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Uniform Ge-nanocrystals �Ge-ncs� embedded in amorphous SiO2 film were formed by using 74Ge+

ion implantation and neutron transmutation doping �NTD� method. Both experimental and
theoretical results indicate that the existence of As dopants transmuted from 74Ge by NTD tunes the
already stabilized �crystallized� system back to a metastable state and then activates the mass
transfer processes during the transition form this metastable state back to the stable �crystallized�
state, and hence the nanocrystal size uniformity and higher volume density of Ge-ncs. This method
has the potential to open a route in the three-dimensional nanofabrication. © 2011 American
Institute of Physics. �doi:10.1063/1.3553770�

Research on quantum dots �QDs� or nanocrystals with a
discrete energy spectrum and size-dependent physical prop-
erties is motivated by potential applications.1–5 Future studies
on smaller technological devices at the nanometer scale will
emphasize techniques for creating nanocrystals with better
size uniformity.6 Photoluminescence �PL� results show that
the best PL response from Ge-nanocrystals �Ge-ncs� in amor-
phous silicon oxide films was obtained with samples that
exhibit uniform nanocrystal size.7 Uniform shape and or-
dered size distribution nanocrystals are necessary in
quantum-dot lasers.

In extensively utilized self-assembly methods, the QDs
have a random spatial distribution, and it is difficult to pre-
cisely control dot size.8 Several attempts have been made
recently to improve the uniformity of QD distribution.6,9–14

However, thus far only two-dimensional periodic array uni-
form QDs have been obtained. Achieving uniform QDs un-
der the 3D confinement conditions remains one of the most
daunting challenges �in quantum-dot formation, etc�. Neu-
tron transmutation doping �NTD� is a technique which uti-
lizes the nuclear reaction of thermal neutrons with the iso-
topes in a semiconductor material,15–17 and it has been
reported that impurities are distributed homogeneously in a
material18–22 by using NTD. In this letter, we report that
Ge-ncs are doped by As atoms by using NTD.

The preparation of uniform Ge-ncs is as follows. The
isotope nanocrystalline 74Ge samples were prepared by iso-
topic 74Ge-ion implantation, followed by thermal annealing.
Ion implantation was performed in a LC-4 high-energy ion
implanter in a 10−5 Torr vacuum atmosphere. Gas GeH4 was
ionized into Ge+ and Ge2+ by arc discharging. Isotope 74Ge+

ions accelerated to 150 keV were selected by magnetism
analysis equipment �the mass resolution of magnet m /�m
=120�, and implanted into a 640 nm thick amorphous SiO2
film, which was thermally grown on a p-type �100� Si ma-
trix. The implanted dose of 74Ge+ ions was 1�1017 cm−2.
After implantation, samples were annealed at 800 °C for 0.5
h in a forming gas �10% H2 and 90% Ar� atmosphere �la-
beled as undoped Ge-ncs�. Neutron irradiation was per-
formed in a nuclear reactor by laying the samples in the
nuclear reactor, with integral thermal neutron fluence of 1
�1020 cm−2. Donor impurity 75As is transmuted from 74Ge
by NTD,

74Ge�n,�� → 75GeT�1/2�_82.8 min → 75As��−decay� . �1�

Second annealing is at 800 °C to eliminate any irradiation-
induced defects and to recrystallize the Ge-ncs �labeled as
doped Ge-ncs�.

