TITLE PAGE

Influence of Stereochemistry on the Bioactivation and Glucuronidation of 4-Ipomeanol

Aaron M. Teitelbaum, Matthew G. McDonald, John P. Kowalski, Oliver T. Parkinson, Michele Scian, Dale Whittington, Katharina Roellecke, Helmut Hanenberg, Constanze Wiek, and Allan E. Rettie

Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98105, USA (A.M.T., M.G.M., J.P.K., O.T.P., M.S., D.W., A.E.R.);

Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, 40225 Düsseldorf, Germany (K.R., H.H., C.W.); Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany (H.H.)

RUNNING TITLE PAGE

Running title: 4-Ipomeanol enantiomer metabolism

Corresponding author: Aaron M. Teitelbaum

Address: Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim

Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA

Tel: 203-791-6723

Fax: 203-791-6003

Email: aaron.teitelbaum@boehringer-ingelheim.com

Number of text pages: 29

Number of tables: 2

Number of figures: 6

Number of references: 35

Number of words in the abstract: 250

Number of words in the introduction: 611

Number of words in the discussion: 788

Nonstandard abbreviations:

CYP4B1, cytochrome P450 4B1; DLPC,1,2-Didodecanoyl-sn-glycero-3-phosphocholine; DMEM, dulbecco's modified eagle medium; ESI, electrospray ionization; EtOH, ethanol; FBS, fetal bovine serum; GDEPT, gene-directed enzyme prodrug therapy; HKM, human kidney microsomes; HLM, human liver microsomes; HPLC, high-performance liquid chromatography, HRMS, high-resolution mass spectrometry; HSQC, heteronuclear single quantum coherence; IPO, 4-Ipomeanol; KPi, potassium phosphate buffer; 4-MUG, 4-methylumbelliferone glucuronide; MgCl₂, magnesium chloride; NAC, *N*-Acetyl-L-cysteine; NAL, N_{α} -Acetyl-L-lysine; Pen\Strep, Penicillin-Streptomycin; UDPGA, Uridine 5'-diphosphoglucuronic acid; UGT, Uridine 5'-diphosphoglucuronosyl transferase; UPLC-MS/MS, ultra-performance liquid chromatography tandem-mass spectrometry; ZnSO₄, zinc sulfate

Abstract: A potential CYP4B1 suicide gene application in engineered T-cell treatment of blood cancers has revived interest in the use of 4-Ipomeanol (IPO) in gene-directed enzyme prodrug therapy, where disposition of the administered compound may be critical. IPO contains one chiral center at the carbon bearing a secondary alcohol group; it was of interest to determine the effect of stereochemistry on (i) CYP4B1mediated bioactivation and (ii) UGT-mediated glucuronidation. (R)-IPO and (S)-IPO were synthesized and utilized, firstly, to assess cytotoxicity in HepG2 cells expressing rabbit CYP4B1 and re-engineered human CYP4B1, where the enantiomers were found to be equipotent. Next, a sensitive UPLC-MS/MS assay was developed to measure the IPO glucuronide diastereomers and product stereoselectivity in human tissue Human liver and kidney microsomes generated (R)- and (S)-IPOmicrosomes. glucuronide diastereomers in ratios of 57:43 and 79:21, respectively. In a panel of thirteen recombinantly expressed UGTs, UGT1A9 and UGT2B7 were the major isoforms responsible for IPO glucuronidation. (R)-IPO-glucuronide diastereoselectivity was apparent with each rUGT, except UGT2B15 and UGT2B17, which favored the formation of (S)-IPO-glucuronide. Incubations with IPO and the UGT1A9 specific chemical inhibitor niflumic acid significantly decreased glucuronidation in human kidney. but only marginally in human liver microsomes, consistent with known tissue expression patterns of UGTs. We conclude that IPO glucuronidation in human kidney is mediated by UGT1A9 and UGT2B7, and in human liver, primarily by UGT2B7 and to a lesser extent UGT1A9 and UGT2B15. Overall, the lack of pronounced stereoselectivity for IPO's bioactivation in CYP4B1-transfected HepG2 cells, or for hepatic glucuronidation, suggests the racemate is an appropriate choice for use in suicide gene therapies.

Introduction

4-Ipomeanol (IPO) is a pulmonary pro-toxin that is produced biogenically in sweet potatoes infected with the common mold *Fusarium solani*. Consumption of moldy sweet potatoes by livestock results in selective pulmonary toxicity (mainly interstitial pneumonia and edema), which is attributed to IPO metabolic bioactivation by extrahepatic cytochrome P450 (Wilson and Burka, 1979; Devereux et al., 1982; Verschoyle et al., 1993). IPO is initially oxidized on the furan ring and subsequently undergoes a sigmatropic ring rearrangement to form an electrophilic enedial that covalently binds to nucleophilic macromolecules in the lung (Baer et al., 2005). Other species including rabbits, rats, guinea pigs, hamsters, and dogs also exhibit pulmonary toxicity after IPO administration (Dutcher and Boyd, 1979; Smith et al., 1987; Gram, 1997).

Due to the selective lung toxicity observed in animal species, metabolic activation of IPO was investigated over 30 years ago in both human non-small cell carcinoma (NCI-H322 and NCI-H358) and small cell carcinoma cell lines (NCI-H128 and NCI-H69) (Falzon et al., 1986). Bioactivation only occurred in the non-small cell carcinoma cultures, which prompted studies in an orthotopic xenograft mouse model of non-small cell lung cancer (McLemore et al., 1988). In addition to providing evidence that IPO was able to inhibit the growth of tumors in the xenograft model, biopsied primary human lung carcinomas were shown to bioactivate IPO. However, during phase 1 clinical trials involving patients with non-small cell lung cancer, (Rowinsky et al., 1993; Kasturi et al.,

1998) no significant reduction in pulmonary tumors was observed and reversible hepatotoxicity was dose limiting. In retrospect, it seems likely that IPO was ineffective in this clinical situation because humans express an unstable pulmonary cytochrome P450 4B1 enzyme (CYP4B1), which is responsible for the initial oxidation of IPO on its furan ring (Wiek et al., 2015).

In the late 1990's, interest in IPO as a potential anticancer therapeutic resurfaced because of developments in pharmacological gene therapy. This approach to cancer treatment is based on the transfection of genes for bioactivating enzymes into tumor cells, rendering them selectively susceptible to prodrugs that would otherwise be ineffective. Studies performed by Rainov and co-workers, (Rainov et al., 1998b) provided the first evidence that transfection of rabbit CYP4B1 into human and rat glioma cells caused them to be highly sensitive to IPO treatment. Several other groups have also shown IPO effectiveness following rabbit CYP4B1 transfection in vitro (Smith et al., 1995; Mohr et al., 2000; Steffens et al., 2000; Frank et al., 2002; Hsu et al., 2003; Jang et al., 2010; Moon et al., 2013). Additionally, tumors from CYP4B1-expressing glioma cells implanted into nude mice exhibited abrogated growth following intraperitoneal injection of IPO (200 µg/day for 7 days) (Rainov et al., 1998a). The most recent work on IPO in gene-directed enzyme prodrug therapy (GDEPT) concerns re-engineering of the 'native' human CYP4B1 protein for maximal IPO bioactivation activity (Wiek et al., 2015; Roellecke et al., 2016). Briefly, the catalytically optimized human CYP4B1 enzyme was engineered by substituting a proline residue for the native serine residue in the meandering region at position 427. Additionally, the engineered human CYP4B1 has 12 single amino acid substitutions which are coincident with human CYP4 enzymes

and ultimately aid in protein stability. When introduced into human liver cells and primary T-cells, the catalytically optimized human CYP4B1 was as active as the native rabbit CYP4B1 enzyme for inducing IPO-dependent cell death.

