Synthesis and Reactivity of Boron-Functionalized C₂B₅-closo-Carboranes

Yong Nie, Avijit Goswami, and Walter Siebert

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Reprint requests to Prof. Dr. W. Siebert. Fax: + 49-(0)6221/545609. E-mail: walter.siebert@urz.uni-heidelberg.de

Z. Naturforsch. 60b, 597-602 (2005); received March 14, 2005

Dedicated to Dr. Karlheinz Schmidt on the occasion of his 60th birthday

Treatment of the *nido*-2,3-Et₂C₂B₄H₄²⁻ dianion (1) with monoboron reagents led to *closo*-C₂B₅ carborane derivatives with functional substituents at the inserted apical boron atom. The reactions of 1 with BX₃ (X = Br, I) afforded the corresponding *closo*-1-X-2,3-Et₂C₂B₅H₄ (2**a**,**b**), and with PhC≡CBcat (cat = O₂C₆H₄) produced the alkynyl-substituted *closo*-1-C≡CPh-2,3-Et₂C₂B₅H₄ (2**c**). Pd-catalyzed Negishi-type cross-coupling reactions of 2**b** with RC≡CZnCl at room temperature gave the corresponding *closo*-1-C≡CR-2,3-Et₂C₂B₅H₄ derivatives 2**d**-**f**, R = SiMe₃, Me, and *t*Bu, respectively. Compound 3 with two C₂B₅ moieties linked *via* a C=C unit was obtained by a similar boron incorporation reaction with *cis*-Cl₂B(Et)C=C(Et)BCl₂. The reactions of 2**c**,d with Co₂(CO)₈ afforded the dicobaltatetrahedrane-substituted carboranes 4**c** and **d**, in which the clusters C₂B₅ and Co₂C₂ are connected by a B-C bond. Compounds 4**c**,d lost the apical boron on wet silica gel or sand to give the *nido*-C₂B₄-C₂Co₂ compounds 5**c**,d. Formation of the carboranyl-substituted (η^5 -C₅H₅)Co(C₂H₄)₂. The composition of the products follows from NMR and MS data.

Key words: Boron, Carborane, Cross Coupling, Cobalt, Cluster Linkage

Introduction

Of the four possible isomers of the $closo-C_2B_5H_7$ carborane (1,2-, 1,7-, 2,3- and 2,4-), the 2,3- and 2,4isomers are known, and studies of their chemistry have focused on the 2,4- compounds [1-3]. The much lower interest in the 2,3-isomer, which is predicted by calculations [4] to be 15-25 kcal/mol less stable than the 2,4-isomer, may be due to its difficult accessibility. The first C-alkyl derivative closo-2,3-Me₂C₂B₅H₅ was obtained in low yield by Schaeffer et al. [5] in the gas phase reaction of octaborane(12) with 2-butyne. Sneddon et al. [6] found a better way to closo-2,3-Et₂C₂B₅H₅ by a capping reaction (boron insertion) of nido-2,3-Et₂C₂B₄H₆ with Et₃N·BH₃ at 140 °C in 50-60% yield. Alternatively, closo-2,3-Et₂C₂B₅H₅ is formed in the reaction of *nido*-2,3- $Et_2C_2B_4H_5$ ⁻Na⁺ and Me₂S·BH₃ (44% yield), or from the *nido*-2,3-Et₂C₂B₄H₄²⁻Na⁺Li⁺ and Me₂S·BHBr₂ (49% yield) [6-9]. Sneddon and Beck also studied the reaction of *nido*-2,3-Et₂C₂B₄H₄²⁻Na⁺Li⁺ with PhBCl2 and MeBBr2, respectively, and obtained closo- $1-R-2, 3-Et_2C_2B_5H_4$ (R = Ph, Me) derivatives in moderate yields [7]. The parent *closo*-2,3-C₂B₅H₇ [10] has been isolated in *ca*. 65% yield by vacuum thermolysis of *nido*-4,5-C₂B₆H₁₀. More recently Grimes, Siebert *et al.* [11] reported the benzene-centered 1,3,5-(*closo*-Et₂C₂B₅H₄)₃C₆H₃ by reacting the *nido*-2,3-Et₂C₂B₄H_{4²⁻} dianion with tris(diiodoboryl)benzene, which gave the corresponding 1,3,5-tris-*nido*-C₂B₄ carborane on silica. We have described the formation of *closo*-2,3-Et₂C₂B₅I₅ [12] from the reaction of 3-hexyne, BI₃, and a NaK_{2.8} alloy at room temperature. Herein we report on the synthesis of apically functionalized *closo*-C₂B₅ carboranes, and the reactions of some of the alkynyl-substituted derivatives with cobalt complexes.

