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Rapid Access to Highly Functionalized Alkylboronates via NiH-

Catalyzed Remote Hydroarylation of Boron-Contai

Yao Zhang, Bo Han, and Shaolin Zhu*

Abstract: The direct and selective functionalization of relatively
simple and readily accessible precursors to produce highly
functionalized alkylboronates is a synthetically useful process. Here
we report a NiH-catalyzed remote hydroarylation process that can,
through a synergistic combination of chainwalking and subsequent
cross-coupling, introduce an aryl group into the adjacent carbon of
alkylboronates under mild conditions. By means of a preliminary
experiment with moderate enantioselectivity, it was shown that the

asymmetric version could be realized.

Alkylboronates are a privileged scaffold in materials
science and drug discovery, they are also valuable and versatile
precursors for the construction of structurally complex
molecules.!  Recently, there have been advances in
stereospecific transformation of alkylboronates to forge C-C, C—
0, C-N, and C-X bonds.? Accordingly, efficient, selective and
sustainable methods to introduce a boryl moiety have been
developed to access these functionalized alkylboronates (Fi
1a, left).”! Introduction of a functional group into a
containing substrate via catalytic functional group transforfmation
offers a complementary route to these valuable and

direct and selective sp® C-H functionalizatio
accessible alkylboronates remains a significa
challenge.
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Figure 1. Design plan: access to highly functionalized alkylboronates by
functionalization of readily accessible precursors.

While the above strategy can be viewed as an attractive
approach to highly functionalized alkylboronates, there are many
potential pitfalls (Figure 1c). First, a Ni-catalyzed Suzuki reaction
is possible because both starting materials and products are
organoboronates. Second, a chainwalking process could
potentially lead to the formation of isomeric products due to the
similar reactivities of the alkylmetal intermediates. Third, alkenes
and aryl iodides could be reduced by nickel hydride. Achieving
the requisite chemo- and regioselectivity is a major unexplored
challenge.

Aware of these possible pitfalls, our investigation began
with examination of the remote hydroarylation'? of homoallyl-
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boronic acid pinacol ester (1a) with iodobenzene (2a). After
extensive examination of nickel sources, ligands, silanes, bases,
solvents, and additives, the desired a-aryl alkylboronate (3a)
was obtained at 30 °C in 70% isolated yield. The reaction
manifested excellent regioselectivity [regioisomeric ratio, rr (a-
aryl product : all other isomers) = 97:3] (Table 1, entry 1). Use of
other nickel sources such as Nil, gave diminished yields (entry
2). Evaluation of other ligands showed that use of a similar
ligand, neocuproine (L2) led to a significantly lower yield (entry
3) and replacement of L1 with the parent bipyridine (bpy)
produced no desired arylation product (entry 4). Polymethyl-
hydrosiloxane (PMHS) was shown to be a less effective silane
(entry 5) and replacement of KF by CsF led to diminished yield
(entry 6). The reactivity could however be improved by the
addition of Kl as an additive (entry 1 vs entry 7) and acetonitrile
as co-solvent (entry 1 vs entry 8). Finally, bromobenzene was
found to be considerably less reactive than iodobenzene (entry
9).

Table 1: Variation of reaction parameters.

5 mol% NiBr;-diglyme, 6 mol% L1 Ph
NBpin + Ph—I 2.0 equiv KF, 2.0 equiv (EtO)3SiH )\ .
DMA/MeCN (30:1, 0.13 M) "Pr™ Bpin
1a 2a 0.50 equiv Kl, 30 °C 3a c-aryl
(1.0 equiv) (2.0 equiv) alkylboronate
Entry  Variation from standard conditions Yield (%) rr'®
1 none 87(70) 97:3
2 Nil, instead of NiBr,-diglyme 27 98:2
3 L2, instead of L1 25 95:5
4 bpy, instead of L1 trace
5 PMHS, instead of (EtO);SiH 35
6 CsF, instead of KF 47 95:5
7 w/o Kl 78 92:8
8 w/o MeCN 36 7V 955
9 PhBr, instead of Phl 39 96:4
/_\ N 7 N\ \_
N N _ /
Me Me X X
L1 bpy

[a] Yields determined by GC using n-dodecane as the internal stan
yield in parentheses is the isolated yield and is an average of two runs (0°
mmol scale). [b] Ratio of the arylation at adjacent carbon of boronate to th
sum of all other isomers as determined by GC analysis.
polymethylhydrosiloxane.

alkylboronates in go
(Table 2). As expected,
(1e) alkenes, as well as E

regioselectivity
and 1m) and Z

served, regardless of the
ing material (compare 1c,
t reaction conattions could also be used
dered trisubstituted alkene (1f) to form
albeit in diminished yield. Notably,
tituent at the other terminus of the

with a

10.1002/anie.201907185

WILEY-VCH

alkyl chain, including ethers (1e, 1h), a phthaloyl amide (1i), and
an alkyl chloride (1j), arylation at the o-carbon of the
alkylboronate was still observed.

Table 2: Scope of the alkene component.

