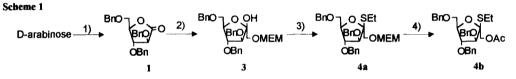


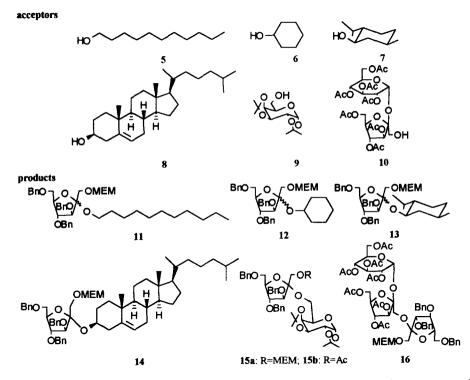
PII: S0040-4039(96)01614-0

Synthesis and Glycosylation of Thio-D-fructofuranoside Donors


Yun-Long Li and Yu-Lin Wu*

State Key Laboratory of Bio-organic and Natural Product Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, 200032, China

Abstract: Two ethyl thioglycosides of D-fructofuranose 4a and 4b, synthesized from D-arabinose and differentially protected at position 1 and 6, react with bulky acceptors in the presence of IDCP giving only α -frucofuranosides in essentially quantitative yields. Copyright © 1996 Elsevier Science Ltd


D-Fructofuranosides are widespread in sucrose, in bacterial polysaccharides and in plant polysaccharides.¹ Some fructans possess remarkable biofunctions.² However, there are only a few studies on the anomeric reactivity of this important ketose. Many standard methods of glycosidation were found ineffective in forming fructofuranosides.³ The stereospecific synthesis of fructofuranosides, especially oligosaccharides, is still regarded as a difficult task. For instances, using thioorthoester as glycosyl donors in combination with tritylated acceptors was not successful.⁴ Zinc chloride promoted coupling of *exo*-cyclic epoxides of D-fructose glycal led to anomeric mixtures of ketoglycosides in low yield.⁵ Recently, Schmidt *et al.*⁶ and Hui *et al.*⁷ have used anomeric phosphites and anomeric acetate, respectively, in the synthesis of fructofuranosides. When this manuscript was in preparation, Oscarson *et al.* reported that perbenzylated thiofructofuranoside in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) or N-iodosuccinimide (NIS) gave an α/β mixture of disaccharide coupling products.⁸ We found that, with iodonium di-*sym*-collidine perchlorate (IDCP) as promoter, glycosidation of thiofructofuranoside yielded α -linked fructofuranosides predominantly in nearly quantitative yields (except for simple acceptors).

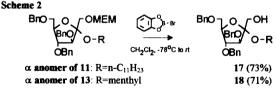
As D-fructofuranosyl residues are usually involved in $2\rightarrow 1$ ' linkages (inulin type) or $2\rightarrow 6$ ' linkages (levan type) in fructans, it is necessary to discriminate the 1- and 6- primary hydroxyl groups of D-fructose for the synthesis of fructans. Therefore, we selected compound **4a** as our D-fructofuranosyl donor to test its anomeric reactivity. Compound **3** was prepared (Scheme 1) by addition of [(methoxyethoxy)methyl]lithium, generated *in situ* from the corresponding stannic derivative **2** by tin/lithium exchange,⁹ to the known perbenzylated D-arabinono-1,4-lactone (1).¹⁰ Transformation of the anomeric hydroxyl group in **3** with ethanethiol in the presence of a catalytic amount of boron trifluoride etherate afforded the requisite β -D-fructofuranosyl donor **4a** (structure elucidation by 2D-NOESY).

Reagents and conditions: 1) (a) McOH, H_2SO_4 ; (b) BnCl, KOH, reflux; (c) HOAc-6 N HCl, $65^{\circ}C$, 60% overall; (d) DMSO, Ac₂O, 95%. 2) Bu₃SnCH₂OMEM (2), BuLi, THF, -78°C, 92%. 3) EtSH, BF₃OEt₂ (0.3 *equiv.*), CH₂Cl₂, 93%. (4) catechol boron bromide, CH₂Cl₂, -78°C to rt, 78%; then Ac₂O, Pyr., 98%.