Results and Discussion

Boron insertion or capping reactions [13] are a convenient pathway to functionalized carborane products. To achieve apically B-halogenated *closo*-2,3- C_2B_5 carborane derivatives, we carried out reactions of the *nido*-2,3-Et₂C₂B₄H₄²⁻ dianion (1, formed by deprotonation of *nido*-2,3-Et₂C₂B₄H₆ with 2 equiv. *n*-

0932-0776 / 05 / 0600-0597 \$ 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Scheme 1.

BuLi in diethylether, Scheme 1) and BX_3 (X = Br, I) in toluene, which led to 2a,b as yellow oils, respectively. Their ¹¹B NMR spectra exhibit signals at 6.3 (B4,6), 1.2 (B5), -17.4 (B7), and -23.6 (B1) (2a), and 6.7 (B4,6), 1.9 (B5), -18.3 (B7), and -31.9 (B1) ppm (2b), in a ratio of 2:1:1:1, respectively. The mass spectra of **2a**,**b** give the corresponding molecular ion peaks with correct isotopic patterns.

The formation of 2a,b is of interest, as the bromination of closo-2,3-Et₂C₂B₅H₅ with Br₂ or Br₂/AlBr₃ occurs selectively at the B5 position, affording closo-5-Br-2,3-Et₂C₂B₅H₄ as the single product in moderate yield [7]. Wrackmeyer et al. [14] studied the reaction of *nido*- $[2,4-(EtC)_2(BEt)_4H]^-$ Na⁺ with BBr₃ to give closo-1-Br-2,4-(EtC)₂(BEt)₄B as a side product, the major product being *closo*-2,4-(EtC)₂(BEt)₄BH.

Similarly, the reaction of 1 with $PhC \equiv CBcat$ (cat = $O_2C_6H_4$) produced the apically alkynyl-substituted $closo-1-C \equiv CPh-2, 3-Et_2C_2B_5H_4$ (2c) (Scheme 2) as a yellow oil. A more efficient way to 2d-f was found by the Pd-catalyzed Negishi-type cross-coupling reactions of 2b (Scheme 2). The ¹¹B NMR spectrum of 2c shows signals at 6.4 (B4,6), 1.8 (B5), -16.1 (B1), and -18.7 (B7) ppm in a ratio of 2:1:1:1, and similar shifts are observed for 2d-f. There is no significant "anti-podal" effect [15] of the halogen atoms (in 2a,b), or RC₂ groups (in 2c-f) at B1 upon B7, as the ¹¹B NMR shifts for B7 in **2a-f** (-17.4 to -20.3 ppm in CDCl₃) are comparable to that of *closo*-2,3-C₂B₅H₇ (B7: -17.9 ppm) [10]. By contrast, the chemical shift for *closo*-1-butenyl-2,3-C₂B₅H₆ (B7: -25.0 ppm) differs considerably from that of *closo*-2,3-C₂B₅H₇ [10].

The Pd-catalyzed reactions could be easily monitored by the stepwise color change and by ¹¹B NMR:

Scheme 3.

the yellow solution of 2b in THF turned to red upon addition of a catalytic amount of Pd(PPh₃)₄, and again gradually to yellow after the corresponding zinc reagents were added. It is noteworthy that the Pd-catalyzed cross coupling in the present work was achieved at ambient temperature (48-72 h), whereas in most of the reported Pd-catalyzed coupling reactions involving halogenated borane or other carborane clusters, either heating or longer reaction time or both are needed [16-22]. The initial attempt to obtain 2d by heating the THF solution at reflux led only to a mixture of 2d and unidentified carborane species. The effort to obtain the proposed oxidative addition intermediate $2,3-\text{Et}_2\text{C}_2\text{B}_5-\text{Pd}(\text{PPh}_3)_2\text{I}$ by reacting **2b** and Pd(PPh_3)_4 in THF at room temperature was not successful, instead red crystals of trans-Pd(PPh₃)₂I₂ [23] were observed, which was also formed in a trace amount in the preparation of 2d. The desilylation reaction of 2d with n-Bu₄NF in THF did not lead to a terminal carboranylacetylene, only degradation of the cluster occurred.

A similar reaction of 1 with cis-Cl₂B(Et)C=C(Et)-BCl₂ produced compound **3** (Scheme 3), in which two closo-2,3-C₂B₅ clusters are linked via a C=C double bond unit. Its ¹¹B NMR spectrum exhibits broad signals at 6.2 (B4,6), 2.9 (B5), -4.7 (B1), and -21.5 (B7) ppm. The mass spectrum shows the molecular ion peak with correct isotopic envelope.

