A Highly Efficient and Stereoselective Cycloaddition of Nitrones to *N*-Vinylpyrroles

Alexander P. Molchanov,*^a Ruslan S. Savinkov,^a Alexander V. Stepakov,^a Galina L. Starova,^a Rafael R. Kostikov,^a Victoriya S. Barnakova,^b Andrey V. Ivanov^b

- ^a Department of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, 198504 Saint Petersburg, Russian Federation Fax +7(812)4286939; E-mail: s.lab@pobox.spbu.ru
- ^b A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation

Received: 02.10.2013; Accepted after revision: 29.11.2013

Abstract: 1,3-Dipolar cycloadditions of a number of *C*-aryl, *C*-carbamoyl-, and *C*,*C*-bis(methoxycarbonyl)nitrones and substituted *N*-vinylpyrroles proceed with high efficiency and regioselectivity with the formation of only one isomeric substituted 5-(1*H*-pyrrol-1-yl)isoxazolidine cycloadduct.

Key words: pyrroles, nitrones, isoxazolidines, cycloaddition, stereoselectivity

1,3-Dipolar cycloaddition is as one of the most powerful tools to create five-membered *N*,*O*-heterocycles. In particular, dipolar cycloaddition of nitrones as 1,3-dipoles to C=C bonds of different alkenes allows access to a variety of isoxazolidines. These cycloadducts have attracted considerable attention due to the potential biological activity of isoxazolidines, and as promising precursors for the synthesis of such natural products as β -lactam antibiotics and alkaloids through reductive cleavage of the N–O bond.¹ Earlier, it was shown that the regio- and stereoselectivity of the reaction of nitrones with cyclopropenes and methylenecyclopropanes substantially depends on substitution on the double bond.²

Pyrroles and its derivatives are amongst the most important fundamental structural units of biologically and physiologically active molecules such as chlorophyll, porphyrins, hemoglobin, vitamin B_{12} and others.³ The development of synthetic strategies for the preparation of pyrrolyl- or indolyl-triazoles, as well as pyrrolyl-imidazole ensembles, remains the subject of a steadily growing number of investigations.^{4,5}

Herein, we disclose an efficient method for the synthesis of isoxazolidines, containing a pyrrolyl substituent at position 5. The method comprises the 1,3-dipolar cycloaddition of nitrones to the double bond of 2-phenyl-1-vinyl-1*H*-pyrrole (1), 2-(thien-2-yl)-1-vinyl-1*H*-pyrrole (2), and 1-vinyl-4,5,6,7-tetrahydro-1*H*-indole (3), easily available via the Trofimov reaction.⁶ It was found that *C*,*N*-diaryl-nitrones **4a**–**d** and *N*-aryl-*C*-carbamoylnitrones **5a**–**d** reacted with vinylpyrroles **1–3** in toluene at reflux (110 °C)

SYNTHESIS 2014, 46, 0771–0780 Advanced online publication: 07.02.2014 DOI: 10.1055/s-0033-1340479; Art ID: SS-2013-T0655-OP © Georg Thieme Verlag Stuttgart · New York for 9–15 hours with high regio- and stereoselectivity to give *cis*- and *trans*-5-(pyrrol-1-yl)isoxazolidines **6** and **7** only (Table 1 and Table 2).

Stereoselectivity of the reaction of C,N-diarylnitrone 4a with pyrrole 2 is lower and diastereomers 6i and 6i' are obtained in a ratio of 10:1.5. Reactions of N-methylnitrone 4e with pyrroles 1-3 require prolonged heating (30-100 h) and they afford modest yields of products, in these cases the starting N-vinylpyrroles were recovered (30– 40%); the ratio of diastereomers 6j–l and 6j'–l' is close to unity. Analysis of the reaction mixture of N-methylnitrone 4e and pyrrole 1 after 40, 100, and 140 hours of heating shows that the ratio of diastereomers does not change. The structure of products 6a-l and 6j'-l' were established on the basis of their spectral data. The *cis* orientation of substituents in adducts 6a-j was established on the basis of the comparison of chemical shifts and coupling constants between isoxazolidine protons and confirmed by X-ray crystal structure analysis of compound **6d** (Figure 1).⁷

The reactions of pyrroles 1-3 with *C*-carbamoylnitrones **5a–d** require significantly shorter reaction times (6 h) compared with nitrones **4a–e** and usually give better yields of cycloadducts (Table 2).

The reaction of nitrones **5a** and **5d** with 2-(thien-2-yl)pyrrole **2** afford two diastereomers **7i**,**j** and **7i'**,**j'** in a 10:1 ratio. The structure of products **7a**–**j** was established on the basis of their spectral data and X-ray crystal structure data for compound **7g** (Figure 2).⁷ From the data obtained, the main isomers of the products **7a**–**j** have a *cis* relationship

$R^{2} \qquad R^{4} + 0 \qquad R^{4} + $													
1–3		4a–e	68	a–l	6i	''							
Pyrrole	Nitrone	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Time (h)	Product	Yield (%)	Ratio ^a (cis/trans)				
1	4a	Ph	Н	Н	Ph	15	6a	81	>20:1				
1	4 b	Ph	Н	Me	Ph	15	6b	90	>20:1				
1	4c	Ph	Н	OMe	Ph	15	6c	85	>20:1				
1	4d	Ph	Н	Cl	Ph	15	6d	80	>20:1				
3	4a	(CH ₂) ₄		Н	Ph	11	6e	95	>20:1				
3	4b	(CH ₂) ₄		Me	Ph	15	6f	78	>20:1				
3	4c	(CH ₂) ₄		OMe	Ph	11	6g	79	>20:1				
3	4d	(CH ₂) ₄		Cl	Ph	9	6h	59	>20:1				
2	4a	2-thienyl	Н	Н	Ph	9	6i/6i′	87 (57 ^b)	10:1.5				
1	4 e	Ph	Н	Cl	Me	30	6j/6j′	30 ^b	10:7				
3	4 e	(CH ₂) ₄		Cl	Me	100	6k/6k′	57 ^b	10:6				
2	4 e	2-thienyl	Н	Cl	Me	35	61, 61′	28 ^b	10:8				

 \mathbb{R}^2

 \mathbb{R}^2

Table 1 Cycloaddition between Nitrones 4a-e and N-Vinylpyrroles 1-3

^a From ¹H NMR analysis of the crude reaction mixture.

^b Isolated yield of pure *cis* isomer.

between the substituents in the 3- and 5-positions on the isoxazolidine ring.

Figure 2 X-ray crystal structure of 7g

The reaction of nitrones **5a–d** with pyrroles **1–3** under microwave heating requires substantially shorter time and

gives the same ratio of diastereomers. The increased steric hindrance of N,C,C-trisubstituted nitrones may cause inversion of the regioselectivity of the 1,3-dipolar cycloaddition reaction,⁸ but in our case the reaction of pyrroles 1– **3** with *N*-aryl-*C*,*C*-bis(methoxycarbonyl)nitrones **8a**–c affords only 5-(pyrrol-1-yl)isoxazolidines **9a–g** in high yields (Table 3).

Cleavage of the N–O bond is the most synthetically useful reaction for the modification of the obtained cycloadducts, which can be done by a variety of methods, including hydrogenation over Raney nickel, Pd/C, or Pd(OH)₂,^{9–13} reaction with Zn/H⁺,^{9,10,14} Mo(CO)₆/H₂O,¹⁵ Zn/Cu(OAc)₂/ AcOH,¹⁶ and SmI₂.¹⁷ As an illustration, in our studies (Scheme 1), adducts **6c** and **7c** were hydrogenated on Pd/CaCO₃ to give 1,3-amino alcohols **10a**,**b** in good isolated yields (~66–95%).