IPO is a chiral molecule and with the aforementioned new developments in GDEPT, it is important to understand how stereochemistry impacts IPO bioactivation and metabolism. IPO has been shown to undergo extensive glucuronidation in the rat (Statham et al., 1982) and previous work from our laboratory describes IPO glucuronidation in human liver as a potential mechanism of clearance, albeit to much lesser extent than in a variety of other animal species (Parkinson et al., 2016). Therefore, here we report on the influence of stereochemistry on IPO-dependent cytotoxicity in *CYP4B1*-transduced HepG2 cells, and on glucuronidation by recombinant UGT enzymes and human tissue microsomes.

Materials and Methods

Chemicals

IPO (97% purity by ¹H NMR and HPLC-UV analysis) was a gift from the National Cancer Institute (Bethesda, MD). β-glucuronidase from *Helix pomatia*, methylumbelliferone-β-D-glucuronide hydrate (4-MUG), alamethicin, ethyl-β-oxo-3furan-propionate, (R)-(+)-propylene oxide, (S)-(+)-propylene oxide, uridine 5'diphosphoglucuronic acid trisodium salt (UDPGA), 21 wt% sodium ethoxide in EtOH, N_{α} -Acetyl-L-lysine (NAL), N-Acetyl-L-cysteine (NAC), catalase, superoxide dismutase, atazanavir and niflumic acid were purchased from Sigma Aldrich (St. Louis, MO). Hecogenin and fluconazole were purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX). 1,2-Didodecanoyl-sn-glycero-3-phosphocholine (DLPC) was purchased from Avanti Polar Lipids Inc. (Alabaster, Alabama). Furafylline was a gift from Dr. Kent Kunze (University of Washington, Seattle). Dulbecco's Modified Eagle Medium (DMEM), Fetal Bovine Serum (FBS), Penicillin-Streptomycin (Pen/Strep), and HEPES were purchased from Thermo Fisher Scientific (Waltham, MA). All solvents utilized for chemical reactions were reagent-grade and liquid chromatography solvents were HPLC-grade.

NMR Spectroscopy and High Resolution Mass Spectrometry

 1 H and 13 C NMR spectra were obtained on an Agilent DD2 500 MHz NMR spectrometer (Agilent Technologies, Santa Clara, CA) at 25°C. Proton chemical shifts (δ) are reported in ppm and referenced to the residual proton signals of acetonitrile-d₃ (δ_H = 1.94 ppm) or chloroform-d₃ (δ_H = 7.27 ppm). Carbon chemical shifts are referenced to the acetonitrile-d₃ methyl carbon signal (δ_C = 1.32 ppm) or the chloroform-

 d_3 signal (δ_C = 77.16 ppm). Coupling constants (J) are reported in Hz and proton chemical data and multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High resolution mass spectrometry (HRMS) was acquired on a Thermo Fisher LTQ Orbitrap equipped with an ESI probe (Thermo Scientific, Waltham, MA).

Chemical Synthesis of (R)- and (S)-4-Ipomeanol

The synthetic procedure for the preparation of individual IPO enantiomers was based on the previous work described for the synthesis of racemic IPO (Alvarez-Diez and Zheng, 2004) (Supplemental Figure 1). Briefly, ethyl-β-oxo-3-furan-propionate (100 mg, 0.55 mmol) was dissolved in anhydrous EtOH (5 mL), followed by the addition of sodium ethoxide (41 mg, 0.6 mmol) and either (R)-(+)-propylene oxide or (S)-(+)propylene oxide (670 mg, 11.5 mmol). The mixtures were stirred for 24 hours and subsequently quenched by adjusting the pH to 7 with dilute HCl. Extraction with diethylether followed by flash chromatography yielded (R) and (S)- furyl- γ -lactone in 67% and 71% yields, respectively. In the second step, each respective lactone was hydrolyzed in the presence of 20M sulfuric acid at 65°C for 24 hours to yield (R)- and (S)-IPO in 43% and 33% yield, respectively. Separate fractions of the (R) and (S)-IPO were further purified by HPLC, utilizing Shimadzu LC-10ADVP pumps coupled to a Shimadzu SPD-M10AVP photodiode array detector set to 254 nm (Shimadzu, Columbia, MD). Chromatographic separation was performed with a Keystone chiral β-OH column (150 x 2.0 mm, 5 µm) and a 1.5 mL/min isocratic elution composed of 15% acetonitrile/85% water for a total run time of 15 minutes. (S)- and (R)-IPO eluted at 8.0

and 7.4 minutes, respectively, under these conditions. Collected fractions were extracted with chloroform and the structures of the recovered enantiomers were confirmed by ¹H NMR, ¹³C NMR, and high resolution mass spectrometry, all of which matched previously reported spectra (Boyd et al., 1972).

Effects of IPO Stereochemistry on Cytotoxicity

The cytotoxicity of (*S*)-, (*R*)-, and racemic IPO was assessed using a cell proliferation assay. HepG2 cells were modified by lentiviral transduction to express rabbit CYP4B1, re-engineered human CYP4B1 ('P+12'), or a control vector as previously described (Schmidt et al., 2015; Wiek et al., 2015; Roellecke et al., 2016). Stably transduced cells were grown in tissue culture media (DMEM, 10% FBS, 1% Pen/Strep, and 10 mM HEPES) and selected with puromycin treatment (2 µg/mL) over a 7 day period. Cells were then plated into 96 wells at 10,000 cells/well, grown for 24 hours, and the CYP4B1 line dosed with (*S*)-, (*R*)-, and racemic- IPO at final concentrations of 100, 50, 10, 5, 1, 0.5, 0.1, 0.05, and 0.01 µM (DMSO did not exceed 0.1%). The control line was dosed with racemic IPO at the same concentrations. Cells were incubated for 48 hours and the viability was determined with the CellTiter-Glo Luminescent Assay (Promega, Madison, WI). Vehicle-treated wells were set to 100% viability and Lethal Dose 50% (LD₅₀) values were calculated from dose-response curves using nonlinear regression curve fitting with GraphPad Prism 7.00.

Effects of IPO Stereochemistry on CYP4B1 Bioactivation

Metabolic incubations contained 25 pmol purified rabbit CYP4B1, (Roellecke et al., 2016) 50 pmol cytochrome P450 Reductase, 25 pmol cytochrome b5, 2.5 µg DLPC, 100 U catalase, 50 µg superoxide dismutase, 10 mM NAL, and 10 mM NAC in 50 mM KPi (potassium phosphate buffer), pH 7.4, in a final volume of 100 μL. (S)-, (R)-, and racemic IPO were added to achieve a final concentration of 100 µM. The reaction was initiated by the addition of NADPH (1 mM final concentration) and allowed to progress for 30 minutes at 37°C. The reaction was guenched with an equal volume of acetonitrile containing 2 µM furafylline as the internal standard and centrifuged at 16,000 x g for 5 minutes. A supernatant aliquot (5 µL) was analyzed by UPLC-MS/MS on a Waters Acquity UPLC connected to a Xevo TQ-S instrument (Milford, MA) in ESI+ mode, with the following settings: capillary 3.50 kV, cone 40.0 V, source offset 60.0 V, source temperature 150°C, desolvation temperature 350°C, cone gas flow 150 L/hr, desolvation gas flow 800 L/hr, and collision gas flow 0.15 mL/min. Analytes were chromatographically separated using a Waters HSS T3 column (2.1 × 100 mm, 1.8 µm), starting with 95% mobile phase A (0.1% formic acid in H₂O) and 5% mobile phase B (0.1% formic acid in acetonitrile) at a flow rate of 0.3 ml/min. After holding for one minute, B was increased linearly from 5 to 50% between 1 and 7 minutes, then from 50 to 100% between 7 and 7.5 minutes, and held finally at 100% between 7.5 and 9 minutes; total run time was 11 minutes following a two minute equilibration period. Under these conditions, IPO (all species), NAC/NAL adducts (all species), and furafylline eluted at 5.32, 4.96, 5.46 minutes, respectively, and were detected by multiple reaction monitoring (MRM) at m/z 151.07/95.04, 482.19/353.18, and