Cross-section and high-resolution transmission electron
microscope �TEM� images were obtained with JEOL 2010
FEG transmission electron microscopy. X-ray photoelectron
spectroscopy �XPS� spectra were measured by Ultra-DLD
XPS, with a mono-Al source operated at a vacuum of 3
�10−9 Torr. The presence of As atoms was proved by the
XPS spectrum. Figure 1�e� shows the low-energy regions of
XPS spectra of the undoped and doped Ge-nc samples. The
broad bands from 23 to 33 eV and 40 to 50 eV correspond to
Ge, SiO2, and As impurities. The positions of the peaks are
25.3 eV for O 2s from SiO2, 29.1 eV for Ge 3d from Ge,
33.2 eV for Ge 3d from GeO2, 40.7 eV for As 3d from As,
44.8 for As 3d from As2O3, and 46.0 eV for As 3d from
As2O5.23 Figure 1�d� shows the size distributions of the un-
doped and doped samples. An area containing approximately
40 dots was analyzed. The mean sizes are 10.2 nm for the
undoped sample and 11.5 nm for the doped sample. The
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average size increases with introducing impurities in the
sample. The size distribution of doped sample �7–17 nm� is
narrower than the undoped case �4–19 nm�. The insets in
Figs. 1�a� and 1�b� show the cross-section TEM images of
the undoped and doped Ge-ncs. We can clearly see that the
size and distribution of the doped sample are more uniform
than those of the undoped one, and that the volume density
of nanocrystals increased by 13.11%.

To understand the formation mechanism of uniform Ge-
ncs, we have performed interaction studies between As at-
oms and Ge nanocrystal using the ab initio density functional
method performed with the DEMOL3 code,24 in which the
local-density approximation in the scheme of Perdew–Wang
1992 the Perdew-Wang-correlation �Ref. 25� and the
generalized-gradient approximation in the scheme of
Perdew–Burke–Ernzerhof26 are used. According to the for-
mation energy calculation �no shown here�, an As atom fa-
vors an interstitial site in Ge nanocrystal. Figure 2�a� shows
the �220� face spatial distribution related to the highest oc-
cupied molecular orbital �HOMO� of Ge-ncs with an As
atom doping in an interstitial site, where it is the most stable
site of As atom in Ge nanocrystal. For comparison, the spa-
tial distribution of the O case is shown in Fig. 2�b�. The
HOMO is especially important in determining the chemical
reactivity of a system. We can see that the HOMO states
progressively localize on the impurities. Red and blue re-

gions indicate electron accumulation and loss, respectively.
For the O-doping case, since the charges mainly accumulate
in the middle of the bond and are shared with each other,
covalent contact is predominant. For the As doping case,
electron accumulation and loss around the As atom are ob-
vious, as ionic contact is predominant between the As and Ge
atoms in nanocrystal.

Significant changes were found in the Ge–Ge bond
length after introducing an As atom into the nanocrystal. We
can see that the distortion of nanocrystal is obvious after As
doping. The formation energy of As-doped nanocrystals is
smaller than the O-doped nanocrystals. For example, the av-

erage Ge–Ge bond length �L̄� increases to 2.68 Å, 4.69%
higher than the undoped case �2.56 Å�. However, the average
value for O-doping is 2.55 Å, indicating that doping with As
produces a greater distortion. The deflection of impurity at-
oms from the center of local symmetry of doped nanocrystal
interstitial sites �labeled as � center� was also found. The
distance increases from 2.89 Å �between the � center and
the Ge atom in the center of nanocrystal� to 3.13 Å �between
the As atom in interstitial site and the Ge atom in the center
site of nanocrystal� after the As doping and geometry opti-
mization. Otherwise, for the O-doping in the same interstitial
site, the distance between the O atom and the center of the
nanocrystal is 2.04 Å after geometry optimization. A large
repulsion force between the As atoms and Ge-ncs is indi-
cated.

A possible formation mechanism of the Ge nanolayer
may be discussed as follows �see Fig. 3�. Lu et al.27 insisted
that the Debye length is given by

lD = ��skBT/�q2Nd� , �2�

where �s is the permittivity of the substrate, kB the Boltz-
mann constant, T the temperature, q the charge of one
electron, and Nd the donor density in the substrate. When two
Ge-ncs approach each other, the accompanying charge
clouds overlap, leading to a repulsive force that prevents
them from coalescing. Significant repulsion appears when
the separation of two Ge-ncs reduces to a scale comparable
to lD. An energy barrier appears at a separation of approxi-
mately 0.02lD, below which van der Waals interaction
dominates and drives two Ge-ncs into contact. A silicon sub-
strate has �s=3.9�0, where �0 is the permittivity of vacuum.
Using �0=8.85�10−12 F /m, q=1.60�10−19 C, kB=1.38
�10−23 J /K, T=300 K, and Nd=5�1013 cm−3, we have
lD=334.1 nm. In Fig. 1�a�, we cannot see the separation of
Ge-ncs from the inset TEM image, and the distance between
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FIG. 1. �Color online� Cross-section TEM images of ��a� and �c�� undoped
Ge-ncs and �b� doped Ge-ncs. �d� Size distributions of the undoped and
As-doped Ge-ncs. �e� XPS analysis of undoped and As-doped Ge-ncs.
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FIG. 2. �Color online� Spatial distribution related to the HOMO of �a� As-
and �b� O-doped Ge-ncs.