The basic treatment of isoxazolidines suitably activated at the 3-position of the ring has been exploited for a synthetic approach to 3-(alkylamino)furan-2(5*H*)-ones, versatile synthons for β -lactams^{18,19} and (or) β -enaminones.²⁰ Treatment of isoxazolidines **7c**,**d** with sodium hydride or tetrabutylammonium fluoride led to the formation of com-

 R^2

	H ³	R ³ + N ⁺ O ⁻ + NH				+ 4	R^{1}		
1–3	K⁺	∽ 5a–d		7	a–j		7i', j'		
Pyrrole	Nitrone	R ¹	R ²	R ³	\mathbb{R}^4	Product	Yield (%) Conventional he	eating ^a MW ^b	Ratio ^c cis/trans
1	5a	Ph	Н	Н	Н	7a	82	89 ^d	>20:1
1	5b	Ph	Н	Н	Me	7b	84	97 ^d	>20:1
1	5c	Ph	Н	Н	Cl	7c	91	93°	>20:1
1	5d	Ph	Н	Me	Н	7d	85	94 ^d	>20:1
3	5a	(CH ₂) ₄		Н	Н	7e	82	97°	>20:1
3	5b	(CH ₂) ₄		Н	Me	7f	80	83°	>20:1
3	5c	(CH ₂) ₄		Н	Cl	7g	85	93 ^d	>20:1
3	5d	(CH ₂) ₄		Me	Н	7h	87	93°	>20:1
2	5a	2-thienyl	Н	Н	Н	7i/7i′	92 (55 ^d)	_	10:1
2	5d	2-thienyl	Н	Me	Н	7j/7j′	84 (72 ^d)	_	10:1

 Table 2
 Cycloaddition between Nitrones 5a-d and N-Vinylpyrroles 1-3

^a Toluene, 110 °C, 6 h.

^b Microwave, toluene-chlorobenzene (3:1), 100 °C, 40 min.

^c From ¹H NMR analysis of the crude reaction mixture.

^d Isolated yield of pure *cis* isomer.

^e Spectroscopic (NMR) yield.

10b $R = 4-C(O)NH-4-CIC_6H_4$

6C R = 4-MeOC₆H₄ **7c** R = 4-C(O)NH-4-ClC₆H₄

Scheme 1 Hydrogenation of isoxazolidines 6c and 7c

pounds 11a,b (55–75% yield) and 2-phenyl-1*H*-pyrrole (12) (Scheme 2).²¹

In summary, we have demonstrated that the reaction between C,N-diaryl-, N-aryl-C-carbamoyl-, and C,Cbis(methoxycarbonyl)nitrones with 2-phenyl-1-vinyl-1Hpyrrole, 2-(thien-2-yl)-1-vinyl-1H-pyrrole, and 1-vinyl-4,5,6,7-tetrahydro-1H-indole proceeds as a normal 1,3-dipolar cycloaddition with high regioselectivity to give only 5-(pyrrol-1-yl)isoxazolidines in good yields. The hydrogenation of the obtained cycloadducts led to 1,3-amino alcohols and the treatment of the isoxazolidines by a base

Scheme 2 The treatment of isoxazolidines 7c,d with base

afforded 3-(arylamino)-5-hydroxy-1,5-dihydro-2*H*-pyr-rol-2-ones.

All reactions were performed in anhydrous solvents under an argon atmosphere. Toluene was distilled from Na metal/benzophenone. Reaction progress was monitoring using TLC on precoated Silufol UV–254 plates. The IR spectra were measured on a Bruker Tensor 27 spectrophotometer. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using a Bruker DPX-300 spectrometer or Bruker Avance

[©] Georg Thieme Verlag Stuttgart · New York

^a Toluene, 110 °C.

^b Microwave, toluene-chlorobenzene (3:1), 100 °C, 40 min.

^c Spectroscopic (NMR) yield.

^d Isolated yield of pure *cis* isomer.

400. HRMS spectra were obtained with a Bruker-microTOF and Bruker-maXis (QTOF). In microwave experiments used the Discover SP DC7299 apparatus. Nitrones were prepared using known procedures.²²

Cycloaddition Reactions; General Procedure

A mixture of nitrone (1.0 mmol) and *N*-vinylpyrrole (1.3 mmol) in toluene (5 mL) was heated at reflux until TLC showed complete consumption of the nitrone (see Tables 1–3). The solvent was evaporated under reduced pressure, and the residue was subjected to column chromatography (silica gel, petroleum ether–EtOAc) followed by crystallization (EtOH) to give the product. In some cases (MW irradiation), the product was not isolated, and the yield was calculated on the basis of ¹H NMR spectra of the reaction mixture using 1,1,2,2-tetrachloroethane as an internal standard.

2,3-Diphenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)isoxazolidine (6a)

Prepared from nitrone **4a** and pyrrole **1** as a white solid; yield: 296 mg (81%); mp 142–143 °C; $R_f = 0.50$ (9% EtOAc–hexane).

IR (KBr): 3140, 3104, 3060, 3032, 2989, 2951, 1597, 1486, 1464, 1442, 1411, 1296, 1241, 762, 698 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.85 (ddd, *J* = 13.0, 6.7, 6.3 Hz, 1 H), 3.23 (ddd, *J* = 13.0, 7.8, 7.4 Hz, 1 H), 4.83 (dd, *J* = 7.8, 6.7 Hz, 1 H), 6.20 (dd, *J* = 7.4, 6.3 Hz, 1 H), 6.23–6.30 (m, 2 H_{pyrrole}), 6.95–7.04 (m, 4 H_{arom}), 7.18–7.30 (m, 2 H_{arom}), 7.35–7.68 (m, 10 H_{arom}). ¹³C NMR (75 MHz, CDCl₃): δ = 45.9 (CH₂), 70.3 (CH), 84.0 (CH), 109.9 (CH), 110.2 (CH), 116.5 (2 CH), 119.5 (CH), 123.2 (CH), 127.0 (2 CH), 127.9 (CH), 128.2 (CH), 128.9 (2 CH), 129.2 (2 CH), 129.4 (2 CH), 129.9 (2 CH), 133.2 (C), 135.8 (C), 141.0 (C), 150.0 (C).

Anal. Calcd for C₂₅H₂₂N₂O: C, 81.94; H, 6.05; N, 7.64. Found: C, 81.83; H, 6.10; N, 7.57.

2-Phenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)-3-(*p*-tolyl)isoxazolidine (6b)

Prepared from nitrone **4b** and pyrrole **1** as a white solid; yield: 342 mg (90%); mp 132–133 °C; $R_f = 0.53$ (9% EtOAc–hexane).

IR (KBr): 3138, 3097, 3050, 3024, 2968, 2951, 2921, 2876, 1597, 1489, 1464, 1405, 1294, 1237, 762, 702 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.42 (s, 3 H, CH₃), 2.84 (ddd, J = 13.0, 6.7, 6.3 Hz, 1 H), 3.20 (ddd, J = 13.0, 7.8, 7.4 Hz, 1 H), 4.76 (dd, J = 7.8, 6.7 Hz, 1 H), 6.18 (dd, J = 7.4, 6.3 Hz, 1 H), 6.22–6.32 (m, 2 H_{pyrrole}), 6.90–7.05 (m, 4 H_{arom}), 7.15–7.25 (m, 4 H_{arom}), 7.35–7.55 (m, 7 H_{arom}).

 13 C NMR (75 MHz, CDCl₃): δ = 21.6 (CH₃), 46.1 (CH₂), 70.2 (CH), 83.9 (CH), 109.9 (CH), 110.1 (CH), 116.7 (2 CH), 119.6 (CH), 123.2 (CH), 127.0 (2 CH), 127.8 (CH), 128.9 (2 CH), 129.1 (2 CH), 129.9 (2 CH), 130.1 (2 CH), 133.2 (C), 135.8 (C), 137.9 (2 C), 150.7 (C).

HRMS (ESI): m/z [M + K]⁺ calcd for C₂₆H₂₄KN₂O: 419.1520; found: 419.1503.

3-(4-Methoxyphenyl)-2-phenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)isoxazolidine (6c)

Prepared from nitrone 4c and pyrrole 1 as a white solid; yield: 336 mg (85%); mp 117–118 °C; $R_f = 0.35$ (9% EtOAc–hexane).

IR (KBr): 3095, 3073, 3022, 2976, 2939, 2874, 2843, 1598, 1510, 1491, 1465, 1294, 1244, 1172, 756, 702 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 2.84 (ddd, *J* = 13.0, 6.7, 6.3 Hz, 1 H), 3.19 (ddd, *J* = 13.0, 7.8, 7.4 Hz, 1 H), 3.88 (s, 3 H, OCH₃), 4.74 (dd, *J* = 7.8, 6.7 Hz, 1 H), 6.19 (dd, *J* = 7.4, 6.3 Hz, 1 H), 6.25–6.32 (m, 2 H_{pyrrole}), 6.85–7.05 (m, 6 H_{arom}), 7.20–7.30 (m, 2 H_{arom}), 7.35–7.55 (m, 7 H_{arom}).