Compound 5, 6, 7, 8, 9 and 10 were chosen as acceptors. Compound 10^{11} is of interest for the synthesis of an inulin type fructan, the Achyranthes bidentata B1 polysaccharides (Abs) which was isolated from a traditional Chinese herbal medicine *Achyranthes bidentata* Blume and which possesses pronounced activity in stimulating the immunity system.^{2c}

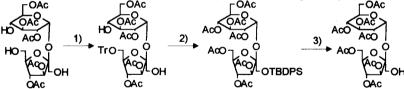
The results of the glycosylations with the D-fructofuranosyl donors **3**, **4a** and **4b** are summarized in Table 1. It can be seen that coupling of donor **4a** with acceptors **5**, **6**, **7**, **8**, **9**, **10** in the presence of the promoter IDCP in Cl(CH₂)₂Cl-Et₂O (4:1) or CH₂Cl₂-Et₂O (4:1) led to almost quantitative yields of corresponding fructofuranosides **11**, **12**, **13**, **14**, **15a**, **16** (entries 1, 7, 9, 10, 11, 12). Apparently, the α/β ratio of the products depends on steric effects in the acceptors. With bulky acceptor alcohols the α -linked products were obtained exclusively (entries 10, 11, 12). It is noteworthy that 0.3 *equiv*. of a simple Lewis acid such as BF₃·OEt₂ or TiCl₄-AsPh₃¹² favoured almost exclusive formation (entries 4, 5, 6, 8) of α anomers of **11** and **12** in acceptable yields when compound **3** was the glycoyl donor. The anomeric

configurations of the coupling products were deduced from the ¹³C NMR resonances of the anomeric carbons.^{5,13} It should be mentioned that in contrast to the earlier report,⁸ we found the α/β anomers could be separated by flash column chromatography.


Since most naturally occurring fructofuranosides are β -linked, the synthesis of β -anomers is perhaps more interesting and is even more difficult. When the glycosylation reaction was carried out in CH₃CN (entry 2), which is often used as a β -directing factor in D-hexopyranosyl glycosylation without a participating group at O-2,¹⁴ the β -anomer is formed in slight excess. The reaction was also carried out using a combination of N-bromesuccinimide (NBS) with lithium perchlorate as promoter,¹⁵ in which the perchlorate is often regarded as a source of the counter ion. Once again, a slight excess of the β -anomer was observed (entry 3). However, when reaction conditions in entry 2, 3 were applied to the coupling reaction between 4a and disaccharide acceptor 10, no β -anomer was detected in the reaction mixture (entry 13, 14). In addition, with NBS-LiClO₄ combination as promoter, the trisaccharide 16 was formed but only in very low yield

Further, it is well known that, in the case of 2-neighboring group participation, a C_1 , C_2 -trans configuration is generally obtained for hexopyranosides. With the ketonse sugar, the situation is more complicated: the participation of C_3 -acyloxy group is likely to facilitate the C_2 , C_3 -trans configuration (*i. e.* α - for fructofuranose); but the participation of C_1 -acyloxy group could give either α or β -ortho ester intermediates with respect to C_2 . Among them, the α -ortho ester intermediate would be expected to yield the β -fructofuranosides.¹⁶ To probe the possibility of β -fructofuranoside synthesis via a 1-acyloxy donor, donor 4a was converted to donor 4b as shown in Scheme 1. However, the condensation reaction of 4b with acceptor 9 promoted by IDCP also afforded only α -disaccharide in a quantitative yield (entry 15), perhaps via an β -ortho ester intermediate.

