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Rapid Access to Highly Functionalized Alkylboronates via NiH-
Catalyzed Remote Hydroarylation of Boron-Containing Alkenes 
Yao Zhang, Bo Han, and Shaolin Zhu* 

 

Abstract: The direct and selective functionalization of relatively 
simple and readily accessible precursors to produce highly 
functionalized alkylboronates is a synthetically useful process. Here 
we report a NiH-catalyzed remote hydroarylation process that can, 
through a synergistic combination of chainwalking and subsequent 
cross-coupling, introduce an aryl group into the adjacent carbon of 
alkylboronates under mild conditions. By means of a preliminary 
experiment with moderate enantioselectivity, it was shown that the 
asymmetric version could be realized. 

Alkylboronates are a privileged scaffold in materials 
science and drug discovery, they are also valuable and versatile 
precursors for the construction of structurally complex 
molecules.[1] Recently, there have been advances in 
stereospecific transformation of alkylboronates to forge C–C, C–
O, C–N, and C–X bonds.[2] Accordingly, efficient, selective and 
sustainable methods to introduce a boryl moiety have been 
developed to access these functionalized alkylboronates (Figure 
1a, left).[3] Introduction of a functional group into a boron-
containing substrate via catalytic functional group transformation 
offers a complementary route to these valuable and densely 
functionalized boronates (Figure 1a, right).[4] In contrast, the 
direct and selective sp3 C–H functionalization of easily 
accessible alkylboronates remains a significant unexplored 
challenge. 

The recently reported remote functionalization through the 
synergistic combination of chainwalking and cross-coupling 
chemistry provides a mild and efficient strategy for the rapid 
assembly of structurally complex molecules from easily prepared 
alkenes and a wide variety of commercially available cross-
coupling partners.[5-9] With the low cost, sustainability, and nickel 
cross-coupling chemistry[10], migratory cross-coupling catalyzed 
by nickel hydride[11] has led to the discovery and development of 
a variety of unique and valuable transformations.[9] In this type of 
reaction, nickel plays two roles, catalyzing the processes of 
chainwalking and of cross-coupling. We recently questioned 
whether this generic strategy could be used to gain rapid access 
to a valuable class of α-functionalized alkylboronates from easily 
accessible unsaturated alkylboronates and commercially 
available cross-coupling partners (Figure 1b). It was envisioned 
that the NiH species generated in situ would promote a rapid 
chainwalking process, accessing various alkylnickel species 
along the alkylchain prior to a selective cross-coupling with an 

aryl halide. Ideally, with a suitable ligand, such a migratory 
arylation process could take place at the adjacent α-carbon of 
the alkylboronate to deliver the corresponding α-aryl alkyl-
boronate in a chemo- and regioselective manner from an alkene 
whose double bond is in an arbitrary position. In this 
communication we describe the successful execution of this 
reaction under exceptionally mild conditions. 

 

Figure 1. Design plan: access to highly functionalized alkylboronates by 
functionalization of readily accessible precursors. 

While the above strategy can be viewed as an attractive 
approach to highly functionalized alkylboronates, there are many 
potential pitfalls (Figure 1c). First, a Ni-catalyzed Suzuki reaction 
is possible because both starting materials and products are 
organoboronates. Second, a chainwalking process could 
potentially lead to the formation of isomeric products due to the 
similar reactivities of the alkylmetal intermediates. Third, alkenes 
and aryl iodides could be reduced by nickel hydride. Achieving 
the requisite chemo- and regioselectivity is a major unexplored 
challenge. 