 13 C NMR (75 MHz, CDCl₃): δ = 46.1 (CH₂), 55.8 (OCH₃), 70.1 (CH), 83.9 (CH), 109.9 (CH), 110.1 (CH), 114.8 (2 CH), 116.8 (2 CH), 119.6 (CH), 123.3 (CH), 127.8 (CH), 128.3 (2 CH), 128.9 (2

CH), 129.1 (2 CH), 129.9 (2 CH), 132.8 (C), 133.3 (C), 135.8 (C), 150.6 (C), 159.6 (C).

Anal. Calcd for $C_{26}H_{24}N_2O_2$: C, 78.76; H, 6.10; N, 7.07. Found: C, 78.58; H, 6.14; N, 7.06.

3-(4-Chlorophenyl)-2-phenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)isoxazolidine (6d)

Prepared from nitrone **4d** and pyrrole **1** as a white solid; yield: 320 mg (80%); mp 152–153 °C; $R_f = 0.48$ (9% EtOAc–hexane).

IR (KBr): 3140, 3063, 3043, 2990, 2952, 1597, 1488, 1463, 1347, 1296, 1240, 762, 693 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 2.79 (ddd, *J* = 13.0, 6.7, 6.3 Hz, 1 H), 3.21 (ddd, *J* = 13.0, 7.8, 7.4 Hz, 1 H), 4.81 (dd, *J* = 7.8, 6.7 Hz, 1 H), 6.19 (dd, *J* = 7.4, 6.3 Hz, 1 H), 6.22–6.32 (m, 2 H_{pyrrole}), 6.90 (s, 1 H_{pyrrole}), 6.95–7.05 (m, 3 H_{arom}), 7.20–7.30 (m, 2 H_{arom}), 7.40–7.55 (m, 9 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 45.9 (CH₂), 69.6 (CH), 84.1 (CH), 110.0 (CH), 110.3 (CH), 116.4 (2 CH), 119.4 (CH), 123.5 (CH), 127.9 (CH), 128.4 (2 CH), 129.0 (2 CH), 129.3 (2 CH), 129.6 (2 CH), 129.9 (2 CH), 133.1 (C), 134.0 (C), 135.9 (C), 139.7 (C), 150.4 (C).

Anal. Calcd for C₂₅H₂₁ClN₂O: C, 74.90; H, 5.28; N, 6.99. Found: C, 74.97; H, 5.35; N, 6.97.

1-(2,3-Diphenylisoxazolidin-5-yl)-4,5,6,7-tetrahydro-1*H*-indole (6e)

Prepared from nitrone 4a and pyrrole 3 as a white solid; yield: 326 mg (95%); mp 98–99 °C; $R_f = 0.39$ (9% EtOAc–hexane).

IR (KBr): 3127, 3089, 3059, 3028, 3001, 2923, 2844, 1598, 1483, 1446, 1372, 1294, 1019, 891, 739, 692 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.72-1.84$ (m, 2 H, CH₂), 1.85–1.99 (m, 2 H, CH₂), 2.48–2.69 (m, 3 H), 2.71–2.88 (m, 2 H, CH₂), 3.18–3.29 (m, 1 H), 4.84–4.95 (m, 1 H), 5.94 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.02–6.09 (m, 1 H), 6.67 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.02–6.09 (m, 1 H), 6.67 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.98–7.11 (m, 3 H_{arom}), 7.23–7.51 (m, 5 H_{arom}), 7.60 (d, J = 7.0 Hz, 2 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 21.9 (CH₂), 23.1 (CH₂), 23.2 (CH₂), 23.5 (CH₂), 44.4 (CH₂), 69.9 (CH), 83.0 (CH), 108.7 (CH), 115.2 (2 CH), 116.2 (CH), 118.8 (C), 122.3 (CH), 126.5 (2 CH), 127.7 (CH), 128.5 (C), 128.9 (2 CH), 129.0 (2 CH), 141.3 (C), 151.0 (C).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{23}H_{25}N_2O$: 345.1961; found: 345.1956.

1-[2-Phenyl-3-(*p*-tolyl)isoxazolidin-5-yl]-4,5,6,7-tetrahydro-1*H*-indole (6f)

Prepared from nitrone **4b** and pyrrole **3** as a white solid; yield: 279 mg (78%); mp 96–97 °C; $R_f = 0.54$ (9% EtOAc–hexane).

IR (KBr): 3122, 3096, 3070, 3035, 2999, 2928, 2849, 2832, 1597, 1485, 1437, 1293, 1206, 793, 759 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.71-1.83$ (m, 2 H, CH₂), 1.84–1.97 (m, 2 H, CH₂), 2.41 (s, 3 H, CH₃), 2.49–2.59 (m, 2 H, CH₂), 2.59–2.69 (m, 1 H), 2.70–2.87 (m, 2 H, CH₂), 3.20 (ddd, J = 13.4, 7.8, 7.4 Hz, 1 H), 4.84 (t, J = 7.8 Hz, 1 H), 5.97–6.08 (m, 2 H, H + H_{pyrrole}), 6.71 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.96–7.05 (m, 1 H_{arom}), 7.06 (d, J = 7.8 Hz, 2 H_{arom}), 7.20–7.31 (m, 4 H_{arom}), 7.47 (d, J = 7.8 Hz, 2 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 21.1 (CH₃), 21.9 (CH₂), 23.0 (CH₂), 23.2 (CH₂), 23.5 (CH₂), 44.6 (CH₂), 69.8 (CH), 82.9 (CH), 108.6 (CH), 115.2 (2 CH), 116.3 (CH), 118.7 (C), 122.2 (CH), 126.4 (2 CH), 128.5 (C), 128.8 (2 CH), 129.6 (2 CH), 137.3 (C), 138.2 (C), 151.0 (C).

Anal. Calcd for $C_{24}H_{26}N_2O;$ C, 80.41; H, 7.31; N, 7.81. Found: C, 80.20; H, 7.34; N, 7.66.

1-[3-(4-Methoxyphenyl)-2-phenylisoxazolidin-5-yl]-4,5,6,7-tetrahydro-1*H*-indole (6g)

Prepared from nitrone **4c** and pyrrole **3** as a yellowish solid; yield: 295 mg (79%); mp 114–117 °C; $R_f = 0.22$ (9% EtOAc–hexane).

IR (KBr): 3073, 3040, 2997, 2938, 2833, 1597, 1513, 1485, 1440, 1304, 1246, 1177, 1036, 798, 760 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.72-1.88$ (m, 2 H, CH₂), 1.85–1.99 (m, 2 H, CH₂), 2.51–2.69 (m, 3 H), 2.73–2.86 (m, 2 H, CH₂), 3.19 (ddd, J = 13.0, 7.8, 7.4 Hz, 1 H), 3.87 (s, 3 H, OCH₃), 4.79–4.88 (m, 1 H), 6.02 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.02–6.09 (m, 1 H), 6.72 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.98 (d, J = 8.5 Hz, 2 H_{arom}), 6.98–7.10 (m, 3 H_{arom}), 7.24–7.32 (m, 2 H_{arom}), 7.50 (d, J = 8.5 Hz, 2 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 21.9 (CH₂), 23.1 (CH₂), 23.2 (CH₂), 23.5 (CH₂), 44.6 (CH₂), 55.3 (CH₃), 69.6 (CH), 82.9 (CH), 108.6 (CH), 114.3 (2 CH), 115.4 (2 CH), 116.2 (CH), 118.7 (C), 122.3 (CH), 127.7 (2 CH), 128.5 (C), 128.8 (2 CH), 133.1 (C), 150.9 (C), 159.1 (C).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{24}H_{27}N_2O_2$: 413.1626; found: 413.1618.

1-[3-(4-Chlorophenyl)-2-phenylisoxazolidin-5-yl]-4,5,6,7-tetrahydro-1*H*-indole (6h)

Prepared from nitrone **4d** and pyrrole **3**; grey solid; yield: 223 mg (59%); mp 152–154 °C; $R_f = 0.34$ (9% EtOAc–hexane).