261.30/81.00, respectively. For IPO-NAC/NAL adduct quantification, an IPO-NAC/NAL adduct standard that we previously generated and characterized (Parkinson et al., 2016) was utilized. A 200 μM stock solution of this standard was prepared in 50 mM KPi, pH 7.4, and stored at -20°C. In duplicate, calibration standards were prepared using the stock solution diluted into blank incubation matrix to obtain ten concentrations spanning 0.024 to 12.5 μM. Metabolite analysis was performed with MassLynx V4.1 and quantitation achieved by comparison of peak heights for the NAC/NAL adducts formed from the IPO enantiomers to the standard curve.

Purification and Characterization of 4-Ipomeanol Glucuronide Diastereomers

A racemic mixture of (R,S)-IPO glucuronide diastereomers was synthesized as previously described (Parkinson et al., 2016). Semi-preparative purification of (R)- and (S)-IPO-glucuronides was accomplished utilizing a Shimadzu HPLC system equipped with a Beckman Coulter Ultrasphere ODS column (250 x 10mm, 5 μ m) and UV/Vis detector. Baseline separation of the diastereomers was achieved by an isocratic elution (2.5 mL/min) with mobile phase consisting of 82% 10 mM aqueous formic acid and 18% acetonitrile. Under these conditions, (R)-IPO-glucuronide and (S)-IPO-glucuronide eluted at 7.9 and 8.7 min, respectively, and were detected at 254 nm. Each diastereomeric peak was collected in a round bottom flask and the organic solvent was evaporated. The aqueous components were frozen, lyophilized, and the respective white powders characterized by NMR analysis (1 H, 13 C, and HSQC) in acetonitrile-d₃ and by HRMS (**Supplemental Figures 2 – 9**).

(*R*)-IPO-glucuronide: ¹H NMR (500 MHz, CD₃CN): δ (ppm) 1.17 (d, J = 6.4 Hz, 3H), 1.73 – 1.90 (m, 2H), 2.82 – 2.98 (m, 2H), 3.08 (t, J = 8.5 Hz, 1H), 3.33 (t, J = 9.0 Hz, 1H), 3.45 (t, J = 9.3 Hz, 1H) 3.78 (d, J = 9.6 Hz, 1H), 3.81 – 3.87 (m, 1H), 4.36 (d, J = 7.7 Hz, 1H), 6.74 (s, 1H), 7.54 (s, 1H), 8.22 (s, 1H); ¹³C NMR (125 MHz, CD₃CN): δ (ppm) 20.32, 32.04, 37.11, 72.62, 74.18 (2), 75.38, 76.91, 102.01, 109.21, 128.52, 145.52, 149.22, 170.72, 196.30; HRMS (ESI-) calcd for C₁₅H₁₉O₉ [M-H]⁻ 343.1024, found: 343.1025 (error 0.44 ppm). HSQC

(S)-IPO-glucuronide: ¹H NMR (500 MHz, CD₃CN): δ (ppm) 1.22 (d, J = 6.2 Hz, 3H), 1.74 – 1.90 (m, 2H), 2.92 (td, J = 7.4, 6.9, 2.7 Hz, 2H), 3.13 (t, J = 8.5 Hz, 1H), 3.32 (t, J = 9.1 Hz, 1H), 3.45 (t, J = 9.4 Hz, 1H) 3.77 (d, J = 9.8 Hz, 1H), 3.78 – 3.85 (m, 1H), 4.38 (d, J = 7.8 Hz, 1H), 6.75 (s, 1H), 7.55 (s, 1H), 8.23 (s, 1H); ¹³C NMR (125 MHz, CD₃CN): δ (ppm) 22.02, 31.68, 36.68, 72.51, 74.48, 75.18, 76.91, 77.06, 103.86, 109.24, 128.52, 145.64, 149.23, 170.72, 196.30; HRMS (ESI-) calcd for C₁₅H₁₉O₉ [M-H]⁻ 343.1023, found: 343.1024 (error 0.17ppm).

UPLC-MS/MS Analysis

The chromatographic separation and quantification of IPO glucuronide diastereomers was achieved using an Agilent 1290 Infinity liquid chromatograph (Agilent Technologies, Santa Clara, CA) coupled to an AB Sciex ABI 4000 triple quadrupole mass spectrometer (AB Sciex, Framingham, MA) equipped with an ESI probe or with the aforementioned Waters Acquity UPLC and Xevo TQ-S mass spectrometer An Acquity UPLC HSS T3 column (100 x 2.1 mm, 1.8 μm) (Waters, Milford, MA) equipped with a pre-column C18 guard cartridge (Phenomenex, Torrence, CA) was employed for

the separation. The mobile phase consisted of (A) aqueous 10 mM formic acid and (B) 10 mM formic acid in acetonitrile at a flow rate of 0.350 mL/min. The total run time was 8.6 minutes with the following gradient elution: 5% B for 1 minute, linear gradient to 15% B between 1.0 and 1.5 minutes, held at 15% B until 3.0 minutes, linear increase to 40% B between 3.0 and 6.5 minutes, then re-equilibrated to initial conditions from 6.6-8.6 minutes. Under these conditions, (*R*)- and (*S*)-IPO-glucuronides eluted at 4.9 and 5.1 minutes, respectively, and were detected by multiple reaction monitoring (MRM) at m/z 345/151. 4-Methylumbelliferone glucuronide (4-MUG), which was used as the internal standard, was detected by MRM at m/z 353/177, and eluted at 4.8 minutes. The AB Sciex 4000 mass spectrometer was operated in positive-ion mode at 450°C with an ion spray voltage set at 4200 V, entrance potential of 10V, and exit potential of 12 V. The curtain gas was set at 25, ion source gas 1 and 2 at 35.

Stock solutions of each synthesized diastereomer were prepared in methanol at a 5 mM concentration and stored at -20°C. Standard calibration stock solutions containing each diastereomer were prepared in 100 mM Tris, pH 7.5 to achieve a concentration range from 0.003 to 3.4 µM of (*R*)- and (*S*)-IPO-glucuronide. In duplicate, calibration standards were prepared by spiking 30 µL of the calibration stock solutions into 170 µL of a blank incubation matrix to achieve standard concentrations of 0.51 – 510 nM. Additionally, low (4.5 nM), medium (75 nM), and high (450 nM) quality control samples were prepared and run with each standard curve. The limit of quantitation was 0.51 nM, the lowest point on the standard curve.

Hydrolysis of Conjugates with β-glucuronidase

A 1 μ M solution containing both (R)- and (S)-IPO-glucuronide and a 1 μ M solution of 4-MUG in sodium acetate, pH 5.0 (100 μ L) were each incubated in the presence of 1000 units/mL of β -glucuronidase from *Helix pomatia* at 37°C for 24 hr. The reactions were quenched by the addition of 10 μ L 15% ZnSO₄ (aq) and the sample was centrifuged at 15,000 x g for 5 minutes. The supernatant was subsequently analyzed by the UPLC-MS/MS methods described above.