The reactions of 2c,d with $Co_2(CO)_8$ afforded the dicobaltatetrahedrane derivatives 4c,d as brown oils, each having the C2B5 and Co2C2 clusters connected by a B-C bond. As observed for the benzene-centered triscarboranyl compound 1,3,5-(closo-Et₂C₂B₅H₄)₃C₆H₃ [11], our attempt to purify

Scheme 4.

compounds **4c,d** by column chromatography on silica gel or sand led to mixtures of **4c,d** and the *nido*-C₂B₄clusters **5c,d**, respectively, formed by elimination of a BH group [as B(OH)₃ in a "decapitation" reaction [24] of **4c,d** with H₂O and protonation to give **5c,d**].

The ¹¹B NMR spectrum of **4c** (in hexane, before column chromatography) exhibits signals at 7.2 (B4,6), 2.9 (B5), -5.6 (B7), and -20.5 (B1) ppm in a ratio of 2:1:1:1. After chromatography new signals appeared at -2.8 and -35.6 ppm, indicating the formation of **5c**. Additionally, the mass spectra of **4c/5c** exhibit the molecular ion peaks at m/z = 527 and m/z = 517, respectively, and the characteristic fragments of sequential loss of the six carbonyl ligands. The ¹¹B NMR and MS spectra of **4d/5d** provide similar information.

No reaction was observed between **2c** and CpCo-(CO)₂ (Cp = η^{5} -C₅H₅) in refluxing toluene (1 week) as monitored by ¹¹B NMR. However, adding [CpCo-(C₂H₄)₂] to this mixture and refluxing for additional 6 days led to a brown mixture (after filtration through a pad of sand), in which the C₂B₅-substituted CpCo(cyclobutadiene) complex **6c**, the C₂B₄substituted analog **6d** (from partial decapitation of **6c**), and the partial degradation (of **2c**) product **7c** (Scheme 5) were detected, with the latter two being the minor species (¹¹B NMR: $\delta = 6.3, 2.2, -4.0, -16.6,$ -19.6, -45.1 ppm; EI-MS: m/z = 606 for **6c**, 597 for **6d**, and 232 for **7c**, respectively). Compounds **6d** and **7c** may be formed in a way similar to **5c,d**. No evidence was found for cyclotrimerization in this case.

Conclusion

Apically functionallized *closo*-1-R-2,3-Et₂C₂B₅H₄ compounds (R = Br, I, C₂Ph) (**2a-c**) have been prepared either by treatment of the *nido*-2,3-Et₂C₂B₄H₄²⁻ dianion (**1**) with BX₃ (X = Br, I) or PhC≡CBcat. A more efficient pathway to apically alkynyl-substituted derivatives was developed *via* Pd-catalyzed Negishitype cross-coupling reactions of **2b** with R'C≡CZnCl at room temperature to give *closo*-1-C≡CR'-2,3-Et₂C₂ B₅H₄ (**2d-f**, R' = SiMe₃, Me, *t*Bu). Compound **3** with two C₂B₅ moieties linked *via* a C=C unit was obtained by a similar boron insertion reaction with

cis-Cl₂B(Et)C=C(Et)BCl₂. The reactions of carboranylacetylenes **2c,d** with Co₂(CO)₈ afforded **4c,d**, in which a *closo*-C₂B₅ and a *nido*-Co₂C₂ cluster are connected by a B-C bond. Compounds **4c,d** lost the apical boron atom on silica gel to give *nido*-C₂B₄-Co₂C₂ **5c,d**. The formation of the carboranylsubstituted CpCo(cyclobutadiene) complex **6c** was observed in the reaction of **2c** with CpCo(C₂H₄)₂.

Experimental Section

All reactions and manipulations were performed in dry glassware under argon or nitrogen using standard Schlenk techniques. Solvents were dried, distilled, and saturated with nitrogen. NMR specta were recorded on a Bruker DRX 200 spectrometer (¹H: 200.13 MHz, ¹¹B: 64.21 MHz, ¹³C: 50.32 MHz) in CDCl₃ and C₆D₆ as solvents. Et₂O•BF₃ was used as the external standard for ¹¹B NMR. As internal references for ¹H and ¹³C NMR, the signals of the deuterated solvents were used and the shifts calculated relative to TMS. MS: ZAB-2F VH Micromass CTD spectrometer, and a JEOL MS Station JMS 700 spectrometer. *nido*-2,3-Et₂C₂B₄H₆ was kindly provided by Prof. R. N. Grimes (Charlottesville, USA).