Aware of these possible pitfalls, our investigation began 
with examination of the remote hydroarylation[12] of homoallyl-
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boronic acid pinacol ester (1a) with iodobenzene (2a). After 
extensive examination of nickel sources, ligands, silanes, bases, 
solvents, and additives, the desired α-aryl alkylboronate (3a) 
was obtained at 30 °C in 70% isolated yield. The reaction 
manifested excellent regioselectivity [regioisomeric ratio, rr (α-
aryl product : all other isomers) = 97:3] (Table 1, entry 1). Use of 
other nickel sources such as NiI2 gave diminished yields (entry 
2). Evaluation of other ligands showed that use of a similar 
ligand, neocuproine (L2) led to a significantly lower yield (entry 
3) and replacement of L1 with the parent bipyridine (bpy) 
produced no desired arylation product (entry 4). Polymethyl-
hydrosiloxane (PMHS) was shown to be a less effective silane 
(entry 5) and replacement of KF by CsF led to diminished yield 
(entry 6). The reactivity could however be improved by the 
addition of KI as an additive (entry 1 vs entry 7) and acetonitrile 
as co-solvent (entry 1 vs entry 8). Finally, bromobenzene was 
found to be considerably less reactive than iodobenzene (entry 
9).  

 
Table 1: Variation of reaction parameters. 

 
Entry Variation from standard conditions Yield (%)[a] rr[b] 
1 none 87(70) 97:3 
2 NiI2, instead of NiBr2·diglyme 27 98:2 
3 L2, instead of L1 25 95:5 
4 bpy, instead of L1 trace – 
5 PMHS, instead of (EtO)3SiH 35 93:7 
6 CsF, instead of KF 47 95:5 
7 w/o KI 78 92:8 
8 w/o MeCN 36 95:5 
9 PhBr, instead of PhI 39 96:4 

 
[a] Yields determined by GC using n-dodecane as the internal standard, the 
yield in parentheses is the isolated yield and is an average of two runs (0.20 
mmol scale). [b] Ratio of the arylation at adjacent carbon of boronate to the 
sum of all other isomers as determined by GC analysis. PMHS, 
polymethylhydrosiloxane. 

 
Under the optimal conditions, a variety of unactivated 

terminal (1a, 1b, and 1k) and internal (1c–1f) alkenes, as well as 
activated alkenyl boronic esters (1g–1j, 1l, and 1m) successfully 
underwent the desired migratory arylation, delivering the α-aryl 
alkylboronates in good yields and with excellent regioselectivity 
(Table 2). As expected, both E (1d, 1g–1j, 1l, and 1m) and Z 
(1e) alkenes, as well as E/Z mixtures (1c) were accommodated 
well, and high selectivity for arylation at the adjacent carbon 
position of alkylboronate was observed, regardless of the 
position of the C=C bond in the starting material (compare 1c, 
1d, and 1g). The current reaction conditions could also be used 
with a more sterically hindered trisubstituted alkene (1f) to form 
the migratory product (3f), albeit in diminished yield. Notably, 
even with a heteroatomic substituent at the other terminus of the 

alkyl chain, including ethers (1e, 1h), a phthaloyl amide (1i), and 
an alkyl chloride (1j), arylation at the α-carbon of the 
alkylboronate was still observed. 

 
Table 2: Scope of the alkene component.[a] 

 
[a] Under each product is the percentage yield, crude 1H NMR yield, and the 
regioisomeric ratio (rr). Yield refers to isolated yield (0.20 mmol scale, average 
of two runs), yields in parentheses refer to the crude 1H NMR yield (1,1,2,2-
tetrachloroethane as internal standard). rr represents the ratio of the arylation 
at adjacent carbon of boronate to the sum of all other isomers as determined 
by GC analysis, ratios reported as >95:5 were determined by crude 1H NMR 
analysis. [b] 35 °C. Phth, phthaloyl. 