IR (KBr): 3059, 2996, 2936, 2835, 1597, 1488, 1440, 1370, 1296, 1205, 796, 760 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 1.75-1.84$ (m, 2 H, CH₂), 1.84–1.93 (m, 2 H, CH₂), 2.50–2.69 (m, 3 H, CH₂ + CHCH₂CH), 2.71–2.80 (m, 2 H, CH₂), 3.22 (ddd, J = 13.4, 8.2, 7.4 Hz, 1 H, CHCH₂CH), 4.89 (t, J = 7.4 Hz, 1 H, CHCH₂CH), 6.02 (d, J = 2.6 Hz, 1 H_{pyrrole}), 6.02–6.09 (m, 1 H, CHCH₂CH), 6.61 (d, J = 2.6 Hz, 1 H_{pyrrole}), 7.00–7.07 (m, 3 H_{arom}), 7.26–7.32 (m, 2 H_{arom}), 7.42 (d, J = 8.5 Hz, 2 H_{arom}), 7.53 (d, J = 8.5 Hz, 2 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 21.8 (CH₂), 23.0 (CH₂), 23.2 (CH₂), 23.5 (CH₂), 44.1 (CH₂), 69.2 (CH), 83.0 (CH), 108.9 (CH), 115.1 (2 CH), 116.1 (CH), 118.9 (C), 122.5 (CH), 127.9 (2 CH), 128.6 (C), 129.0 (2 CH), 129.1 (2 CH), 133.4 (C), 139.8 (C), 150.8 (C).

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₂₄ClN₂O: 379.1572; found: 379.1575.

2,3-Diphenyl-5-[2-(thiophen-2-yl)-1*H*-pyrrol-1-yl]isoxazolidine (6i/6i')

Prepared from nitrone **4a** and pyrrole **2**; yield: 301 mg (87%). Crystallization (EtOH) gave *cis*-isomer **6i** as a grey solid; yield: 212 mg (57%); mp 114–115 °C; $R_f = 0.51$ (20% EtOAc–hexane).

IR (KBr): 3142, 3064, 3033, 2986, 2950, 1597, 1486, 1465, 1411, 1290, 764, 702 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ (major isomer) = 2.85 (ddd, J = 13.3, 7.0, 5.5 Hz, 1 H), 3.29 (dt, J = 13.3, 8.1 Hz, 1 H), 4.75–4.84 (m, 1 H), 6.26 (t, J = 3.3 Hz, 1 H_{arom}), 6.31–6.36 (m, 2 H, H + H_{arom}), 6.99–7.07 (m, 4 H_{arom}), 7.12–7.20 (m, 2 H_{arom}), 7.21–7.27 (m, 2 H_{arom}), 7.35–7.41 (m, 2 H_{arom}), 7.41–7.47 (m, 2 H_{arom}), 7.56–7.61 (m, 2 H_{arom}).

¹H NMR (400 MHz, CDCl₃): δ (minor isomer) = 2.91 (dt, J = 13.6, 7.3 Hz, 1 H), 3.26–3.33 (m, 1 H), 4.99–5.08 (m, 1 H), 6.16 (t, J = 3.3 Hz, 1 H_{arom}), 6.37 (dd, J = 3.5, 1.7 Hz, 1 H_{arom}), 6.41 (dd, J = 7.3, 3.4 Hz, 1 H), 6.86–6.95 (m, 4 H_{arom}), 7.12–7.20 (m, 2 H_{arom}), 7.32–7.35 (m, 2 H_{arom}), 7.35–7.41 (m, 2 H_{arom}), 7.41–7.47 (m, 2 H_{arom}), 7.51–7.55 (m, 2 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ (major isomer) = 45.6 (CH₂), 69.7 (CH), 83.3 (CH), 109.6 (CH), 111.4 (CH), 116.3 (2 CH), 119.8 (CH), 122.9 (CH), 125.8 (CH), 126.6 (2 CH), 127.0 (CH), 127.1

(C), 127.4 (CH), 127.8 (CH), 128.7 (2 CH), 129.0 (2 CH), 133.8 (C), 140.4 (C), 150.1 (C).

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₂₁N₂OS: 373.1369; found: 373.1372.

3-(4-Chlorophenyl)-2-methyl-5-(2-phenyl-1*H*-pyrrol-1-yl)isoxazolidine (6j)

Prepared from nitrone **4e** and pyrrole **1** as a white solid; yield: 100 mg (30%); mp 102–103 °C; $R_f = 0.47$ (9% EtOAc–hexane).

IR (KBr): 3104, 3062, 2992, 2958, 2865, 2847, 1600, 1491, 1467, 1400, 1287, 1234, 700 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.65 (s, 3 H, CH₃), 2.67–2.79 (m, 1 H), 3.16 (dt, *J* = 13.7, 8.0 Hz, 1 H), 3.63 (dd, *J* = 10.0, 8.0 Hz, 1 H), 6.07 (dd, *J* = 8.0, 4.8 Hz, 1 H), 6.22–6.30 (m, 1 H_{pyrrole}), 6.33–6.39 (m, 1 H_{pyrrole}), 7.22–7.47 (m, 10 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 43.4 (CH₃), 48.0 (CH₂), 73.3 (CH), 82.7 (CH), 109.5 (CH), 109.9 (CH), 119.5 (CH), 127.5 (CH), 128.9 (2 CH), 129.3 (2 CH), 129.6 (2 CH), 129.8 (2 CH), 133.4 (C), 134.4 (C), 135.3 (C), 136.6 (C).

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₀H₂₀ClN₂O: 339.1259; found: 339.1261.

1-[3-(4-Chlorophenyl)-2-methylisoxazolidin-5-yl]-4,5,6,7-tetrahydro-1*H*-indole (6k, 6k')

Prepared from nitrone **4e** and pyrrole **3** as an oil, mixture of diastereomers; yield: 180 mg (57%); $R_f = 0.28$ (17% EtOAc–hexane).

IR (KBr): 3093, 2991, 2927, 2865, 2847, 1492, 1458, 1367, 1293, 1090, 1014, 829 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ (mixture of isomers) = 1.70–1.82 (m, 3.2 H, major + minor), 1.82–1.95 (m, 3.2 H, major + minor), 2.48–2.57 (m, 3.2 H, major + minor), 2.57–2.76 (m, 4.8 H, major + minor), 2.61 (s, 3 H, CH₃, major), 2.64 (s, 1.8 H, CH₃, minor), 2.86–2.96 (m, 0.6 H, minor), 3.15 (dt, *J* = 13.6, 7.9 Hz, 1 H, major), 3.64 (dd, *J* = 9.6, 7.9 Hz, 1 H, major), 3.80–3.90 (m, 0.6 H, minor), 5.93 (dd, *J* = 7.9, 5.0 Hz, 1 H, major), 5.98 (dd, *J* = 8.3, 4.2 Hz, 0.6 H, minor), 6.06 (d, *J* = 3.0 Hz 1 H_{pyrrole}, major), 6.08 (d, *J* = 2.9 Hz, 0.6 H_{pyrrole}, minor), 6.85 (α , *J* = 2.9 Hz, 0.6 H_{pyrrole}, minor), 7.04 (d, *J* = 3.0 Hz, 1 H_{pyrrole}, major), 7.34–7.45 (m, 6.4 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ (major isomer) = 21.9 (CH₂), 23.1 (CH₂), 23.2 (CH₂), 23.5 (CH₂), 43.0 (CH₃), 46.3 (CH₂), 72.8 (CH), 81.4 (CH), 108.2 (CH), 116.2 (CH), 118.3 (C), 128.0 (C), 128.8 (2 CH), 129.1 (2 CH), 133.9 (C), 136.5 (C).

¹³C NMR (100 MHz, CDCl₃): δ (minor isomer) = 21.9 (CH₂), 23.1 (CH₂), 23.2 (CH₂), 23.5 (CH₂), 43.0 (CH₃), 45.1 (CH₂), 72.1 (CH), 82.0 (CH), 108.8 (CH), 115.5 (CH), 118.7 (C), 128.4 (C), 129.0 (2 CH), 129.0 (2 CH), 134.0 (C), 136.8 (C).

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₂₂ClN₂O: 317.1415; found: 317.1406.