1-Bromo-2,3-diethyl-2,3-dicarbaheptaborane(7) (2a)

2,3-Et₂C₂B₄H₆ (250 mg, 1.91 mmol) in diethyl ether (30 ml) was treated with n-BuLi (2.5 M in hexane, 1.55 ml, 3.8 mmol) at -65 °C. The solution was stirred for 4 h at r.t., then the solvent removed in vacuo, the residue dissolved in toluene (15 ml) and cooled to -20 °C. A solution of BBr₃ (550 mg, 2.2 mmol) in toluene (15 ml) was added dropwise. The reaction mixture was warmed to r.t. and stirred overnight. All volatiles were removed, the white residue was extracted with hexane (30 ml) and filtered to give a slight yellow filtrate, which was dried in vacuo to leave **2a** as a yellow oil (298 mg, 71%). $-{}^{1}H{}^{11}B{}$ NMR (CDCl₃): $\delta = 1.36$ (t, 6 H, ${}^{3}J_{\text{H,H}} = 7.6$ Hz, CH₃), 2.64 (q, 4 H, ${}^{3}J_{\text{H,H}} = 7.6$ Hz, CH₂), 3.4 (br., 1 H, B5-H), 4.2 (br., 2 H, B4,6-H), signal for B7-H n.o. $-{}^{11}$ B NMR (CDCl₃): $\delta = 6.3$ (d, $J_{B,H} = 170$ Hz, B4,6), 1.2 (d, $J_{B,H} = 170$ Hz, B5), -17.4 (s, B1), -23.6 (d, $J_{B,H} = 180$ Hz, B7). - ¹³C NMR (CDCl₃): δ = 13.2 (CH₃), 22.1 (CH₂), 113.5 (br., C_{cage}). – EI-MS: m/z (%) = 220 (100) [M⁺], 205 (36) [M⁺ – Me]. – HR-MS (EI): m/z = 220.0751 [M⁺]; calcd. for ${}^{12}C_6{}^{1}H_{14}{}^{11}B_5{}^{79}Br$ 220.0744 ($\Delta m = 0.7 \text{ mmu}$).

1-Iodo-2,3-diethyl-2,3-dicarbaheptaborane(7) (2b)

Similar procedure as described for **2a**. 2,3-Et₂C₂B₄H₆ (165 mg, 1.26 mmol), *n*-BuLi (2.5 M in hexane, 1 ml, 2.5 mmol), BI₃ (498 mg, 1.27 mmol). **2b** was obtained as a yellow oil (320 mg, 95%). $-^{1}$ H NMR (CDCl₃): $\delta = 1.38$ (t, 6 H, $^{3}J_{H,H} = 7.8$ Hz, CH₃), 2.61 (q, 4 H, $^{3}J_{H,H} = 7.8$ Hz,

CH₂). $-^{11}$ B NMR (CDCl₃): $\delta = 6.7$ (d, $J_{B,H} = 173$ Hz, B4,6), 1.9 (d, $J_{B,H} = 173$ Hz, B5), -18.3 (d, $J_{B,H} = 180$ Hz, B7), -31.9 (s, B1). $-^{13}$ C NMR (CDCl₃): $\delta = 13.3$ (CH₃), 22.4 (CH₂), 113.9 (br., C_{cage}). -EI-MS: m/z (%) = 267 (100) [M⁺], 112 (28) [M⁺ - I - C₂H₄].

1-Phenylethynyl-2,3-diethyl-2,3-dicarbaheptaborane(7) (2c)

Similar procedure as described for **2a**. 2,3-Et₂C₂B₄H₆ (340 mg, 2.6 mmol), *n*-BuLi (2.5 M in hexane, 2.1 ml, 5.25 mmol), PhC≡CBcat (570 mg, 2.6 mmol). **2c** was obtained as an orange red oil (393 mg, 63%). – ¹H NMR (CDCl₃): $\delta = 1.48$ (t, 6 H, ³J_{H,H} = 7.6 Hz, CH₃), 2.82 (q, 2 H, ³J_{H,H} = 7.6 Hz, CH₂), 2.82 (q, 2 H, ³J_{H,H} = 7.4 Hz, CH₂), 7.37 (m, 5 H, Ph). – ¹¹B NMR (CDCl₃): $\delta = 6.4$ (br, B4,6), 1.8 (br, B5), –16.1 (s, B1), –18.7 (br, B7). – ¹³C NMR (CDCl₃): $\delta = 13.6$ (CH₃), 22.5 (CH₂), 94.1 (PhC≡), 115.1 (br, C_{cage}), 122.5, 128.2, 128.7, 132.0 (Ph), signal for B-C≡ n.0. – EI-MS: m/z (%) = 241 (100) [M⁺], 226 (34) [M⁺ – Me]. – HR-MS (EI): m/z = 242.1986 [M⁺]; calcd. for ¹²C₁₄¹H₁₉¹¹B₅ 242.1952 (Δ m = 3.4 mmu).