Recombinant UGT Screen

Thirteen recombinantly expressed UGT isoforms in baculovirus infected insect cells (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B15, and 2B17) were purchased from Corning Life Sciences (Tewksbury, MA). Incubations consisted of recombinant UGT enzyme (0.25 mg total protein/mL), 100 mM Tris, pH 7.5, IPO (100 μ M), MgCl₂ (5 mM), alamethicin (10 μ g/mL), and UDPGA (5 mM) in a 200 μ L volume. Incubations were performed at 37°C for 60 min and the reactions were quenched by the addition of 20 μ L 15% ZnSO₄ (aq.), centrifuged at 15,000 x *g*, and injected onto the UPLC-MS/MS for analysis.

Microsomal UGT Activity

Human liver microsomes were prepared from 8 adult donors of mixed gender by differential centrifugation according to previously published protocols (Lin et al., 2002). Human kidney microsomes (Lot: 1310175, pool of 12, mixed gender) were purchased from Xenotech (Kansas City, MO). Microsomal incubations contained human liver or

kidney microsomal protein (0.25 mg total protein/mL), 100 mM Tris, pH 7.5, IPO (100 μ M), MgCl₂ (5 mM), alamethicin (10 μ g/mL) or CHAPS (0.5 mg/mL), UDPGA (5 mM), and one of the following: atazanavir (20 μ M), hecogenin (100 μ M), niflumic acid (2.5 μ M), or fluconazole (10 mM). All incubations contained 1% DMSO. Incubation mixtures were stored on ice for 15 minutes, pre-incubated in a 37°C water bath for 2 minutes followed by the addition of UDPGA (5 mM). Reactions were allowed to proceed for 60 minutes, at which time 20 μ L 15% ZnSO₄ (aq.) was added to quench the reactions. The samples were centrifuged at 15,000 x g, and 20 μ L of the supernatant was injected onto the UPLC-MS/MS for analysis.

Results

Effect of IPO Stereochemistry on CYP4B1-Dependent Cytotoxicity

The cytotoxicity of (S)-, (R)-, and racemic IPO was assessed using a HepG2 cell proliferation (endpoint) assay, 48-hours after dosing (**Figure 1A**). No toxicity was observed in vehicle treated wells as compared to wells with media (data not shown). Control vector HepG2 cells showed no evidence of cytotoxicity from racemic IPO treatment up to 100 μ M, indicating the absence or low expression of any endogenous IPO-bioactivating enzymes that could cause toxicity. Rabbit CYP4B1-expressing HepG2 cells exposed to (S)-, (R)-, and racemic IPO displayed nearly overlapping dosecytotoxicity response curves, which generated LD₅₀ values of 5.8, 5.7, and 5.7 μ M, respectively. Almost identical results were obtained with the optimized human CYP4B1 'P+12' enzyme, with observed LD₅₀ values of 5.3, 6.1, and 5.4 μ M for (S)-, (R)-, and racemic IPO respectively (**Figure 1B**). In the CYP4B1 expressing HepG2 cells, >99% cell death was observed with all compounds at a dose of 50 μ M.

Effect of IPO Stereochemistry on CYP4B1-Dependent Substrate Depletion and NAC/NAL Adduct Formation

To determine the effect of IPO enantiomers on CYP4B1-mediated substrate consumption and reactive intermediate formation, metabolism of the substrates in reconstituted systems of purified rabbit CYP4B1 was investigated. IPO depletion, in 30 minute incubations with 25 pmol P450, showed no enantiomer preference (**Figure 2A**), with averages of 18.8, 18.1, and 18.1% consumed substrate for (*S*)-, (*R*)-, and racemic IPO respectively. In probing IPO furan oxidation by trapping the reactive intermediate

with NAC/NAL, no enantiomer preference was observed (**Figure 2B**). Quantification yielded average adduct formation rates of 28.3, 28.4, and 32.2 pmol/pmol P450/30 minutes for (*S*)-, (*R*)-, and racemic IPO, respectively, thus demonstrating no stereochemical differences in adduct formation by CYP4B1. Additionally, no IPO enantioselectivity was observed in the reconstituted systems with regards to CYP4B1-dependent substrate depletion or NAC/NAL adduct formation.

Identification and characterization of (R) and (S)-IPO glucuronide diastereomers

(*R*,*S*)-IPO-glucuronide diastereomers were synthesized as previously described (Parkinson et al., 2016) and separated with baseline resolution using an UPLC-MS/MS method (**Figure 3A**). The detection of 4-MUG (**Figure 3B**) was also achieved using the same analytical method. A 1 μM stock solution of the glucuronides and 4-MUG were each incubated in the presence of β-glucuronidase from *Helix pomatia*. In each case, all glucuronides were successfully cleaved with >99% efficiency (**Figures 3C and 3D**). To confirm the absolute configuration of each glucuronide diastereomer, (*R*)- and (*S*)-IPO were initially synthesized by a modified procedure described previously (Alvarez-Diez and Zheng, 2004). Each enantiomer was subsequently incubated with HLMs to form their respective glucuronide (**Figure 4B and 4C**). When compared to an incubation with racemic IPO (**Figure 4A**), (*R*)-IPO-glucuronide was identified as the first peak (4.86 min) and (*S*)-IPO-glucuronide as the second eluting peak (5.18 min). To further confirm the identity of the glucuronide(s), 100 μM IPO was incubated with human liver microsomes in the absence of UDGPA (**Figure 4D**).

Optimization of microsomal incubation conditions: effects of buffer, pH, alamethicin, and CHAPS on specific activity and diastereoselectivity of IPO glucuronidation

Previously, we compared microsomal glucuronidation of racemic IPO across a number of species including humans, where formation rates were low relative to experimental animals (Parkinson et al., 2016). Therefore, for the current studies we employed new lots of commercially available liver and kidney microsomes, used higher microsomal protein and substrate concentrations, and performed glucuronide analysis on more sensitive MS instruments. With these modifications in place we first evaluated the specific activity and diastereoselectivity of glucuronidation in human liver microsomal incubations containing either 100 mM KPi (pH 6.0 - 8.0) or 100 mM Tris (pH 7.0 - 8.5 at 37°C), IPO (100 μ M), 5 mM MgCl₂ alamethicin (10 μ g/mL), and UDPGA (5 mM) (Figure 5). The MgCl₂ alamethicin, and UDPGA concentrations were mirrored based on the previous work conducted by Walksy et al. (Walsky et al., 2012). At pH 7.5, there was no dramatic difference in specific activity using either KPi or Tris, although the diastereomeric ratio tended to favor (R)-IPO-glucuronide more using Tris buffer. Specific activity increased as the pH increased from 6.0 - 8.0 in KPi, but with little diastereoselectivity at the higher pHs. Additionally, we assessed the effect of either the detergent CHAPS (Lett et al., 1992) or pore forming reagent alamethicin on IPO glucuronidation in human liver microsomes (data not shown). These incubations contained 100 mM Tris pH 7.5 at 37 °C, IPO (100 µM), 5 mM MgCl₂ alamethicin (10 µg/mL) or CHAPS (0.5 mg/mL), and UDPGA (5 mM). Under these conditions there was a pronounced difference between alamethicin and CHAPS. While diastereoselectivity was retained in each case, the specific activity was dramatically increased when alamethicin was used. Based on these optimization efforts, all further metabolic incubations were carried out in Tris pH 7.5 buffer and with the inclusion of alamethicin.