5 mol% NiBr, - diglyme,

2.0 equiv KF, 2.0 equi Ph

()nJ\ Bpin

FG () BPIn + Ph—i

1 2a .oC 3
(n=0,1,2,..) (2.0 equiv) (remote hydroarylation)
\/\Bpln Et WBPIH "PFM Bpin
1b 1c 1d
Ph Ph Ph
Et Bpin "Pent)\Bpi "Pent)\Bpin

3blb) 70%(85%) yield, 9 3¢ 51%(57%) yield B85 i 3d 70%(81%) yield, 96:4 rr

Me
TBSO — Bpin "B
N7 s~ Y>> Bpin
Me Bpin
1e 1f 19
Ph Ph
it
8 Pr\)\Bpin ”Pent)\BPin

3e 56%(7 (34%) yield, 98:2 rr 3g 71%(86%) yield, >99:1 rr
BnO Bpin PhthN Bpin Cl Bpin
N5 N0 S05SN
1h 1i 1j
4 1 i
BnO . PhthN . Cl .
“()g Bpin ~()5 Bpin (7 Bpin

3 %(69%) yield, >99:1 rr 3i 76% yield, >99:1 rr 3j 52% yield, >95:5 rr

X~ Bdmpd HBU/\/Bdmpd nBu/\/Bdan

_:- 1k 11 1m
,93:7

’ Ph PMP
"Pr Bdmpd "Pent)\Bdmpd "Pent)\Bdan

3k 66% yield, 96:4 T 31 64%(77%) yield, 98:2 rr 3m 68%(80%) yield, >99:1 rr

der each product is the percentage yield, crude 'H NMR yield, and the
meric ratio (rr). Yield refers to isolated yield (0.20 mmol scale, average
runs), yields in parentheses refer to the crude 'H NMR yield (1,1,2,2-
chloroethane as internal standard). rr represents the ratio of the arylation
adjacent carbon of boronate to the sum of all other isomers as determined
y GC analysis, ratios reported as >95:5 were determined by crude 'H NMR
analysis. [b] 35 °C. Phth, phthaloyl.

[a]
regj
of

A subsequent survey of aryl iodides revealed that a range
of aryl- and heteroaryl groups could be used. As depicted in
Table 3, several electron-rich (2b—2e) and electron-poor (2f-2n)
aryl iodides were shown to be acceptable substrates. A variety
of functional groups were readily accommodated, including
ethers (2b, 2f, 2p, 2q, 2s, and 2u), esters (2c, 2i, and 2u), an
amide (2d), anilines (2e, 2q), a nitrile (2h), ketones (2j, 2t), and
an acetal (2u). Of particular interest is that potential coupling
motifs, including aryl fluorides (2e, 2k, 2r, and 2t), an aryl
chloride (2k), an aryl tosylate (2I), an aryl triflate (2m), and a
boronic ester (2n) remained intact and were available for
subsequent chemical modification. A series of heterocycles
frequently found in medicinally relevant targets including
thiophenes (20, 2t) and pyridines (2p, 2q, and 2r) were well
tolerated. This valuable transformation could therefore be used
for the late-stage functionalization of pharmaceutically relevant
and structurally complex intermediates (2s-2u). Aryl iodides
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derived from commercially available pharmaceuticals, such as
empagliflozin (2s) and canagliflozin (2t) successfully underwent
this migratory cross-coupling. Carbohydrate compounds such as

Table 3: Scope of aryl iodide coupling padner.[a]

5 mol% NiBr;-diglyme, 6 mol% L1

10.1002/anie.201907185
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the glucose derivative (2u) also readily underwent the targeted

migratory arylation successfully.

B Chemo- and regioselective

2.0 equiv KF, 2.0 equiv (EtO);SiH Ar
Z>""Bpin + (Het)Arl S B Remote hydroarylation
DMA/MeCN (30:1, 0.20 M) "Pr Bpin ® Mild/broad
1a (1.0 equiv) 2 (2.0 equiv) 0.50 equiv KI, 30 °C 4 flafbroad scope
OMe NHCOCF3; OCF3 FiC NG
; : ; : ny i n i
"Pr Bpin "Pr Bpin npr Bpin "Pr Bpin "Pr Bpin Pr Bpin Pr Bpin
4b] 70%(83%) yield 4c 64%(68%) yield 4d 69%(74%) yield 4e 60%(65%) yield 4f 60%(76%) yield 49 61%(79%) yield 4h 63%(72%) yield
96:4 It 96:4 rr 97:3 rr 97 3rr 95:5 rr 95:5 rr 98:2rr
CO,Et Bpin
f S
S
"Pr Bpin
"Pr Bpin "Pr Bpin "Pr Bpin "Pr Bpin "Pr Bpin "Pr Bpin
4i 67%(87%) yield 4j 55%(77%) yield 4k 67%(77%) yield 41 65%(77%) yield 4m 67%(73%) yield 4n 64%(75%) yield 40 80%(84%) yield
95:5 rr 96:4 rr 96:4 rr 96:4 rr 94 6rr 96:4 rr 97:3 rr
O
OMe [ j
%Me Bpin
‘O

N7 \
g N
NS
i pr B

"Pr Bpin pin npr Bpin
"Pr Bpin
4p 55%(74%) yield  4q 56%(77%) yield  4r 55%(73%) yield
96:4 rr 97:3rr 96:4 rr

empagliflozin derivative
(anti-diabetes drug)
4s 67%(76%) yield, 1:1 dr, >95:5 rr

nPr F
s o .
Bpin
(6) \ |
canagliflozin derivative

(anti-diabetes drug)
4t 67%(81%) yield, >95:5 rr

glucose derivative
4u 65%(73%) yield, 1:1 dr, >95:5 rr

—_—

[a] Yield and rr are as defined in Table 2. [b] DMA/MeCN (0.13 M).