I-Trimethylsilylethynyl-2,3-diethyl-2,3-dicarbaheptaborane(7) (2d)

The zinc reagent was prepared by treatment of Me₃SiC \equiv CLi (preformed from Me₃SiC \equiv CH and *n*-BuLi, 218 mg, 2.1 mmol) with a solution of ZnCl₂ (286 mg, 2.1 mmol) in THF (6.5 ml) at -10 °C, and stirred at r. t. for 2 h. In another flask, a solution of 2b (534 mg, 2 mmol) in THF (10 ml) was added to a solution of Pd(PPh₃)₄ (75 mg, 0.065 mmol) in THF (10 ml). To the resulting red solution the zinc reagent was added at r.t. The reaction mixture became yellow during 1 h. After completion all volatiles were removed in vacuo, the brown residue was extracted with hexane (40 ml) and filtered. The yellow filtrate was dried to give 2d as an orange red oil (340 mg, 72%). After NMR measurement in CDCl₃, pieces of red crystals were formed, which were identified by X-ray analysis to be trans-Pd(PPh₃)₂I₂. – ¹H{¹¹B} NMR (CDCl₃): δ = 0.02 (s, 9 H, SiMe₃), 1.36 (t, 6 H, ${}^{3}J_{H,H} = 7.6$ Hz, CH₃), 2.71 (q, 4 H, ${}^{3}J_{\rm H,H} = 7.6$ Hz, CH₂), 3.7 (br., 1 H, B5-H), 4.2 (br., 2 H, B4,6-H), -1.7 (br., 1 H, B7-H). - ¹¹B NMR (CDCl₃): $\delta = 6.3$ (br., B4,6), 1.5 (br., B5), -17.4 (s, B1), -19.1 (br., B7). $-{}^{13}$ C NMR (CDCl₃): $\delta = -0.39$ (SiMe₃), 13.4 (CH₃), 22.4 (CH₂), 102.4 (Me₃SiC \equiv), 114.8 (br., C_{cage}), signal for B-C \equiv n.o. – ²⁹Si NMR (CDCl₃): δ = –19.4. – EI-MS: m/z (%) = 237 (16) [M⁺], 222 (100) [M⁺ – Me]. – HR-MS (EI): $m/z = 238.2050 \text{ [M^+]}$; calcd. for ${}^{12}\text{C}_{11}{}^{1}\text{H}_{23}{}^{11}\text{B}_5{}^{28}\text{Si}$ 238.2035 ($\Delta m = 1.5 \text{ mmu}$).

1-Methylethynyl-2,3-diethyl-2,3-dicarbaheptaborane(7) (2e)

Similar procedure as described for **2d**. MeC≡CLi (115 mg, 2.5 mmol), ZnCl₂ (240 mg, 2.5 mmol), **2b** (534 mg,

2 mmol), Pd(PPh₃)₄ (40 mg, 0.035 mmol). **2e** was obtained as a yellow oil (297 mg, 85%). $^{-1}$ H{¹¹B} NMR (CDCl₃): $\delta = 1.37$ (t, 6 H, $^{3}J_{H,H} = 7.7$ Hz, CH₃), 1.63 (s, 3 H, Me), 2.70 (q, 2 H, $^{3}J_{H,H} = 7.7$ Hz, CH₂), 2.71 (q, 2 H, $^{3}J_{H,H} = 7.7$ Hz, CH₂), 3.7 (br., 1 H, B5-H), 4.2 (br., 2 H, B4,6-H), -1.5 (br., 1 H, B7-H). $^{-11}$ B NMR (CDCl₃): $\delta = 6.3$ (d, $J_{B,H} = 165$ Hz, B4,6), 2.2 (d, $J_{B,H} = 170$ Hz, B5), $^{-16.3}$ (s, B1), $^{-20.3}$ (d, $J_{B,H} = 168$ Hz, B7). $^{-13}$ C NMR (CDCl₃): $\delta = 4.2$ (Me), 13.5 (CH₃), 22.3 (CH₂), 102.4 (MeC \equiv), 114.7 (br., C_{cage}), signal for B-C \equiv n.o.. – EI-MS: m/z (%) = 179 (100) [M⁺], 164 (82) [M⁺ – Me]. – HR-MS (EI): m/z = 180.1801 [M⁺]; calcd. for $^{12}C_9^{-1}H_{17}^{-11}B_5$ 180.1796 ($\Delta m = 0.5$ mmu).

1-tert-Butylethynyl-2,3-diethyl-2,3-dicarbaheptaborane(7) (**2f**)