Recombinant UGT Screen

To identify the specific isoform(s) responsible for IPO glucuronidation, a commercially available panel of 13 UGT recombinant enzymes was investigated. Screening with 0.25 mg/mL of each rUGT and substrate (100 μ M) indicated that UGT1A9, UGT2B7 and UGT2B15 were the predominant isoforms catalyzing glucuronidation of IPO (**Figure 6**). UGT1A9 and UGT2B7 formed (*R*)-IPO-glucuronide preferentially, whereas UGT2B15 was selective for formation of (*S*)-IPO-glucuronide. The specific activities for formation of (*R*)- and (*S*)-IPO-glucuronide and the respective diastereomeric ratios in the recombinant UGT enzymes and microsomes are provided in **Table 1**.

Human Liver and Kidney Microsomal Incubations

To better evaluate which UGT isoforms dominate microsomal glucuronidation, racemic IPO (100 μM) was incubated with human liver microsomes in the presence of selective UGT inhibitors: 10 mM atazanavir (UGT1A1) (Zhang et al., 2005), 100 μM hecogenin (1A4) (Uchaipichat et al., 2006a), 2.5 μM niflumic Acid (1A9) (Miners et al., 2011), and 10 mM fluconazole (2B7) (Uchaipichat et al., 2006b) (Fang et al., 2013)(**Table 2**). Glucuronidation was inhibited by fluconazole (60-65%), and marginally inhibited by niflumic acid (16 - 28%), hecogenin (20 - 22%), and atazanavir (26% inhibition of (*R*)-IPO-glucuronide). These data suggest that UGT2B7 dominates human

liver microsomal glucuronidation of IPO, although we cannot preclude contributions from other UGT enzymes, such as UGT2B4, which is a major UGT isoform in human liver microsomes. Because UGT2B7 and UGT2B15 exhibit opposite diastereoselectivities, the net effect is that human liver microsomes display little diastereoselectivity for IPO glucuronidation. In contrast, in human kidney microsomes, niflumic acid was a strong inhibitor (68 - 76%) of human kidney microsomal glucuronidation, suggesting a dominant role for UGT1A9 in this tissue. Renal glucuronidation of IPO was also similarly inhibited by fluconaolze (36 - 58%) compared with hepatic glucuronidation, providing evidence for a contribution by UGT2B7. (**Table 2**).

Discussion

IPO occupies an important position in the history of extrahepatic P450-dependent toxicology (Gram, 1997). However, despite almost 50 years of research on this topic, and interest in the compound for GDEPT, no prior data exist on the influence of stereochemistry on the protoxin's bioactivation or its inactivation *via* glucuronidation. Given that the location of the chiral center in IPO is at C-4, one could hypothesize that glucuronidation of the IPO enantiomers would be impacted more than bioactivation, which occurs on the furan ring that is distant from C-4. In fact, for CYP4B1, regardless of whether the source of the enzyme is the native rabbit sequence or the optimized human (P+12) sequence, the cytotoxic effects of IPO enantiomers in transfected HepG2 cells is the same. Detailed analysis using purified reconstituted rabbit CYP4B1 further confirmed that depletion of (*R*)-IPO and (*S*)-IPO in purified enzyme incubations as well as the flux to the reactive ene-dial intermediate was enantiomer independent. In the

aggregate, it is clear that the IPO racemate is an appropriate choice for future work on the development of a CYP4B1-dependent suicide gene system.

Enantioselective glucuronidation of drugs has been recognized since the early 1980s when the benzodiazepine, oxazepam, was shown to be preferentially glucuronidated to S-oxazepam in humans (Seideman et al., 1981). Subsequently, many additional drugs and hydroxylated metabolites were shown to undergo stereoselective glucuronidation (Miners and Mackenzie, 1991) that reflected preferential metabolism by certain UGT isoforms (Court, 2005; Rowland et al., 2013). To pursue questions related to the stereochemistry of IPO glucuronidation we took the approach of quantifying the accessible diastereoselectivity of the enzymatic reactions. This was chromatographic conditions were identified that resolved the disatereomers. Independent chemical synthesis of the diastereomers and microsomal glucuronidation reactions with the individual IPO enantiomers enabled unambiguous assignment of product diastereoselectivity. Optimization of buffer composition, pH and inclusion of alamethicin in metabolic reactions, together with other assay improvements facilitated analyte detection and provided a robust method for determining the stereochemistry of IPO formation and evaluating the specific isoforms that likely contribute to this potential clearance pathway. The latter is important because if IPO glucuronidation is important in humans in vivo, as it appears to be in rodents, (Statham et al., 1982) genetic variability in UGT activity needs to be evaluated in terms of the risk for hepatotoxicity in humans treated with IPO.

Peak plasma concentrations of IPO from previous clinical studies were about 100 μ M (Rowinsky et al., 1993), and this concentration (total C_{max}) was utilized in all *in vitro*

experiments described. Performing the rUGT, HLM, and HKM incubations at the clinically reported IPO C_{max} is optimal for generating data that has the likeliest chance of translating to the clinic. Therefore, it was decided to only conduct all in vitro experiments with the most physiologically relevant IPO concentration. Screening of a panel of thirteen recombinantly expressed UGTs identified UGT1A9, UGT2B7, and UGT 2B15 as the dominant isoforms when incubations were performed with IPO. Notably, however, incubations with human liver microsomes in the presence of selective UGT inhibitors suggested that UGT1A9 and UGT2B7 are the more likely contributors in vivo. Despite the high catalytic activity of recombinant UGT1A9, this isoform may not be a prominent contributor to human liver IPO glucuronidation because it is a minor constituent (6-9%) of the total UGT pool (Margaillan et al., 2015). Additionally, recent evidence suggests the expression levels of UGT1A9 in HKMs in 3.1 fold higher that HLMs and may account for the marginal inhibition by niflumic acid in HLMs (Nakamura et al., 2016). Moreover, UGT1A9 exhibits pronounced selectivity for glucuronidation of (R)-IPO over (S)-IPO, but this is not recapitulated in the diastereoselectivity found in human liver microsomes. This observation further undermines a major contribution of UGT1A9 to IPO glucuronidation in human liver. In contrast, UGT1A9 is clearly the major contributor to human kidney glucuronidation, on the basis of both diastereoselectivity and chemical inhibition studies. Human renal glucuronidation has been reasonably well characterized, (Knights et al., 2013) and is important for drugs such as propofol and mycophenolic acid (Gill et al., 2012; Knights et al., 2016). Although polymorphisms are present in all UGT enzymes, high frequency deleterious variants that impact the clearance of therapeutic drugs are limited largely to UGT1A1,

UGT2B15, UGT2B17, and to a lesser extent UGT1A9 (Stingl et al., 2014). While UGT1A1 and UGT2B17 appear to have minimal roles in the glucuronidation of IPO, UGT2B15 is probably a contributor based of the rUGT phenotypic screen. Since the common mutation, D85Y, in UGT2B15 is a major determinant of oxazepam clearance *in vivo*, (He et al., 2009) it would be interesting to determine if this mutation is a risk factor for IPO-induced liver toxicity in humans. The opposite holds true for UGT1A9 polymorphisms, which are attributed to increased protein expression levels and subsequently higher clearances of UGT1A9 substrates, such as mycophenolic acid (Baldelli et al., 2007).

In summary, we have demonstrated that IPO stereochemistry does not affect CYP4B1-mediated bioactivation of this pro-toxin, but does influence product diasteroeselectivity generated from human liver and kidney UGTs. The major enzymes capable of racemic IPO glucuronidation are UGT1A9, UGT2B7, and UGT2B15. Major isoform-dependent differences in product diasteroeselectivity together with chemical inhibition experiments help identify UGT1A9 and members of the UGT2B family as the likely contributors to human hepatic glucuronidation of IPO. Therefore, beyond common genetic polymorphisms in UGT2B15, we speculate that drug-drug interactions with concomitantly administered UGT2B substrates might affect the overall clearance of racemic IPO in pharmacological gene therapy. Future work in this area should also focus on delineating the relative importance of other phase II detoxifying enzymes to IPO metabolism in humans.