FIG. 3. �Color online� Scheme of system considered.
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the two Ge-ncs is about 10 nm, much smaller than the cal-
culated Debye length. This leads us to infer that there may be
some other mechanism of uniform nucleation.

Followed by the 74Ge ion implantation, primary thermal
annealing, neutron irradiation, and a subsequent reannealing,
the nucleation mechanism of As-doped Ge-ncs is extraordi-
narily complex, including damage-enhanced diffusion and
interfacial-energy effects. Nonetheless, the size distributions
become more uniform after introducing As into Ge-ncs. The
local high-temperature nucleates Ge ions into Ge-ncs after
Ge-ion implantation. Annealing due to the minimum energy
principle is then carried out, because the Gibbs free energy
of a nanoparticle aggregated from ions is much lower than
the energy sum of these ions. The dopant atoms are usually
not in their lattice positions but displaced in interstitial posi-
tions or isolated points due to the recoil produced by the �-
and �-particles and the lower formation energy in Ge-nc
interstitial sites. After irradiation, As separates from Ge-ncs
and creates more nucleation sites. Due to the large repulsion
force between As atoms and Ge-ncs, the As nucleation sites
are 3D positional uniform. In addition to producing As do-
nors, the neutron irradiation shakes and breaks the Ge-ncs,
which becomes amorphous state, introducing more defects.
The irradiated samples were subjected to the second anneal-
ing to eliminate any irradiation-induced defects and to re-
crystallize the Ge-ncs around the As nucleation center. There
are counterbalances between nucleation and spinodal decom-
position during nanocrystal formation. During the process of
nucleation, each Ge nanocrystal in samples deforms laterally
to match the amorphous SiO2 substrate. The deformation in-
duces a tensile stress region in the substrate below. Accord-
ing to the calculation, the distortion of Ge-ncs is larger after
As doping, as shown in Fig. 2�a�. Doping with As leads to
greater charge cloud density and distortion. The strain fields
from misfit dislocation make the sizes and spacing of sample
more uniform.

The net concentration of NTD-introduced impurities
�NNTD� is

NNTD = N0ki�i	t , �3�

where N0 is the concentration of Ge atoms in the lattice
�cm−3�, ki is the abundance of 74Ge isotopes, 	 is the inten-
sity of the thermal neutron flux �thermal neutrons/cm2 s�, t is
the exposure time �s�, and �i is the thermal neutron capture
cross-section �for 74Ge, �i=0.5�10−24 cm2�. From this
equation, the dimensionless ratio N=NAs /NGe is determined
to be 5�10−5 in doped Ge-ncs. Mean sizes are 10.2 nm for
the undoped sample and 11.5 nm for the doped sample. Then
one As atom can attract about 1�104 Ge atoms during an-
nealing and form a nanocrystal. The SiO2–Ge system be-
came metastable and “soft” after irradiation. Until the matter
has recrystallized, the Ge atoms channeled �diffused� be-
tween the existing nanoparticles, improving size uniformity.

In summary, As-doped Ge-ncs have been embedded in
amorphous SiO2 film by using 74Ge+ ion implantation and
the NTD method. Both experiments and theories show that
the As dopants have a great influence on the uniformity of
Ge-ncs. By turning the already stabilized �crystallized� sys-

tem back to a metastable state and then activating the mass
transfer processes during the transition from this metastable
state back to the stable �crystallized� state, nanocrystal size
uniformity was improved. We report a method that creates
semiconductor Ge quantum dots with high uniformity and
high density, showing promising applications in three-
dimensional nanofabrication.
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