Similar procedure as described for **2d**. *t*BuC≡CH (175 mg, 2.1 mmol), *n*BuLi (2.5 M in hexane, 0.9 ml, 22 mmol), ZnCl₂ (299 mg, 2.5 mmol), **2b** (534 mg, 2 mmol), Pd(PPh₃)₄ (75 mg, 0.065 mmol). **2f** was obtained as a yellow oil (292 mg, 66%). $^{-1}$ H{¹¹B} NMR (CDCl₃): $\delta = 1.05$ (s, 9 H, *t*Bu), 1.36 (t, 6 H, $^{3}J_{H,H} = 7.6$ Hz, CH₃), 2.71 (q, 4 H, $^{3}J_{H,H} = 7.6$ Hz, CH₂), 3.74 (br., 1 H, B5-H), 4.22 (br., 2 H, B4,6-H), $^{-1.5}$ (br., 1 H, B7-H). $^{-11}$ B NMR (CDCl₃): $\delta = 6.4$ (d, $J_{B,H} = 159$ Hz, B4,6), 1.3 (d, $J_{B,H} = 199$ Hz, B5), $^{-15.9}$ (s, B1), $^{-20.2}$ (d, $J_{B,H} = 169$ Hz, B7). $^{-13}$ C NMR (CDCl₃): $\delta = 13.3$ (CH₃), 22.3 (CH₂), 29.7, 30.6 (*t*Bu), 104.2 (*t*BuC =), 114.6 (br., C_{cage}), signal for B-C≡ n. o.. $^{-}$ EI-MS: m/z (%) = 221 (39) [M⁺], 206 (100) [M⁺ - Me]. - HR-MS (EI): m/z = 222.2273 [M⁺]; calcd. for $^{12}C_{12}^{-1}H_{23}^{-11}B_5$ 222.2265 ($\Delta m = 0.8$ mmu).

3,4-Bis[2',3'-*diethy*]-2',3'-*dicarbaheptaborany*](7)-1']-3-*hexene* (**3**)

Similar procedure as described for **2a**. 2,3-Et₂C₂B₄H₆ (241 mg, 1.84 mmol), *n*-BuLi (2.5 M in hexane, 1.5 ml, 3.75 mmol), *cis*-3,4-bis(dichloroboryl)-3-hexene (227 mg, 0.92 mmol). **3** was obtained as a yellow oil (300 mg, 90%). – ¹H NMR (CDCl₃): $\delta = 0.61$ (t, 6 H, ³*J*_{H,H} = 7.5 Hz, Et-CH₃), 1.23 (t, 6 H, ³*J*_{H,H} = 7.5 Hz, cage-CH₃), 1.47 (q, 4 H, ³*J*_{H,H} = 7.5 Hz, Et-CH₂), 2.67 (q, 2 H, ³*J*_{H,H} = 7.6 Hz, cage-CH₂). – ¹¹B NMR (CDCl₃): $\delta = 6.2$ (br, B4,6), 2.9 (br, B5), –4.7 (s, B1), –21.5 (br, Hz, B7). – ¹³C NMR (CDCl₃): $\delta = 13.9$, 14.1 (CH₃), 22.9, 26.5 (CH₂), 114.6 (br, C_{cage}), 144 (br, C=C). – EI-MS: *m/z* (%) = 362 (100) [M⁺], 333 (680) [M⁺ – Et]. – HR-MS (EI): *m/z* = 364.3893 [M⁺]; calcd. for ¹²C₁₈¹H₃₈¹¹B₁₀ 364.3904 ($\Delta m = -1.1$ mmu).

Dicobaltatetrahedrane-substituted closo- C_2B_5 and nido- C_2B_4 carboranes **4c**, **5c**

A solution of 2c (196 mg, 0.81 mmol) in hexane (15 ml) was added to a solution of $Co_2(CO)_8$ (276 mg, 0.81 mmol)

in hexane (15 ml) at -40 °C. The reaction mixture was warmed up to r.t. and stirred for 5 days to give a deep red solution. The transformation was complete as monitored by ¹¹B NMR. The solvent was removed, the dark brown residue was taken up with CH₂Cl₂ (2 ml) and chromatographed (Florisil[®], hexane). A brown fraction was obtained and dried to give a brown oil (302 mg), which was identified to be a mixture of 4c and 5c (*ca.* 4 : 1). 4c: ¹H NMR (CDCl₃): $\delta = 1.31$ (br., 6 H, CH₃), 2.75 (br., 4 H, CH₂), 7.33 (br., 5 H, Ph). – ¹¹B{¹H} NMR (hexane): $\delta = 7.2$ (B4,6), 2.9 (B5), -5.6 (B1), -20.5 (B7); $-^{11}$ B NMR (CDCl₃): $\delta =$ 6.7 (br., B4,6), 2.1 (br., B5), -6.3 (B1), -21.1 (d, $J_{B,H} =$ 150 Hz, B7). – ¹³C NMR (CDCl₃): δ = 14.0 (CH₃), 22.2 (CH₂), 115.5 (br., C_{cage}), 128.0, 128.8, 129.4, 137.7 (Ph), 199.2 (CO). – EI-MS: m/z (%) = 527 (2) [M⁺], 499 (5) $[M^+ - CO], 471$ (3) $[M^+ - 2CO], 443$ (12) $[M^+ - 3CO],$ 415 (42) $[M^+ - 4CO]$, 387 (28) $[M^+ - 5CO]$, 359 (37) $[M^+ - 6CO]$, 241 (100) $[M^+ - 6CO - 2Co]$. – HR-MS (EI): m/z = 528.0262 [M⁺]; calcd. for ${}^{12}C_{20}{}^{1}H_{19}{}^{11}B_5Co_2O_6$ 528.0311 ($\Delta m = -4.9$ mmu); 5c: ¹H NMR (CDCl₃): $\delta =$ -1.22 (br., 2 H, BHB), 0.88 (br., 6 H, CH₃), 2.40 (br., 4 H, CH₂), 7.42 (br., 5 H, Ph). – ¹¹B NMR (CDCl₃): $\delta = 6.7$ (br.), -2.8 (br.), -35.6 (apical boron). -¹³C NMR (CDCl₃): $\delta = 14.9$ (CH₃), 24.5 (CH₂), signals for the other carbon atoms are weak. – EI-MS: m/z (%) = 517 (2) [M⁺], 489 (5) $[M^+ - CO]$, 461 (5) $[M^+ - 2CO]$, 434 (12) $[M^+ - 3CO]$, 406 (10) $[M^+ - 4CO]$, 378 (15) $[M^+ - 5CO]$, 350 (18) $[M^+ - 6CO]$, 231 (100) $[M^+ - 6CO - 2Co]$.