entry	donor	acceptor	promoter	solvent	temperature	product	yield (%)	α:β
1	4a	5	IDCP	Cl(CH ₂) ₂ Cl-Et ₂ O	-20°C to rt		96	1:1
2	4a	5	IDCP	CH₃CN	-20°C to rt	11	95	1:2.2
3	4a	5	NBS-LiClO₄	Et ₂ O	-20°C	11	68	1:3.5
4	3	5	BF ₃ OEt ₂	CH ₂ Cl ₂	rt	11	92	1:0
5	3	5	BF ₃ OEt ₂	CH₃CN	rt	11	93	1:0
6	3	5	TiCl₄-AsPh ₃	CH ₂ Cl ₂	-78°C	11	95	1:0
7	4a	6	IDCP	CH ₂ Cl ₂ -Et ₂ O	-20°C to rt	12	96	1.7:1
8	3	6	BF ₃ OEt ₂	CH ₂ Cl ₂	rt	12	76	1:0
9	4a	7	IDCP	CH ₂ Cl ₂ -Et ₂ O	-20°C to rt	13	95	3.4:1
10	4a	8	IDCP	CH ₂ Cl ₂ -Et ₂ O	-20°C to rt	14	90	1:0
11	4a	9	IDCP	CH ₂ Cl ₂ -Et ₂ O	-20°C to rt	15a	93	1:0
12	4a	10	IDCP	Cl(CH ₂) ₂ Cl-Et ₂ O	-20°C to rt	16	94	1:0
13	4a	10	IDCP	CH ₃ CN	-20°C to rt	16	90	1:0
14	4a	10	NBS-LiClO ₄	Et ₂ O	-20°C to rt	16	<6	1:0
15	4b	9	IDCP	Cl(CH ₂) ₂ Cl-Et ₂ O	-20° to rt	15b	92	1:0


^aGeneral glycosylation procedure: The donor (0.5 mmol) and the acceptor (0.5 mmol) were dissolved in 1,2dichloroethane/diethyl ether (1/4, v/v, 20 mL) and stirred for 30 min with crushed molecular sieves (4Å, 400 mg) under a nitrogen atmosphere. IDCP (1.2 mmol) was added at -20°C and the stirring was continued at -20°C to rt for 1 h. The reaction mixture was filtered, diluted with diethyl ether and washed with 10% *aq*. Na₂S₂O₃, dried over MgSO₄ and concentrated *in vacuo*. Purification of the residue by flash column chromatography yielded corresponding α - and β -fructofuranoside.

In conclusion, two fructofuranosyl donors differentially protected at O-1 and O-6, 4a and 4b were synthesized for the first time, and their glycosylation reaction promoted by IDCP gave frucofuranosides in near-quantitative yields. Only a slight excess of bulky acceptors (10 mol % in excess) was needed to achieve quantitative yields of the α -fructofuranosides. To demonstrate the significance of this fructofuranosyl donor, α -anomers of 11, 13 were deprotected using catechol boron bromide¹⁷ to give corresponding 1-hydroxyl products 17 and 18, which are suitable for further applications (Scheme 2).

References and Notes:

- 1. Lindberg, B. Adv. Carbohydr. Chem. Biochem. 1990, 48, 279.
- a) Franz, G. Farm. Tijdschr. Belg. 1987, 64, 301. b) Rumessen, J. J.; Bode, S.; Hamberg, O.; Guamand, H. E. Am. J. Clin. Nutr. 1990, 52, 675. c) Yu, B.; Tian, G.-Y.; Hui, Y.-Z. Chinese J. Chem. 1995, 13, 539.
- Bouali, A.; Descotes, G.; Ewing, D. F.; Grouiller, A.; Lefkidou, J.; Lespinasse, A.-D.; Mackenzie, G. J. Carbohydr. Chem. 1992, 11, 159.
- 4. Backinowsky, L. V.; Balan, N. F.; Betaneli, V. L.; Kotchetkov, N. K. Carbohyd. Res. 1982, 99, 189.
- 5. Nicotra, F.; Panza, L.; Russo, G. Tetrahedron Lett. 1991, 32, 4035.
- 6. Muller, T.; Schneider, R.; Schmidt, R. R. Tetrahedron Lett. 1994, 27, 4763.
- 7. Yu, B.; Hui, Y.-Z. Chinese Chem. Lett. 1993, 4, 391.
- 8. Krog-Jensen, C.; Oscarson, S. J. Org. Chem. 1996, 61, 1234.
- a) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481. b) Heskamp, B. M.; Veeneman, G. H.; van der Marel, G. A.; van Boechel, C. A. A. van Boom, J. H. Tetrahedron 1995, 51, 5657.
- 10. Rabinsohn, Y.; Fletcher, Jr. H. G. J. Org. Chem. 1967, 32, 3452.
- 11. Compound 10 was prepared by proper protection of known¹⁸ compound 2, 3, 6, 3', 4'-pentaacetyl-O-sucrose:

Reagents and conditions: 1) TrCl, Pyr., 50°C, 73%. 2) (a) TBDPSCl, Pyr., DMAP, 80°C, 5 d; (b) 65% HOAc, 50°C; (c) Ac₂O, pyr., rt, 76%. 3) 40% HF, pyr., THF, rt, 4 d, 71%.