Acknowledgements

The authors would like to thank J. Scott Edgar for his assistance with high-resolution

mass spectrometry.

Authorship contributions

Participated in research design: Teitelbaum, McDonald, Kowalski, Parkinson,

Hanenberg, Rettie

Conducted experiments: Teitelbaum, McDonald Kowalski, Whittington, Roellecke,

Wiek, Scian

Performed data analysis: Teitelbaum, McDonald, Kowalski, Scian

Wrote or contributed to the writing of the manuscript: Teitelbaum, Kowalski, Rettie

References

- Alvarez-Diez TM and Zheng J (2004) Mechanism-based inactivation of cytochrome P450 3A4 by 4-ipomeanol. *Chem Res Toxicol* **17**:150-157.
- Baer BR, Rettie AE and Henne KR (2005) Bioactivation of 4-ipomeanol by CYP4B1: adduct characterization and evidence for an enedial intermediate. *Chem Res Toxicol* **18**:855-864.
- Baldelli S, Merlini S, Perico N, Nicastri A, Cortinovis M, Gotti E, Remuzzi G and Cattaneo D (2007) C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. *Pharmacogenomics* 8:1127-1141.
- Boyd MR, Wilson BJ and Harris TM (1972) Confirmation by chemical synthesis of the structure of 4-ipomeanol, a lung-toxic metabolite of the sweet potato, Ipomoea batatas. *Nat New Biol* **236**:158-159.
- Court MH (2005) Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. *Methods Enzymol* **400**:104-116.
- Devereux TR, Jones KG, Bend JR, Fouts JR, Statham CN and Boyd MR (1982) In vitro metabolic activation of the pulmonary toxin, 4-ipomeanol, in nonciliated bronchiolar epithelial (Clara) and alveolar type II cells isolated from rabbit lung. *J Pharmacol Exp Ther* **220**:223-227.
- Dutcher JS and Boyd MR (1979) Species and strain differences in target organ alkylation and toxicity by 4-ipomeanol. Predictive value of covalent binding in studies of target organ toxicities by reactive metabolites. *Biochem Pharmacol* **28**:3367-3372.
- Falzon M, McMahon JB, Schuller HM and Boyd MR (1986) Metabolic activation and cytotoxicity of 4-ipomeanol in human non-small cell lung cancer lines. *Cancer Res* **46**:3484-3489.
- Fang ZZ, He RR, Cao YF, Tanaka N, Jiang C, Krausz KW, Qi Y, Dong PP, Ai CZ, Sun XY, Hong M, Ge GB, Gonzalez FJ, Ma XC and Sun HZ (2013) A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders. *J Lipid Res* **54**:3334-3344.
- Frank S, Steffens S, Fischer U, Tlolko A, Rainov NG and Kramm CM (2002) Differential cytotoxicity and bystander effect of the rabbit cytochrome P450 4B1 enzyme gene by two different prodrugs: implications for pharmacogene therapy. *Cancer Gene Ther* **9**:178-188.
- Gill KL, Houston JB and Galetin A (2012) Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. *Drug Metab Dispos* **40**:825-835.
- Gram TE (1997) Chemically reactive intermediates and pulmonary xenobiotic toxicity. *Pharmacol Rev* **49**:297-341.
- He X, Hesse LM, Hazarika S, Masse G, Harmatz JS, Greenblatt DJ and Court MH (2009) Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion. *Br J Clin Pharmacol* **68**:721-730.
- Hsu H, Rainov NG, Quinones A, Eling DJ, Sakamoto KM and Spear MA (2003) Combined radiation and cytochrome CYP4B1/4-ipomeanol gene therapy using the EGR1 promoter. *Anticancer Res* **23**:2723-2728.

- Jang SJ, Kang JH, Lee TS, Kim SJ, Kim KI, Lee YJ, Cheon GJ, Choi CW and Lim SM (2010) Prodrug-activating Gene Therapy with Rabbit Cytochrome P450 4B1/4-Ipomeanol or 2-Aminoanthracene System in Glioma Cells. *Nucl Med Mol Imaging* 44:193-198.
- Kasturi VK, Dearing MP, Piscitelli SC, Russell EK, Sladek GG, O'Neil K, Turner GA, Morton TL, Christian MC, Johnson BE and Kelley MJ (1998) Phase I study of a five-day dose schedule of 4-Ipomeanol in patients with non-small cell lung cancer. *Clin Cancer Res* **4**:2095-2102.
- Knights KM, Rowland A and Miners JO (2013) Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). *Br J Clin Pharmacol* **76**:587-602.
- Knights KM, Spencer SM, Fallon JK, Chau N, Smith PC and Miners JO (2016) Scaling factors for the in vitro-in vivo extrapolation (IV-IVE) of renal drug and xenobiotic glucuronidation clearance. *Br J Clin Pharmacol* **81**:1153-1164.
- Lett E, Kriszt W, de Sandro V, Ducrotoy G and Richert L (1992) Optimal detergent activation of rat liver microsomal UDP-glucuronosyl transferases toward morphine and 1-naphthol: contribution to induction and latency studies. *Biochem Pharmacol* **43**:1649-1653.
- Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J, Schuetz EG and Thummel KE (2002) Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. *Mol Pharmacol* **62**:162-172.
- Margaillan G, Rouleau M, Klein K, Fallon JK, Caron P, Villeneuve L, Smith PC, Zanger UM and Guillemette C (2015) Multiplexed Targeted Quantitative Proteomics Predicts Hepatic Glucuronidation Potential. *Drug Metab Dispos* **43**:1331-1335.
- McLemore TL, Coudert BP and Adelberg S (1988) Metabolic activation of 4-Ipomeanol by human pulmonary carcinoma cells propagated in vitro and intrabronchially in nude mice. *Clin Res* **36**:498A.
- Miners JO, Bowalgaha K, Elliot DJ, Baranczewski P and Knights KM (2011) Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation. *Drug Metab Dispos* **39**:644-652.
- Miners JO and Mackenzie PI (1991) Drug glucuronidation in humans. *Pharmacol Ther* **51**:347-369.
- Mohr L, Rainov NG, Mohr UG and Wands JR (2000) Rabbit cytochrome P450 4B1: A novel prodrug activating gene for pharmacogene therapy of hepatocellular carcinoma. *Cancer Gene Ther* **7**:1008-1014.
- Moon BS, Jang SJ, Kim SJ, Lee TS, Chi DY, Lee BC, Kang JH and Kim SE (2013) Synthesis and evaluation of a 18F-labeled 4-ipomeanol as an imaging agent for CYP4B1 gene prodrug activation therapy. *Cancer Biother Radiopharm* **28**:588-597.
- Nakamura K, Hirayama-Kurogi M, Ito S, Kuno T, Yoneyama T, Obuchi W, Terasaki T and Ohtsuki S (2016) Large-scale multiplex absolute protein quantification of drugmetabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: Comparison with MRM/SRM and HR-MRM/PRM. *Proteomics* **16**:2106-2117.
- Parkinson OT, Teitelbaum AM, Whittington D, Kelly EJ and Rettie AE (2016) Species Differences in Microsomal Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to Target Organ Toxicity. *Drug Metab Dispos*.