The regioselectivity could also be switched
positions. Competition experiments were carried out
the site-selectivity of the benzylic position and the,
carbon of alkylboronate (Scheme 1a).
current conditions, arylation takes place at the
rather than the adjacent a-carbon of the boron#tet
the p-boronic ester substituted styrene (1k), aryla
benzylic position to produce exclusively the f-aryl subs
boronate product (3k') was observed. In case of an alken

to the highly regiospecific insertion
intermediate, isotope labeling experiments
insertion of NiH into p-alkyl
nonregiospecific and reversib,

The robustness
were further demon
subsequent derivatizatio
reaction on a gram scale,

synthesis and
e 1b). With the

me 1b, a wide array of
using known protocols be introduced
osition of 3a in good yields (5a—5e).

tion can be realized in an enantio-

selective fashion using a suitable chiral ligand. In a preliminary
experiment (Scheme 1c), with a simple chiral (S,S)-Cy-Biox
liggnd L3, (R)-3g was obtained with moderate enantioselectivity
ee) and good isolated yield (76%).

This article is protected by copyright. All rights reserved.



Angewandte Chemie International Edition

1

a) Competition experiments of regioselectivity: benzylic versus a-carbon of alkylboronate

standard Ph\l/\Bpin 3
conditions PMP 80% yield, >99:1 rr
Bpin — —
ph" PN+ PMP—I . (1.0D)
1n 2b DBpin Ph\l/\Bpin 3n'D
used PMP 74% yield, >99:1 rr
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [2]
) tandard PMP PMP
Phe - BPIN + pyp— 2 +
037 conditions Ph\()J\B in Ph)\()/Bpln
10 2 4 P 4
30 33% yield 30' 30% vyield
(<0.10D) pyp pup (<010 D) (3]
DBpin (0D) /\ (0.32D) 4+ (0D) /\ (0.77 D)
used Ph Bpin Ph Bpin
(0.36 D)Hs” Hp(0.36 D) (0.58 D)

30-D 13% yield

b) Synthetic utility: derivatization of a-aryl alkylboronate esters

30'-D 39% yield

Ph NaBOg 4H,0 NBpin LiCH,CI Ph
1a OH
then
"Pr OH THF/H,O (6.0 mmol scale) NaOH, H,0, Py

5a 86% vyield 5d 72% yield

Ph Li—@ Fn Ph
\ BrMg”
or S~ ”Pr/l\Bpin e [P B
L) then NBS 3a(1.18 g) | t’\f;le%H r se
o/ vi : , Me
5b 58% yield 76% yield, 97:3 rr 2 w/o isolation
OMe
versatile precursor
OMe | Ph
Ph 9-BBN
>_© Pdy(dba)s, PPh ”Pr/K/\OH then
Py 2(dba)s, PPhy 5¢' 59% yield NaOH, H,0,

5¢ 51% yield Ag20, THF, 80 °C for two steps

c) Preliminary result of enantioselective reaction

nBu\/\Bpin . i 5 mol% NiCl,-6H,0, 7 mol% L3 /E’\h
2.0 equiv KF, 2.5 equiv PMHS "Pent
1g (1.0 equiv) 2a (2.0 equiv) DMA (0.40 M), 0 °C (R)
o] o} - i
La: J: < j 76% yield, >99:1 rr
cy” N N7y 2

Scheme 1. Competition experiments, synthetic utility, and prel§
enantioselective conversion.

In summary, based on the
hydrofunctionalization platform, we have established a pra
and efficient remote hydroarylation process forming o
functionalized alkylboronates, from simple boron-contalgi
olefins and commercially available cr
the mild conditions used, excellent
was observed for a wide range of both
partners. Further studies on the catalytic asy
the current transformation bgged on ligand
progress.
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NiH-catalyzed migratory arylation for a-aryl alkylboronate synthesis Me
_ (Het)Ar Z
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unrefined alkenes aryl iodide a-aryl alkylboronate X
(easily accessible) (commercial available) (versatile synthetic intermediate) | Functionalize
B chemo- & regioselective M mild/broad scope M regioconvergent Me NiH-Catalyzed mote Hydroarylation

f B - ing Alk
Highly functionalized alkylboronates are versatile synthetic intermediates which ar; oron-Con 'ng enes

widely used for further derivatization. Using a NiH-catalyzed rem
hydrofunctionalization strategy, a migratory arylation process is reported and
permits the facile conversion of easily accessible boron-containing olefins and aryl

iodides to a-aryl alkylboronates.
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