Dicobaltatetrahedrane-substituted closo- C_2B_5 and nido- C_2B_4 carboranes 4d, 5d

Similar procedures as described for **4c/5c**. **2d** (196 mg, 0.81 mmol), $Co_2(CO)_8$ (324 mg, 0.95 mmol). A brown oil was obtained which was identified to be a mixture of **4d/5d** (*ca.* 7 : 1) (300 mg, *ca.* 57%) after the reaction mixture was filtered on a pad of sand. **4d**: ¹H NMR (C₆D₆): $\delta = 0.2$ (br., SiMe₃), 1.3 (br., CH₃), 2.2 - 2.4 (br., CH₂). - ¹¹B{¹H} NMR (hexane): $\delta = 7.2$ (B4,6), 2.5 (B5), -6.4 (B1), -20.9 (B7); - ¹¹B NMR (C₆D₆): $\delta = 6.8$ (br. d, $J_{B,H} = 135$ Hz, B4,6), 1.2 (br., B5), -6.9 (B1), -21.4 (br. d, $J_{B,H} = 179$ Hz, B7). - ¹³C NMR (C₆D₆): $\delta = -0.30$ (SiMe₃), 13.6 (CH₃), 21.8

(CH₂), 115.5 (br., C_{cage}), 200.3 (CO). $-^{29}$ Si NMR (C₆D₆): $\delta = 38.3. - \text{EI-MS}$: m/z (%) = 523 (2) [M⁺], 495 (12) [M⁺ - CO], 467 (6) [M⁺ - 2CO], 439 (20) [M⁺ - 3CO], 411 (51) [M⁺ - 4CO], 383 (41) [M⁺ - 5CO], 355 (46) [M⁺ - 6CO]. - HR-MS (EI): m/z = 524.0362 [M⁺]; calcd. for $^{12}C_{17}^{-1}H_{23}^{-11}B_5Co_2O_6^{-28}Si 524.0393 (\Delta m = -3.1 mmu);$ 5d: ^{11}B NMR (C₆D₆): $\delta = 6.8$ (br.), -2.9 (br.), -36.5 (apical boron). $-^{13}C$ NMR (C₆D₆): $\delta = 13.9$ (CH₃), 21.9 (CH₂), signals for the other carbon atoms are weak. - EI-MS: m/z (%) = 514 (1) [M⁺], 486 (15) [M⁺ - CO], 458 (9) [M⁺ - 2CO], 430 (16) [M⁺ - 3CO], 402 (6) [M⁺ - 4CO], 374 (13) [M⁺ - 5CO], 346 (15) [M⁺ - 6CO]. - HR-MS (EI): m/z = 514.0335 [M⁺]; calcd. for $^{12}C_{17}^{-1}H_{24}^{-11}B_4Co_2O_6^{-28}Si$ 514.0378 ($\Delta m = -4.3$ mmu).