- Rainov NG, Dobberstein KU, Sena-Esteves M, Herrlinger U, Kramm CM, Philpot RM, Hilton J, Chiocca EA and Breakefield XO (1998a) New prodrug activation gene therapy for cancer using cytochrome P450 4B1 and 2-aminoanthracene/4-ipomeanol. *Hum Gene Ther* **9**:1261-1273.
- Rainov NG, Sena-Esteves M, Fraefel C, Dobberstein KU, Chiocca EA and Breakefield XO (1998b) A chimeric fusion protein of cytochrome CYP4B1 and green fluorescent protein for detection of pro-drug activating gene delivery and for gene therapy in malignant glioma. *Adv Exp Med Biol* **451**:393-403.
- Roellecke K, Virts EL, Einholz R, Edson KZ, Altvater B, Rossig C, von Laer D, Scheckenbach K, Wagenmann M, Reinhardt D, Kramm CM, Rettie AE, Wiek C and Hanenberg H (2016) Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies. *Gene Ther* 23:615-626.
- Rowinsky EK, Noe DA, Ettinger DS, Christian MC, Lubejko BG, Fishman EK, Sartorius SE, Boyd MR and Donehower RC (1993) Phase I and pharmacological study of the pulmonary cytotoxin 4-ipomeanol on a single dose schedule in lung cancer patients: hepatotoxicity is dose limiting in humans. *Cancer Res* **53**:1794-1801.
- Rowland A, Miners JO and Mackenzie PI (2013) The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. *Int J Biochem Cell Biol* **45**:1121-1132.
- Schmidt EM, Wiek C, Parkinson OT, Roellecke K, Freund M, Gombert M, Lottmann N, Steward CA, Kramm CM, Yarov-Yarovoy V, Rettie AE and Hanenberg H (2015) Characterization of an Additional Splice Acceptor Site Introduced into CYP4B1 in Hominoidae during Evolution. *PLoS One* **10**:e0137110.
- Seideman P, Ericsson O, Groningsson K and von Bahr C (1981) Effect of pentobarbital on the formation of diastereomeric oxazepam glucuronides in man: analysis by high performance liquid chromatography. *Acta Pharmacol Toxicol (Copenh)* **49**:200-204.
- Smith AC, Barrett D, Stedham MA, el-Hawari M, Kastello MD, Grieshaber CK and Boyd MR (1987) Preclinical toxicology studies of 4-ipomeanol: a novel candidate for clinical evaluation in lung cancer. *Cancer Treat Rep* **71**:1157-1164.
- Smith PB, Tiano HF, Nesnow S, Boyd MR, Philpot RM and Langenbach R (1995) 4-Ipomeanol and 2-aminoanthracene cytotoxicity in C3H/10T1/2 cells expressing rabbit cytochrome P450 4B1. *Biochem Pharmacol* **50**:1567-1575.
- Statham CN, Dutcher JS, Kim SH and Boyd MR (1982) Ipomeanol 4-glucuronide, a major urinary metabolite of 4-ipomeanol in the rat. *Drug Metab Dispos* **10**:264-267.
- Steffens S, Frank S, Fischer U, Heuser C, Meyer KL, Dobberstein KU, Rainov NG and Kramm CM (2000) Enhanced green fluorescent protein fusion proteins of herpes simplex virus type 1 thymidine kinase and cytochrome P450 4B1: applications for prodrug-activating gene therapy. *Cancer Gene Ther* **7**:806-812.
- Stingl JC, Bartels H, Viviani R, Lehmann ML and Brockmoller J (2014) Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. *Pharmacol Ther* **141**:92-116.
- Uchaipichat V, Mackenzie PI, Elliot DJ and Miners JO (2006a) Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) "probes" for human udp-glucuronosyltransferases. *Drug Metab Dispos* **34**:449-456.

- Uchaipichat V, Winner LK, Mackenzie PI, Elliot DJ, Williams JA and Miners JO (2006b)

 Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation. *Br J Clin Pharmacol* **61**:427-439.
- Verschoyle RD, Philpot RM, Wolf CR and Dinsdale D (1993) CYP4B1 activates 4-ipomeanol in rat lung. *Toxicol Appl Pharmacol* **123**:193-198.
- Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, Ryder TF, Obach RS, Hyland R and Goosen TC (2012) Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. *Drug Metab Dispos* **40**:1051-1065.
- Wiek C, Schmidt EM, Roellecke K, Freund M, Nakano M, Kelly EJ, Kaisers W, Yarov-Yarovoy V, Kramm CM, Rettie AE and Hanenberg H (2015) Identification of amino acid determinants in CYP4B1 for optimal catalytic processing of 4-ipomeanol. *Biochem J* **465**:103-114.
- Wilson BJ and Burka LT (1979) Toxicity of novel sequiterpenoids from the stressed sweet potato (Ipomoea batatas). *Food Cosmet Toxicol* **17**:353-355.
- Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS and Humphreys WG (2005) In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. *Drug Metab Dispos* **33**:1729-1739.

Footnotes

This study was supported in part by the National Institutes of Health [grant R01GM49054] and by the University of Washington School of Pharmacy Brady Fund for Natural Products. This work was also funded by the Strategische Forschungsverbund of the Heinrich Heine University (to CW).

The authors declare no competing financial interest

Figure Legends:

Figure 1: Cytotoxicity dose-response curves in HepG2 cells transfected with (**A**) rabbit CYP4B1 and (**B**) human P+12 CYP4B1 from treatment with (*S*)-, (*R*)-, racemic IPO, and control HepG2 cells treated with racemic IPO. Data shown are the mean, from triplicate replicates, ± standard deviation.

Figure 2: Comparison of substrate depletion (**A**) and quantification of NAC/NAL adduct formation (**B**) in reconstituted CYP4B1 incubations after 30 minutes, with 25 pmol P450 and 100 μ M IPO substrates. Data shown are the mean, from triplicate replicates, \pm standard deviation.

Figure 3: Chromatographic separation of (R,S)-IPO-glucuronide (**A**) and 4-methylumbelliferone glucuronide (**B**) by UPLC-MS/MS. Incubation of 1 μ M (R,S)-IPO-glucuronide (**C**) and 1 μ M 4-methylumbelliferone glucuronide (**D**) in the presence of *Helix pomatia* (1000 units/mL) in potassium acetate pH 5 for 24 hr at 37 °C.

Figure 4: Representative chromatographic traces of (R)- and (S)-IPO-glucuronides. Incubation of 100 μM IPO in Tris buffer pH 7.5, alamethic (10 μg/mL), MgCl₂ (5 mM), and UDPGA (5 mM) with 0.25 mg/mL human liver microsomes (**A**). Incubation of 100 μM (R)-IPO (**B**) and (S)-IPO (**C**) in human liver microsomes. Incubation of 100 μM racemic IPO with human liver microsomes in the absence of UDPGA (**D**).

Figure 5: Diastereoselective glucuronidation of racemic IPO in human liver microsomes. Incubations were conducted with 100 μ M IPO in potassium phosphate buffer (pH 6.0 – 8.0) and Tris buffer (pH 7.0 – 8.5) with 0.25 mg/mL microsomal protein, alamethicin (10 μ g/mL), MgCl₂ (5 mM), and UDPGA (5 mM) for 60 min at 37 °C. The

Tris pH reflects the actual pH at 37 °C. Results are reported as the specific activity mean ± standard deviation of three determinations.

Figure 6: (R)- and (S)-IPO-glucuronide formation utilizing a panel of thirteen recombinantly expressed UGT isoforms. Racemic IPO (100 μ M) was incubated with rUGT (0.25 mg total protein/mL), alamethicin (10 μ g/mL), MgCl₂ (5 mM), and UDPGA (5 mM) for 60 min at 37 °C. Results are reported as the specific activity mean \pm standard deviation of three determinations.