 
A subsequent survey of aryl iodides revealed that a range 

of aryl- and heteroaryl groups could be used. As depicted in 
Table 3, several electron-rich (2b–2e) and electron-poor (2f–2n) 
aryl iodides were shown to be acceptable substrates. A variety 
of functional groups were readily accommodated, including 
ethers (2b, 2f, 2p, 2q, 2s, and 2u), esters (2c, 2i, and 2u), an 
amide (2d), anilines (2e, 2q), a nitrile (2h), ketones (2j, 2t), and 
an acetal (2u). Of particular interest is that potential coupling 
motifs, including aryl fluorides (2e, 2k, 2r, and 2t), an aryl 
chloride (2k), an aryl tosylate (2l), an aryl triflate (2m), and a 
boronic ester (2n) remained intact and were available for 
subsequent chemical modification. A series of heterocycles 
frequently found in medicinally relevant targets including 
thiophenes (2o, 2t) and pyridines (2p, 2q, and 2r) were well 
tolerated. This valuable transformation could therefore be used 
for the late-stage functionalization of pharmaceutically relevant 
and structurally complex intermediates (2s-2u). Aryl iodides 
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derived from commercially available pharmaceuticals, such as 
empagliflozin (2s) and canagliflozin (2t) successfully underwent 
this migratory cross-coupling. Carbohydrate compounds such as 

the glucose derivative (2u) also readily underwent the targeted 
migratory arylation successfully. 

 
Table 3: Scope of aryl iodide coupling partner.[a] 

 
[a] Yield and rr are as defined in Table 2. [b] DMA/MeCN (0.13 M). 

The regioselectivity could also be switched to other 
positions. Competition experiments were carried out to compare 
the site-selectivity of the benzylic position and the adjacent α-
carbon of alkylboronate (Scheme 1a). In general, under the 
current conditions, arylation takes place at the benzylic position 
rather than the adjacent α-carbon of the boronate. In the case of 
the β-boronic ester substituted styrene (1k), arylation at the 
benzylic position to produce exclusively the β-aryl substituted 
boronate product (3k') was observed. In case of an alkenyl 
boronate with a remote aryl group in the alkyl chain (1l), 
products arylated at both α-carbon of the boronate (3l) and the 
benzylic position (3l') were obtained as a 1:1 mixture. In contrast 
to the highly regiospecific insertion of NiH into a styrenic 
intermediate, isotope labeling experiments indicate that the 
insertion of NiH into β-alkyl substituted alkenyl boronate is 
nonregiospecific and reversible.  

The robustness and synthetic utility of this catalytic system 
were further demonstrated by the gram-scale synthesis and 
subsequent derivatization of the products (Scheme 1b). With the 
reaction on a gram scale, 3a was obtained in 76% isolated yield. 
As noted at the outset, α-functionalized alkylboronates are 
versatile synthetic intermediates which can be converted into a 
wide range of other valuable compounds through facile 
transformations. As illustrated in Scheme 1b, a wide array of 
functional groups could, using known protocols be introduced 
smoothly into the benzylic position of 3a in good yields (5a–5e). 

The current transformation can be realized in an enantio-

selective fashion using a suitable chiral ligand. In a preliminary 
experiment (Scheme 1c), with a simple chiral (S,S)-Cy-Biox 
ligand L3, (R)-3g was obtained with moderate enantioselectivity 
(62% ee) and good isolated yield (76%).  
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Scheme 1. Competition experiments, synthetic utility, and preliminary result of 
enantioselective conversion. 

In summary, based on the NiH-catalyzed remote 
hydrofunctionalization platform, we have established a practical 
and efficient remote hydroarylation process forming α-
functionalized alkylboronates, from simple boron-containing 
olefins and commercially available cross-coupling partners. With 
the mild conditions used, excellent chemo- and regioselectivity 
was observed for a wide range of both alkene and aryl iodide 
partners. Further studies on the catalytic asymmetric version of 
the current transformation based on ligand design are in 
progress. 
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Highly functionalized alkylboronates are versatile synthetic intermediates which are 
widely used for further derivatization. Using a NiH-catalyzed remote 
hydrofunctionalization strategy, a migratory arylation process is reported and 
permits the facile conversion of easily accessible boron-containing olefins and aryl 
iodides to α-aryl alkylboronates. 
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