(Cyclopentadienyl)[1,3-bisdicarbaheptaboranyl(7)-2,4diphenylcyclobutadiene] cobalt complex **6c**

To a solution of 2c (195 mg, 0.81 mmol) in toluene (20 ml) was added a portion of CpCo(CO)₂ (81 mg, 0.45 mmol) at r.t.. The deep red mixture was heated at reflux and monitored by ¹¹B NMR. After one week, $CpCo(C_2H_4)_2$ (100 mg, 0.55 mmol) was added and the resulting mixture was again heated at 70 °C (oil bath) for 6 days. After cooling the brown mixture was dried to give a brown residue, which was extracted with hexane and filtered through a pad of sand. The filtrate was dried in vacuo, leaving a dark brown oil, which was identified to be a mixture of 6c, 6d and 7c. -¹¹B NMR (toluene): $\delta = 6.3, 2.2, -4.0, -16.6, -19.6,$ -45.1(w) ppm. - EI-MS: m/z (%) = 606 (10) [6c⁺], 597 (100) $[6d^+]$, 365 (27) $[6c^+ - 2c]$, 232 (32) $[7c^+]$. – HR-MS (EI): m/z = 608.3672 [6c⁺]; calcd. for ${}^{12}C_{33}{}^{1}H_{43}{}^{11}B_{10}C_{0}$ 608.3627 ($\Delta m = 4.5 \text{ mmu}$); m/z = 232.1932 [7c⁺]; calcd. for ${}^{12}C_{14}{}^{1}H_{20}{}^{11}B_4$ 232.1932 ($\Delta m = -0.5$ mmu).

Acknowledgements

Support of this work by the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm Polyeder and SFB 623) and the Fonds der Chemischen Industrie is gratefully acknowledged. We like to thank Prof. Russell N. Grimes (Charlottesville, USA) for providing the *nido*-2,3-Et₂C₂B₄H₆, and Dr. Chunhua Hu (RWTH, Aachen) for identifying Pd(PPh₃)₂I₂ from a sample of **2d**.

- R. N. Grimes, catboranes, Academic Press, New York (1970).
- [2] B. Stibr, Chem. Rev. 92, 225 (1992).
- [3] T. Onak, in E. W. Abel, F. G. A. Stone, G. Wilkinson (eds): Comprehensive Organometallic Chemistry, Vol. 1, p. 217, Pergamon, Oxford (1995).
- [4] M. L. McKee, J. Am. Chem. Soc. 110, 5317 (1988), and references therein.
- [5] R. R. Rietz, R. Schaeffer, J. Am. Chem. Soc. 93, 1263 (1971).
- [6] J. S. Beck, A. P. Kahn, L. G. Sneddon, Organometallics 5, 2552 (1986).
- [7] J.S. Beck, L.G. Sneddon, Inorg. Chem. 29, 295 (1990).
- [8] J. S. Beck, W. Quintana, L. G. Sneddon, Organometallics 7, 1015 (1988).

- [9] K. Su, P. J. Fazen, P. J. Carrol, L. G. Sneddon, Organometallics 11, 2715 (1992).
- [10] J. W. Bausch, D. J. Matoka, P.J. Carrol, L. G. Sneddon, J. Am. Chem. Soc. **118**, 11423 (1996), and references therein.
- [11] M. Bluhm, H. Pritzkow, W. Siebert, R.N. Grimes, Angew. Chem. **112**, 4736 (2000); Angew. Chem. Int. Ed. **39**, 4562 (2000).
- [12] Y. Nie, S. Schwiegk, H. Pritzkow, W. Siebert, Eur. J. Inorg. Chem. 1630 (2004).
- [13] M. F. Hawthorne, P. A. Wegner, J. Am. Chem. Soc. 90, 896 (1968).
- [14] B. Wrackmeyer, H.-J. Schanz, W. Milius, C. McCammon, Coll. Czech. Chem. Commun. 64, 977 (1999).
- [15] M. Bühl, P. v. R. Schleyer, Z. Havlas, D. Hnyk, S. Hermanek, Inorg. Chem. 30, 3107 (1991) and refs. therein.
- [16] L. I. Zakharkin, V. A. Olshevskaya, Synth. React. Inorg.-Org. Chem. 21, 1041 (1991).

- [17] T. Peymann, C.B. Knobler, M.F. Hawthorne, Inorg. Chem. 37, 1544 (1998).
- [18] L. Eriksson, I.P. Beletskaya, V.I. Bregadze, I.B. Sivaev, S. Sjöberg, J. Organomet. Chem. 657, 267 (2002).
- [19] H. Yao, M. Sabat, R. N. Grimes, P. Zanello, F. Fabrizi de Biani, Organometallics 22, 2581 (2003).
- [20] R.G. Kultyshev, S. Liu, H.T. Leung, J. Liu, S.G. Shore, Inorg. Chem. 42, 3199 (2003).
- [21] Y. Nie, H. Pritzkow, W. Siebert, Eur. J. Inorg. Chem. 2425 (2004).
- [22] I. P. Beletskaya, V. I. Bregadze, V. A. Ivushkin, P. V. Petrovskii, I. B. Sivaev, S. Sjöberg, G. G. Zhigareva, J. Organomet. Chem. 689, 2920 (2004).
- [23] M. Kubota, S. Ohba, Y. Saito, Acta Crystallogr. Section C, 47, 1727 (1991).
- [24] R. G. Swisher, E. Sinn, R. N. Grimes, Organometallics 4, 890 (1985).