- 12. Peng, Z.-H.; Li, Y. L.; Wu. W.-L.; Liu, C.-X.; Wu, Y.-L. J. Chem. Soc. Perkin 1, 1996, 1057.
- 13. All new compound gave satisfactory analytical data. Chemical shifts of C-2 for the α-anomers of compound 11, 12, 13, 14, 15a, 15b, 16 were δ 107.8, 108.3, 107.8, 108.3, 108.1~109.0, 108.3~109.0 and 108.2 ppm, respectively. Chemical shift of C-2 for β-anomer of compound 11, 12, 13 were δ 104.0, 104.8, and 103.9 ppm, respectively. Physical and spectroscopic data of compound 16: $[\alpha]_{D^{\circ}}$ +54.2 (c 0.39, CHCl₃); IR (film): 1750, 1600, 1500, 1450, 1370, 1230, 1040, 900, 740, 700, 600 cm⁻¹; ¹H NMR (CDCl₃ 600 MHz): 7.30~7.26 (15H, m). 5.76 (1H, d, J=3.8 Hz, 1-H), 5.73 (1H, d, J=7.0 Hz, 3'-H), 5.44 (1H, dd, J=9.8 and 10.0 Hz, 3-H), 5.39 (1H, dd, J=7.2 and 7.2 Hz, 4'-H), 5.07 (1H, dd, J=9.7 and 10.0 Hz, 4-H), 4.87 (1H, dd, J=3.8 and 10.0 Hz, 2-H), 4.68 (2H, br s, OCH_OCH₂CH₂OMe), 4.57~4.48 (6H, m, Bn), 4.39 (1H, m, 5"-H), 4.34 (1H, m, 5-H), 4.30 (2H, m, 6-H), 4.25 (2H, m, 6'-H), 4.17 (1H, m, 5'-H), 4.06 (1H, d, J=2.8 Hz, 3"-H), 3.38 (1H, dJ, J=2.8 and 4.7 Hz, 4"-H), 3.86 (1H, d, J=10.2 Hz, 1'-H), 3.72 (2H, m, 1"-H), 3.61~3.56 (3H, m, part of 6"-H and OCH₂CH₂O), 3.55 (1H, d, J=10.2 Hz, 1'-H), 3.50 (1H, dd, J=5.0 and 10.5 Hz, part of 6"-H), 3.41 (2H, m, part of OCH₂CH₂O), 3.33 (3H, s, OMe), 2.10 (3H, s), 2.09 (3H, s), 2.08 (3H, s), 2.04 (6H, s), 2.02 (3H, s), 2.00 (3H, s) ppm; ¹³C NMR (CDCl₃, 150 MHz): 171.06~169.59, 138.24, 128.35, 127.68, 108.20, 104.39, 96.01, 89.64, 87.39, 83.07, 81.73, 77.97, 75.96, 74.75, 73.29, 72.31, 71.74, 70.20, 70.27, 70.13, 68.48, 68.23, 67.02, 65.44, 63.33, 62.46, 61.85, 60.36, 58.93 ppm; FAB MS (m/z): 1180 (M'+Na+1), 1120 (M'-ACOH+Na+1); Analysis Cald for C₃H₇₂O₂₅: C, 59.16; H, 6.27. Found: C, 59.22; H, 6.47.
- 14. Braccini, I.; Derouet, C.; Esnault, J.; du Penhoat, C. H.; Mallet, J.; Michon, V.; Sinay, P.; Carbohydr. Res. 1993, 246, 23.
- 15. Fukase, K.; Hasuoka, A.; Kinoshita, I.; Aoki, Y.; Kusumoto, S. Tetrahedron, 1995, 51, 4923.
- 16. Reist, E. J., Hart, P. A.; Baker, B. R. J. Org. Chem. 1959, 24, 1640.
- 17. Boeckman, R. K.; Potenza, J. C.; Tetrahedron Lett. 1985, 26, 1411.
- 18. Buchanan, J. G.; Cummerson, D. A.; Turner, D. M. Carbohydr. Res. 1972, 21, 283.

(Received in China 19 April 1996; revised 17 May 1996; accepted 10 July 1996)