3-(4-Chlorophenyl)-2-methyl-5-[2-(thiophen-2-yl)-1*H*-pyrrol-1-yl]isoxazolidine (6l)

Prepared from nitrone **4e** and pyrrole **2** as an oil; yield: 96 mg (28%); $R_f = 0.42$ (9% EtOAc–hexane).

IR (KBr): 3102, 2992, 2960, 2916, 2872, 2849, 1492, 1463, 1433, 1411, 1282, 1014, 701 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 2.65$ (s, 3 H), 2.65–2.74 (m, 1 H), 3.18 (dt, J = 13.6, 7.9 Hz, 1 H), 3.64 (dd, J = 9.8, 7.9 Hz, 1 H), 6.19 (dd, J = 7.9, 4.7 Hz, 1 H), 6.30–6.34 (m, 2 H_{pytrole}), 7.03–7.08 (m, 1 H_{arom}), 7.08–7.13 (m, 1 H_{arom}), 7.31–7.35 (m, 1 H_{arom}), 7.38–7.47 (m, 5 H_{arom}).

¹H NMR (400 MHz, CDCl₃): δ (minor isomer **6**I') = 2.66 (s, 3 H), 2.68–2.81 (m, 1 H), 2.91 (ddd, *J* = 13.5, 7.2, 3.6 Hz, 1 H), 3.85–4.05 (s, 1 H), 6.23 (dd, *J* = 8.4, 3.6 Hz, 1 H), 6.34–6.37 (m, 2 H_{pyrrole}), 7.09–7.15 (m, 1 H_{arom}), 7.16–7.21 (m, 2 H_{arom}), 7.33–7.44 (m, 5 H_{arom}).

¹³C NMR (100 MHz, CDCl₃): δ = 43.0 (CH₃), 47.5 (CH₂), 72.8 (CH), 82.2 (CH), 109.4 (CH), 110.9 (CH), 119.6 (CH), 125.6 (CH), 126.6 (CH), 126.7 (C), 127.4 (CH), 128.8 (2 CH), 129.1 (2 CH), 134.0 (C), 134.2 (C), 136.2 (C).

¹³C NMR (100 MHz, CDCl₃): δ (minor isomer **6l'**) = 43.1 (CH₃), 72.8 (CH), 82.5 (CH), 109.9 (CH), 111.2 (CH), 118.6 (CH), 125.6 (CH), 126.6 (CH), 127.5 (CH), 129.0 (2 CH), 129.0 (2 CH), 133.6 (C), 134.0 (C), 136.4 (C). Some signals overlapped with signals of major isomer **6l**.

HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₈ClN₂OS: 345.0823; found: 345.0826.

N,2-Diphenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)isoxazolidine-3-carboxamide (7a)

Prepared from nitrone **5a** and pyrrole **1** as a white solid; yield: 350 mg (82%); mp 138–139 °C; $R_f = 0.45$ (20% EtOAc–hexane).

IR (KBr): 3341, 3135, 3059, 3032, 2963, 1685, 1599, 1524, 1490, 1442, 1307, 1243, 758 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.91 (ddd, *J* = 13.7, 9.0, 8.5 Hz, 1 H), 3.26 (ddd, *J* = 13.7, 5.2, 2.6 Hz, 1 H), 4.67 (dd, *J* = 9.0, 2.6 Hz, 1 H), 6.17 (dd, *J* = 8.5, 5.2 Hz, 1 H), 6.27 (m, 1 H_{pyrrole}), 6.30 (m, 1 H_{pyrrole}), 7.05–7.12 (m, 4 H_{arom}), 7.14–7.20 (m, 1 H_{arom}), 7.30–7.60 (m, 9 H_{arom}), 7.72 (d, *J* = 8.0 Hz, 2 H_{arom}), 9.16 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 36.6 (CH₂), 70.3 (CH), 85.3 (CH), 110.4 (CH), 111.1 (CH), 115.0 (CH), 119.0 (CH), 120.5 (2 CH), 124.1 (CH), 125.3 (CH), 128.2 (CH), 128.9 (2 CH), 129.2 (2 CH), 129.5 (2 CH), 129.9 (2 CH), 130.0 (CH), 132.9 (C), 136.2 (C), 137.5 (C), 149.4 (C), 169.1 (CO).

HRMS (ESI): $m/z \,[M + H]^+$ calcd for $C_{26}H_{23}N_3O_2$: 410.1863; found: 410.1865.

2-Phenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)-*N*-(*p*-tolyl)isoxazolidine-3-carboxamide (7b)

Prepared from nitrone **5b** and pyrrole **1** as a white solid; yield: 368 mg (84%); mp 81–82 °C; $R_f = 0.46$ (20% EtOAc–hexane).

IR (KBr): 3371, 3336, 3137, 3105, 3060, 3033, 2968, 2918, 2863, 1681, 1592, 1520, 1489, 1306, 1243, 764, 701 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.37 (s, 3 H, CH₃), 2.90 (ddd, J = 13.7, 9.3, 8.5 Hz, 1 H), 3.26 (ddd, J = 13.7, 5.2, 2.5 Hz, 1 H), 4.65 (dd, J = 9.3, 2.5 Hz, 1 H), 6.16 (dd, J = 8.5, 5.2 Hz, 1 H), 6.20–6.24 (m, 1 H_{pyrrole}), 6.25–6.32 (m, 1 H_{pyrrole}), 7.00–7.10 (m, 4 H_{arom}), 7.12–7.15 (m, 2 H_{arom}), 7.20–7.35 (m, 2 H_{arom}), 7.40–7.62 (m, 7 H_{arom}), 9.20 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 21.3 (CH₃), 36.6 (CH₂), 70.2 (CH), 85.3 (CH), 110.4 (CH), 111.0 (CH), 115.0 (2 CH), 119.1 (CH), 120.5 (2 CH), 124.0 (CH), 128.1 (CH), 128.9 (2 CH), 129.8 (2 CH), 130.0 (2 CH), 130.4 (2 CH), 132.9 (C), 134.9, 135.0 (C), 136.2 (C), 149.5 (C), 168.9 (CO).

HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₇H₂₅N₃NaO₂: 446.1839; found: 446.1841.

N-(4-Chlorophenyl)-2-phenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)isoxazolidine-3-carboxamide (7c)

Prepared from nitrone **5c** and pyrrole **1** as a white solid; yield: 418 mg (91%); mp 113–114 °C; $R_f = 0.55$ (20% EtOAc–hexane).

IR (KBr): 3338, 3135, 3102, 3060, 3034, 2964, 1687, 1590, 1519, 1491, 1400, 1305, 1241, 762, 700 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.83–2.95 (m, 1 H), 3.20–3.32 (m, 1 H), 4.68 (d, *J* = 8.8 Hz, 1 H), 6.17 (dd, *J* = 8.2, 5.6 Hz, 1 H), 6.27–6.30 (m, 1 H_{pyrrole}), 6.31–6.34 (m, 1 H_{pyrrole}), 6.97–7.00 (m, 1 H_{pyrrole}), 7.02–7.15 (m, 3 H_{arom}), 7.25–7.60 (m, 9 H_{arom}), 7.64 (d, *J* = 8.0 Hz, 2 H_{arom}), 9.29 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 36.5 (CH₂), 70.2 (CH), 85.3 (CH), 110.5 (CH), 111.1 (CH), 115.0 (2 CH), 118.8 (CH), 121.7 (2 CH), 124.2 (CH), 128.2 (CH), 128.9 (2 CH), 129.5 (2 CH), 129.9 (2 CH),

130.0 (2 CH), 130.3 (C), 132.8 (C), 136.1 (C), 136.3 (C), 149.2 (C), 169.2 (CO).

HRMS (ESI): $m/z [M + Na]^+$ calcd for $C_{26}H_{22}CIN_3NaO_2$: 466.1293; found: 466.1293.

N-Phenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)-2-(*p*-tolyl)isoxazolidine-3-carboxamide (7d)

Prepared from nitrone **5d** and pyrrole **1** as a white solid; yield: 370 mg (85%); mp 161–162 °C; $R_f = 0.49$ (20% EtOAc–hexane).