Table 1: Specific activities for formation of (*R*)- and (S)-IPO-glucuronide and the respective diaster combinant UGT enzymes and microsomal preparations

	Enzyme Source					ipet.ası		
	rUGT1A9	rUGT2B4	rUGT2B7	rUGT2B10	rUGT2B15	rUGT2B17	octiournals	НКМ
(R)-IPO-glucuronide	369 ± 18.8	34 ± 0.49	148 ± 3.6	15 ± 1.6	13 ± 0.87	5 ± 0.39	303 ± 8.5	383 ± 12
(S)-IPO-glucuronide	73 ± 7.5	8.7 ± 0.87	56 ± 2.8	4 ± 0.39	63 ± 2.6	17 ± 0.42	227 ± 7.9	104 ± 2.5
Diastereomeric Ratio (R\S)	5.1	3.9	2.6	3.8	0.21	0.29	T Journal 1.3	3.7

Specific activity (pmol/mg/60 min) expressed as a mean ± S.D. of three replicates

Table 2: Chemical inhibition of (*R*)- and (*S*)-IPO glucuronidation in human liver and kidney microsomes

	HLM			
	(<i>R</i>)-IPO- glucuronide	(S)-IPO-glucuronide		
No inhibitor	100° ± 8	100 ^b ± 3		
20 µM atazanavir	74 ± 1	94 ± 3		
100 μM hecogenin	78 ± 15	80 ± 9		
2.5 µM niflumic acid	72 ± 5	84 ± 10		
10 mM fluconazole	35 ± 5	40 ± 2		
	HKM			
No inhibitor	100° ± 3	100 ^d ± 2		
2.5 µM niflumic acid	24 ± 8	32 ± 6		
10 mM fluconazole	64 ± 10	42 ± 4		

Values represent the percent glucuronide remaining relative to a normalized control (100% glucuronide remaining in absence of inhibitor), expressed as a mean ± S.D. of three replicates

Specific activities of (*R*)-IPO-glucuronide and (*S*)-IPO-glucuronide formation in HLM: ^a303 ± 8, ^b227 ± 8 pmol/mg/60 min, respectively Specific activities of (*R*)-IPO-glucuronide and (*S*)-IPO-glucuronide formation in HKM: ^a383 ± 12, ^d104 ± 2 pmol/mg/60 min, respectively

Figure 1

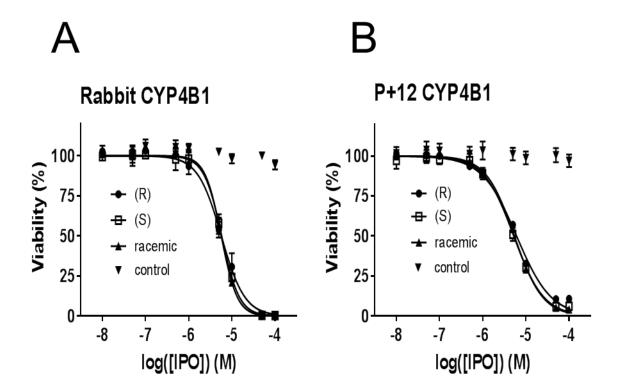


Figure 2

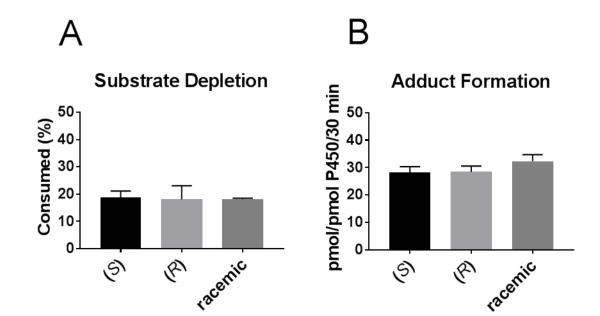


Figure 3

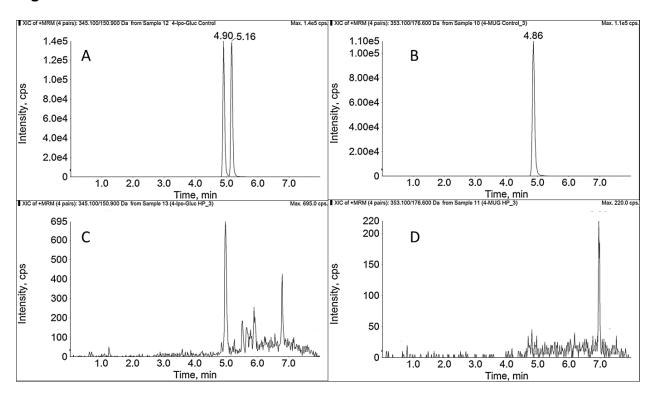


Figure 4

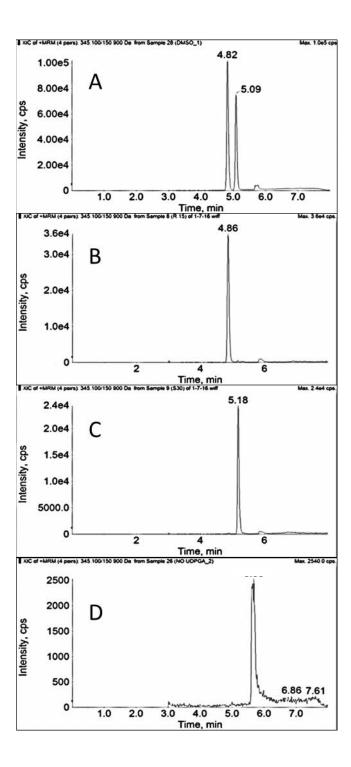


Figure 5

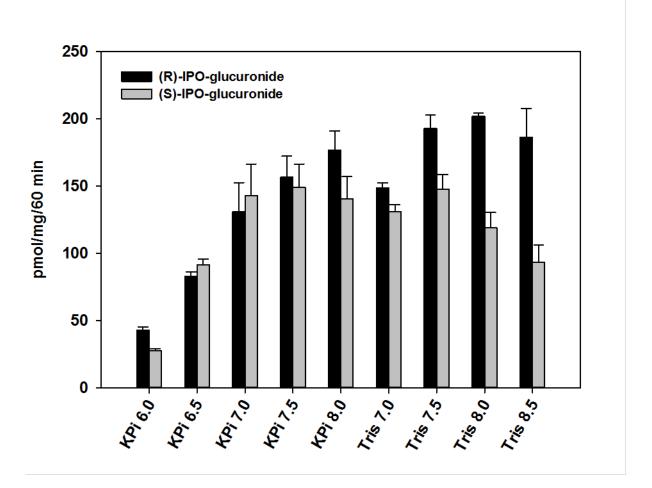
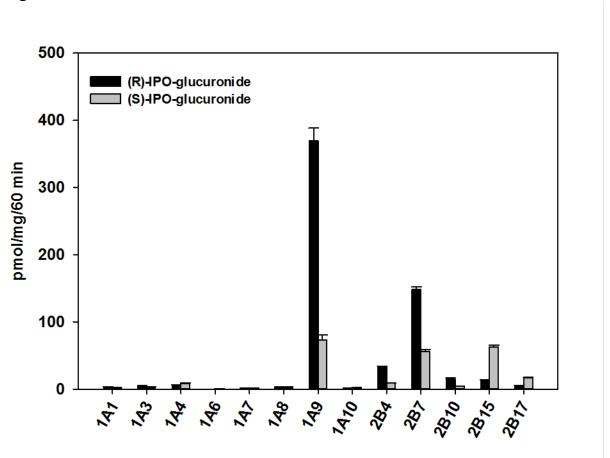



Figure 6

