.R. Sinyakov, T.V. Mezhenkova, V.M. Karpov, V.E. Platonov, J. Fluor. Chem. 125 (2004) 49–53.
- [5] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, Izv. Akad. Nauk SSSR Ser. Khim. (Russ. Chem. Bull) (1991) 745–746; V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, Chem. Abstr. 116 (1992) 151495e.
- [6] V.M. Karpov, I.V. Panteleev, V.E. Platonov, Zh. Org. Khim. (Russ. J. Org. Chem.) 27 (1991) 2183–2191;
 V.M. Karpov, I.V. Panteleev, V.E. Platonov, Chem. Abstr. 116 (1992) 193836x.
- [7] I.P. Chuikov, V.M. Karpov, V.E. Platonov, Izv. Akad. Nauk Ser. Khim. (Russ. Chem. Bull.) (1992) 1412–1418;
 I.P. Chuikov, V.M. Karpov, V.E. Platonov, Chem. Abstr. 118 (1993) 124161c.
- [8] I.P. Chuikov, V.M. Karpov, V.E. Platonov, Izv. Akad. Nauk SSSR Ser. Khim. (Russ. Chem. Bull.) (1990) 2463–2464;
 I.P. Chuikov, V.M. Karpov, V.E. Platonov, Chem. Abstr. 114 (1991) 121958z.
 [9] S.D. Chepik, V.F. Cherstkov, E.I. Mysov, A.F. Aerov, M.V. Galakhov,
- S.D. Chepik, V.P. Cherstkov, E.F. Mysov, A.F. Actov, M.V. Galakhov,
 S.R. Sterlin, L.S. German, Izv. Akad. Nauk SSSR Ser. Khim. (Russ. Chem. Bull.) (1991) 2611–2618;
 S.D. Chepik, V.F. Cherstkov, E.I. Mysov, A.F. Aerov, M.V. Galakhov,
 S.R. Sterlin, L.S. German, Chem. Abstr. 116 (1992) 128533g.
- V.F. Snegirev, L.L. Gervits, K.N. Makarov, Izv. Akad. Nauk SSSR Ser. Khim. (Russ. Chem. Bull.) (1983) 2765–2775;
 V.F. Snegirev, L.L. Gervits, K.N. Makarov, Chem. Abstr. 100 (1984) 209130v.
- [11] V.M. Karpov, T.V. Mezhenkova, V.E. Platonov, G.G. Yakobson, J. Fluor. Chem. 28 (1985) 121–137.
- [12] V.M. Karpov, L.S. Klimenko, V.E. Platonov, G.G. Yakobson, Zh. Org. Khim. (Russ. J. Org. Chem.) 27 (1975) 2372–2383;
 V.M. Karpov, L.S. Klimenko, V.E. Platonov, G.G. Yakobson, Chem. Abstr. 84 (1976) 59001p.

- [13] G.G. Yakobson, V.D. Shteingarts, N.N. Vorozhtsov Jr., Zh. Vses. Khim. Obshch. im. D. I. Mendeleeva (D.I. Mendeleev J. All-Union Chem. Soc.) 9 (1964) 702–704;
 G.G. Yakobson, V.D. Shteingarts, N.N. Vorozhtsov Jr., Chem. Abstr. 62 (1965) 9078b.
- [14] A.J. Dobson, R.E. Gerkin, Acta Cryst. C52 (1996) 3078–3081.
- [15] E.J. Valente, J.F. Fuller, J.D. Ball, Acta Cryst. B54 (1998) 162–173.
- [16] V.M. Karpov, V.E. Platonov, Zh. Org. Khim. (Russ. J. Org. Chem.) 30 (1994) 789;
- V.M. Karpov, V.E. Platonov, Chem. Abstr. 122 (1995) 187090g. [17] Yu.V. Pozdnyakovich, V.D. Shteingarts, J. Fluor. Chem. 4 (1974)
- 283–296. [18] Yu.V. Pozdnyakovich, V.D. Shteingarts, J. Fluor. Chem. 4 (1974)
- [18] Yu.V. Pozanyakovich, V.D. Shteingarts, J. Fluor. Chem. 4 (1974) 297–316.