IR (KBr): 3335, 3140, 3051, 3011, 2985, 2921, 2860, 1687, 1599, 1520, 1505, 1442, 1413, 1307, 1290, 1245, 814, 762, 752, 695 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 2.33 (s, 3 H), 2.89 (ddd, *J* = 13.7, 9.3, 8.6 Hz, 1 H), 3.26 (ddd, *J* = 13.7, 5.2, 2.6 Hz, 1 H), 4.63 (dd, *J* = 9.3, 2.6 Hz, 1 H), 6.17 (dd, *J* = 8.6, 5.2 Hz, 1 H), 6.27 (m, 1 H_{pyrrole}), 6.29 (m, 1 H_{pyrrole}), 6.95–7.05 (m, 3 H_{arom}), 7.10–7.20 (m, 3 H_{arom}), 7.37–7.60 (m, 7 H_{arom}), 7.70 (d, *J* = 8.0 Hz, 2 H_{arom}), 9.30 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 21.0 (CH₃), 36.5 (CH₂), 70.3 (CH), 85.3 (CH), 110.3 (CH), 111.0 (CH), 115.1 (2 CH), 119.1 (CH), 120.4 (2 CH), 125.3 (CH), 128.1 (CH), 128.9 (2 CH), 129.5 (2 CH), 130.0 (2 CH), 130.4 (2 CH), 132.9 (C), 133.8 (C), 136.2 (C), 137.6 (C), 147.0 (C), 169.2 (CO).

Anal. Calcd for $C_{27}H_{25}N_3O_2{:}$ C, 76.57; H, 5.95; N, 9.92. Found: C, 76.41; H, 6.03; N, 9.82.

N,2-Diphenyl-5-(4,5,6,7-tetrahydro-1*H*-indol-1-yl)isoxazolidine-3-carboxamide (7e)

Prepared from nitrone **5a** and pyrrole **3** as a white solid; yield: 317 mg (82%); mp 109–110 °C; $R_f = 0.49$ (20% EtOAc–hexane).

IR (KBr): 3277, 3132, 3092, 3057, 2928, 2843, 1675, 1597, 1526, 1488, 1442, 1298, 757, 693 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.70-1.80$ (m, 2 H), 1.82–1.92 (m, 2 H), 2.45–2.52 (m, 2 H), 2.53–2.67 (m, 1 H), 2.68–2.80 (m, 1 H), 3.01 (ddd, J = 13.7, 9.3, 8.2 Hz, 1 H), 3.22 (ddd, J = 13.7, 6.1, 3.3 Hz, 1 H), 4.69 (dd, J = 9.3, 3.3 Hz, 1 H), 6.02 (d, J = 3.0 Hz, 1 H), μ_{pyrole} , 6.09 (dd, J = 8.2, 6.1 Hz, 1 H), 6.76 (d, J = 3.0 Hz, 1 H), μ_{pyrole} , 7.10–7.12 (m, 4 H_{arom}), 7.32–7.60 (m, 4 H_{arom}), 7.63 (d, J = 7.8 Hz, 2 H_{arom}), 9.28 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 22.2 (CH₂), 23.4 (CH₂), 23.6 (CH₂), 23.8 (CH₂), 36.4 (CH₂), 69.9 (CH), 84.3 (CH), 110.2 (CH), 114.8 (2 CH), 116.5 (CH), 119.9 (CH), 120.5 (2 CH), 123.9 (CH), 125.2 (C), 129.1 (C), 129.5 (2 CH), 130.0 (2 CH), 137.5 (C), 150.0 (C), 169.2 (CO).

HRMS (ESI): m/z [M + K]⁺ calcd for $C_{24}H_{25}KN_3O_2$: 426.1578; found: 426.1578.

2-Phenyl-5-(4,5,6,7-tetrahydro-1*H*-indol-1-yl)-*N*-(*p*-tolyl)isoxazolidine-3-carboxamide (7f)

Prepared from nitrone **5b** and pyrrole **3** as a white solid; yield: 320 mg (80%); mp 118–119 °C; $R_f = 0.40$ (20% EtOAc–hexane).

IR (KBr): 3269, 3138, 3092, 3033, 2927, 2843, 1673, 1593, 1524, 1486, 1298, 759, 693 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.69–1.81 (m, 2 H), 1.82–1.98 (m, 2 H), 2.36 (s, 3 H), 2.45–2.53 (m, 2 H), 2.54–2.80 (m, 2 H), 2.93–3.08 (m, 1 H), 3.22 (ddd, *J* = 13.7, 5.9, 3.3 Hz, 1 H), 4.67 (dd, *J* = 9.3, 3.3 Hz, 1 H), 6.01 (d, *J* = 3.0 Hz, 1 H_{pyrrole}), 6.05–6.16 (m, 1 H), 6.75 (d, *J* = 3.0 Hz, 1 H_{pyrrole}), 7.18 (d, *J* = 8.2 Hz, 2 H_{arom}), 7.09–7.21 (m, 3 H_{arom}), 7.41 (t, *J* = 7.8 Hz, 2 H_{arom}), 7.51 (d, *J* = 8.2 Hz, 2 H_{arom}), 9.12 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 20.9 (CH₃), 21.7 (CH₂), 23.0 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 36.0 (CH₂), 69.4 (CH), 84.0 (CH), 109.7 (CH), 114.3 (2 CH), 116.0 (CH), 119.4 (C), 120.1 (2 CH), 123.4 (CH), 128.7 (C), 129.5 (2 CH), 129.5 (2 CH), 134.4 (C), 134.5 (C), 149.4 (C), 168.5 (CO).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{25}H_{28}N_3O_2$: 402.2176; found: 402.2179.

N-(4-Chlorophenyl)-2-phenyl-5-(4,5,6,7-tetrahydro-1*H*-indol-1-yl)isoxazolidine-3-carboxamide (7g)

Prepared from **5c** and **1** as a white solid; yield: 359 mg (85%); mp 183–184 °C; $R_f = 0.48$ (20% EtOAc–hexane).

IR (KBr): 3263, 3136, 3093, 3054, 3034, 2957, 2930, 2849, 1676, 1588, 1522, 1489, 1401, 1304, 763, 693 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 1.69-1.82$ (m, 2 H), 1.83-1.98 (m, 2 H), 2.45-2.53 (m, 2 H), 2.54-2.82 (m, 2 H), 2.92-3.08 (m, 1 H), 3.21 (ddd, J = 13.7, 5.6, 3.0 Hz, 1 H), 4.68 (dd, J = 9.6, 3.0 Hz, 1 H), 6.02 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.03-6.12 (m, 1 H), 6.71 (d, J = 3.0 Hz, 1 H_{pyrrole}), 7.10-7.24 (m, 3 H_{arom}), 7.34 (d, J = 8.9 Hz, 2 H_{arom}), 7.38-7.46 (m, 2 H_{arom}), 7.59 (d, J = 8.9 Hz, 2 H_{arom}), 9.19 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): $\delta = 21.7$ (CH₂), 23.0 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 35.8 (CH₂), 69.4 (CH), 84.0 (CH), 109.8 (CH), 114.3 (2 CH), 115.9 (CH), 119.5 (C), 121.2 (2 CH), 123.6 (CH), 128.7 (C), 129.0 (2 CH), 129.6 (2 CH), 129.8 (C), 135.7 (C), 149.1 (C), 168.8 (CO).

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{24}H_{25}CIN_3O_2$: 422.1630; found: 422.1627.

N-Phenyl-5-(4,5,6,7-tetrahydro-1*H*-indol-1-yl)-2-(*p*-tolyl)isoxazolidine-3-carboxamide (7h)

Prepared from nitrone **5d** and pyrrole **3** as a white solid; yield: 349 mg (87%); mp 164–165 °C; $R_f = 0.55$ (20% EtOAc–hexane).

IR (KBr): 3269, 3130, 3097, 3031, 3016, 2962, 2928, 2848, 1669, 1593, 1507, 1448, 1306, 712 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): δ = 1.69–1.82 (m, 2 H), 1.83–1.98 (m, 2 H), 2.37 (s, 3 H), 2.45–2.54 (m, 2 H), 2.55–2.80 (m, 2 H), 2.92–3.08 (m, 1 H), 3.20 (ddd, *J* = 13.7, 5.8, 3.0 Hz, 1 H), 4.65 (dd, *J* = 9.5, 3.0 Hz, 1 H), 6.01 (d, *J* = 3.0 Hz, 1 H_{pyrrole}), 6.02–6.12 (m, 1 H), 6.74 (d, *J* = 3.0 Hz, 1 H_{pyrrole}), 7.08 (d, *J* = 8.5 Hz, 2 H_{arom}), 7.15–7.24 (m, 1 H_{arom}), 7.22 (d, *J* = 8.5 Hz, 2 H_{arom}), 7.63 (d, *J* = 7.8 Hz, 2 H_{arom}), 9.20 (s, 1 H, NH).

¹³C NMR (75 MHz, CDCl₃): δ = 20.6 (CH₃), 21.7 (CH₂), 23.0 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 35.8 (CH₂), 69.4 (CH), 84.0 (CH), 109.7 (CH), 114.4 (2 CH), 116.0 (CH), 119.3 (C), 120.0 (2 CH), 124.7 (CH), 128.8 (C), 129.0 (2 CH), 130.0 (2 CH), 133.1 (C), 137.1 (C), 146.9 (C), 168.8 (CO).

Anal. Calcd for C₂₅H₂₇N₃O₂: C, 74.79; H, 6.78; N, 10.47. Found: C, 74.62; H, 6.61; N, 10.32.

N,2-Diphenyl-5-(2-(thiophen-2-yl)-1*H*-pyrrol-1-yl)isoxazolidine-3-carboxamide (7i/7i')

Prepared from nitrone **5a** and pyrrole **2** to give a mixture of isomers; yield: 382 mg (92%). Pure *cis*-isomer was separated by crystallization from EtOH as a white solid; yield: 228 mg (55%); mp 160–162 °C; $R_f = 0.32$ (20% EtOAc–hexane).

IR (KBr): 3341, 3260, 3105, 3057, 3032, 2971, 1676, 1596, 1527, 1490, 1443, 1320, 1294, 760, 694 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ (major isomer) = 2.96 (ddd, J = 14.0, 9.1, 9.0 Hz, 1 H), 3.28 (ddd, J = 14.0, 5.0, 2.5 Hz, 1 H), 4.67 (dd, J = 9.1, 2.5 Hz, 1 H, CHCH₂CH), 6.27 (t, J = 3.2 Hz, 1 H_{pyrrole}), 6.29–6.36 (m, 2 H, H + H_{arom}), 7.04–7.07 (m, 1 H_{arom}), 7.08–7.27 (m, 6 H_{arom}), 7.30–7.48 (m, 5 H_{arom}), 7.60–7.71 (m, 2 H_{arom}), 9.24 (s, 1 H, NH).

¹H NMR (400 MHz, CDCl₃): δ (minor isomer) = 3.22 (ddd, J = 14.0, 7.2, 5.8 Hz, 1 H), 3.36 (ddd, J = 14.0, 9.1, 3.5 Hz, 1 H, CHCH₂CH), 4.84 (dd, J = 9.1, 5.8 Hz, 1 H), 5.92 (t, J = 3.2 Hz, 1 H_{pyrrole}), 6.38 (dd, J = 7.2, 3.5 Hz, 1 H), 6.49–6.53 (m, 1 H_{pyrrole}), 6.87 (d, J = 7.8 Hz, 2 H_{arom}), 6.95–7.01 (m, 1 H_{arom}), 7.08–7.27 (m, 6 H_{arom}), 7.30–7.48 (m, 5 H_{arom}), 9.08 (s, 1 H, NH).

¹³C NMR (100 MHz, CDCl₃): δ (major isomer) = 36.1 (CH₂), 69.8 (CH), 84.6 (CH), 110.6 (CH), 112.1 (CH), 114.7 (2 CH), 119.3 (CH), 120.0 (2 CH), 123.7 (CH), 124.8 (CH), 126.3 (CH), 127.3 (CH), 127.5 (CH), 127.5 (C), 129.0 (2 CH), 129.4 (2 CH), 133.2 (C), 137.0 (C), 149.0 (C), 168.5 (CO).

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{24}H_{22}N_3O_2S;$ 416.1427; found: 416.1431.

N-Phenyl-5-(2-(thiophen-2-yl)-1*H*-pyrrol-1-yl)-2-(*p*-tolyl)isoxazolidine-3-carboxamide (7j/7j')

Prepared from nitrone **5d** and pyrrole **2** as a mixture of isomers; yield: 360 mg (84%). Crystallization (EtOH) gave *cis*-isomer **7j** as a white solid; yield: 309 mg (72%); mp 159–160 °C; R_f = 0.43 (20% EtOAc–hexane).

IR (KBr): 3256, 3137, 3012, 2952, 1668, 1593, 1528, 1505, 1449, 1419, 1320, 1282, 723, 696 cm⁻¹.

Major Isomer 7j

¹H NMR (400 MHz, CDCl₃): $\delta = 2.35$ (s, 3 H), 2.95 (dt, J = 14.0, 9.2 Hz, 1 H), 3.26 (dd, J = 14.0, 5.0, 2.6 Hz, 1 H), 4.63 (dd, J = 9.2, 2.6 Hz, 1 H), 6.22–6.28 (m, 1 H_{pytrole}), 6.29–6.40 (m, 2 H), 6.96–7.07 (m, 3 H_{arom}), 7.11–7.18 (m, 3 H_{arom}), 7.18–7.23 (m, 2 H_{arom}), 7.38–7.48 (m, 3 H_{arom}), 7.66 (d, J = 7.6 Hz, 2 H_{arom}), 9.27 (s, 1 H, NH).

¹³C NMR (100 MHz, CDCl₃): $\delta = 20.5$ (CH₃), 36.0 (CH₂), 69.8 (CH), 84.6 (CH), 110.6 (CH), 112.0 (CH), 114.8 (2 CH), 119.3 (CH), 120.0 (2 CH), 124.8 (CH), 126.3 (CH), 127.3 (CH), 127.4 (CH), 127.5 (C), 129.0 (2 CH), 129.9 (2 CH), 133.2 (C), 133.4 (C), 137.1 (C), 146.6 (C), 168.6 (CO).

HRMS (ESI): m/z [M + H]⁺ calcd for C₂₅H₂₄N₃O₂S: 430.1584; found: 430.1587.

Minor Isomer 7j'

¹H NMR (400 MHz, CDCl₃): δ = 2.29 (s, 3 H, CH₃), 3.21 (ddd, J = 13.9, 7.2, 5.5 Hz, 1 H), 3.32 (ddd, J = 13.8, 8.8, 4.0 Hz, 1 H), 4.79 (dd, J = 8.8, 5.5 Hz, 1 H), 5.99–6.06 (m, 1 H_{pytrole}), 6.30–6.40 (m, 2 H), 6.51–6.56 (m, 1 H_{arom}), 6.78 (d, J = 8.5 Hz, 2 H_{arom}), 6.97–7.07 (m, 2 H_{arom}), 7.11–7.22 (m, 2 H_{arom}), 7.29–7.33 (m, 1 H_{arom}), 7.34–7.48 (m, 3 H_{arom}), 7.64 (d, J = 7.6 Hz, 2 H_{arom}), 9.12 (s, 1 H, NH).

¹³C NMR (100 MHz, CDCl₃): $\delta = 20.5$ (CH₃), 37.8 (CH₂), 69.0 (CH), 85.4 (CH), 109.6 (CH), 112.0 (CH), 114.0 (2 CH), 119.1 (CH), 119.8 (2 CH), 124.8 (CH), 125.8 (CH), 126.6 (CH), 127.6 (CH), 128.0 (C), 129.0 (2 CH), 129.5 (2 CH), 132.2 (C), 133.7 (C), 137.0 (C), 147.8 (C), 168.6 (CO).

Dimethyl 2-Phenyl-5-(2-phenyl-1*H*-pyrrol-1-yl)isoxazolidine-3,3-dicarboxylate (9a)

Prepared from nitrone **8a** and pyrrole **1** as a white solid; yield: 317 mg (78%); mp 83–85 °C; $R_f = 0.39$ (20% EtOAc–hexane).

IR (KBr): 3116, 3056, 3026, 2956, 1760, 1737, 1491, 1432, 1294, 1268, 1204, 1082, 767, 696 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.33 (dd, *J* = 13.7, 5.2 Hz, 1 H), 3.53 (s, 3 H), 3.54 (dd, *J* = 13.7, 7.4 Hz, 1 H), 3.75 (s, 3 H), 6.22– 6.25 (m, 1 H_{pyrrole}), 6.25 (dd, *J* = 7.4, 5.2 Hz, 1 H), 6.33–6.35 (m, 1 H_{pyrrole}), 7.10–7.16 (m, 1 H_{arom}), 7.26–7.32 (m, 2 H_{arom}), 7.36–7.42 (m, 3 H_{arom}), 7.43–7.46 (m, 5 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 45.6 (CH₂), 52.7 (CH₃), 53.1 (CH₃), 77.8 (C), 81.3 (CH), 109.5 (CH), 110.0 (CH), 119.6 (CH), 119.7 (2 CH), 125.2 (CH), 127.3 (CH), 128.3 (2 CH), 128.6 (2 CH), 129.4 (2 CH), 132.5 (C), 135.4 (C), 145.9 (C), 167.4 (CO), 168.0 (CO).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{23}H_{23}N_2O_5$: 407.1601; found: 407.1601.

Dimethyl 5-(2-Phenyl-1*H*-pyrrol-1-yl)-2-(*p*-tolyl)isoxazolidine-3,3-dicarboxylate (9b)

Prepared from nitrone **8b** and pyrrole **1** as a white solid; yield: 336 mg (80%); mp 140–141 °C; $R_f = 0.43$ (20% EtOAc–hexane).

IR (KBr): 3117, 3061, 3031, 3006, 2954, 2926, 2842, 1758, 1738, 1508, 1467, 1433, 1290, 1271, 1202, 1079, 800, 708 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.32$ (s, 3 H, CH₃), 3.31 (dd, J = 13.8, 5.0 Hz, 1 H), 3.51 (dd, J = 13.8, 7.4 Hz, 1 H), 3.55 (s, 3 H), 3.71 (s, 3 H), 6.20–6.25 (m, 2 H), 6.31–6.35 (m, 1 H_{pyrrole}), 7.10 (d, J = 8.1 Hz, 2 H_{arom}), 7.28–7.33 (m, 2 H_{arom}), 7.34–7.39 (m, 1 H_{arom}), 7.41–7.48 (m, 5 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 21.3 (CH₃), 45.0 (CH₂), 53.1 (CH₃), 53.4 (CH₃), 78.2 (C), 81.7 (CH), 110.3 (CH), 110.8 (CH), 120.1 (CH), 120.6 (2 CH), 127.7 (CH), 129.0 (2 CH), 129.3 (2 CH), 129.8 (2 CH), 133.0 (C), 135.5 (C), 135.8 (C), 143.7 (C), 167.9 (CO), 168.4 (CO).

Anal. Calcd for $C_{24}H_{24}N_2O_5{:}$ C, 68.56; H, 5.75; N, 6.66. Found: C, 68.43; H, 5.84; N, 6.59.

Dimethyl 2-(4-Chlorophenyl)-5-(2-phenyl-1*H*-pyrrol-1-yl)isoxazolidine-3,3-dicarboxylate (9c)

Prepared from nitrone **8c** and pyrrole **1** as a white solid; yield: 396 mg (90%); mp 132–133 °C; $R_f = 0.45$ (20% EtOAc–hexane).

IR (KBr): 3118, 3060, 3044, 3009, 2954, 2842, 1758, 1737, 1483, 1467, 1432, 1296, 1276, 1205, 1080, 836, 770, 722 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 3.33 (dd, *J* = 13.8, 5.0 Hz, 1 H), 3.48–3.55 (m, 1 H), 3.56 (s, 3 H), 3.78 (s, 3 H), 6.21–6.27 (m, 2 H), 6.32–6.36 (m, 1 H_{pytrole}), 7.26 (d, *J* = 8.5 Hz, 2 H_{arom}), 7.34 (d, *J* = 8.5 Hz, 2 H_{arom}), 7.39–7.42 (m, 1 H_{arom}), 7.43–7.47 (m, 5 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 45.9 (CH₂), 53.3 (CH₃), 53.6 (CH₃), 78.1 (C), 81.8 (CH), 110.0 (CH), 110.5 (CH), 119.9 (CH), 121.5 (2 CH), 127.9 (CH), 128.7 (2 CH), 129.0 (2 CH), 129.8 (2 CH), 130.8 (C), 132.9 (C), 135.9 (C), 144.9 (C), 167.6 (CO), 168.2 (CO).

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{23}H_{22}CIN_2O_5$: 441.1212; found: 441.1211.

Dimethyl 2-Phenyl-5-(4,5,6,7-tetrahydro-1*H*-indol-1-yl)isoxazolidine-3,3-dicarboxylate (9d)

Prepared from nitrone **8a** and pyrrole **3** as a white solid; yield: 353 mg (92%); mp 96–98 °C; $R_f = 0.43$ (20% EtOAc–hexane).

IR (KBr): 2946, 2846, 1761, 1733, 1488, 1437, 1305, 1279, 1197, 1172, 1081, 959, 695 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 1.70–1.80 (m, 2 H), 1.80–1.91 (m, 2 H), 2.48–2.58 (m, 2 H), 2.58–2.73 (m, 2 H), 3.33 (dd, *J* = 13.7, 5.9 Hz, 1 H), 3.46 (dd, *J* = 13.7, 7.1 Hz, 1 H), 3.59 (s, 3 H), 3.71 (s, 3 H), 6.05 (d, *J* = 3.0 Hz, 1 H_{pyrole}), 6.12 (t, *J* 6.5 Hz, 1 H), 7.05 (d, *J* = 3.0 Hz, 1 H_{pyrole}), 7.05–7.12 (m, 1 H_{arom}), 7.21–7.30 (m, 2 H_{arom}), 7.35 (d, *J* = 7.8 Hz, 2 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 21.8 (CH₂), 23.0 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 44.6 (CH₂), 52.8 (OCH₃), 53.0 (OCH₃), 77.8 (C), 80.8 (CH), 109.0 (CH), 116.6 (CH), 118.6 (C), 119.4 (2 CH), 124.9 (CH), 128.2 (2 CH), 128.4 (C), 146.1 (C), 167.8 (CO), 167.9 (CO). Anal. Calcd for C₂₁H₂₄N₂O₅: C, 65.61; H, 6.29; N, 7.29. Found: C, 65.41; H, 6.30; N, 7.15.

Dimethyl 5-(4,5,6,7-Tetrahydro-1*H*-indol-1-yl)-2-(*p*-tolyl)isoxazolidine-3,3-dicarboxylate (9e)

Prepared from nitrone **8b** and pyrrole **3** as a white solid; yield: 346 mg (87%); mp 86–89 °C; $R_f = 0.48$ (20% EtOAc–hexane).

IR (KBr): 2935, 2843, 1767, 1739, 1505, 1435, 1273, 1270, 1068, 832 $\rm cm^{-1}$

¹H NMR (300 MHz, CDCl₃): $\delta = 1.70-1.80$ (m, 2 H), 1.80–1.90 (m, 2 H), 2.30 (s, 3 H), 2.48–2.55 (m, 2 H), 2.55–2.72 (m, 2 H), 3.31 (dd, J = 13.7, 5.9 Hz, 1 H), 3.43 (dd, J = 13.7, 7.4 Hz, 1 H), 3.61 (s, 3 H), 3.70 (s, 3 H), 6.05 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.09 (dd, J = 7.4, 5.9 Hz, 1 H), 7.02–7.08 (m, 1 H_{pyrrole}), 7.07 (d, J = 8.5 Hz, 2 H_{arom}), 7.25 (d, J = 8.5 Hz, 2 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 20.8 (CH₃), 21.8 (CH₂), 23.0 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 44.5 (CH₂), 52.8 (OCH₃), 52.9 (OCH₃), 77.8 (C), 80.8 (CH), 108.9 (CH), 116.6 (CH), 118.6 (C), 119.9 (2 CH), 128.4 (C), 128.8 (2 CH), 134.8 (C), 143.5 (C), 167.8 (CO), 167.9 (CO).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{22}H_{27}N_2O_5$: 399.1914; found: 399.1917.

Dimethyl 2-(4-Chlorophenyl)-5-(4,5,6,7-tetrahydro-1*H*-indol-1-yl)isoxazolidine-3,3-dicarboxylate (9f)

Prepared from nitrone **8c** and pyrrole **3** as a white solid; yield: 364 mg (87%); mp 90–92 °C; $R_f = 0.50$ (20% EtOAc–hexane).

IR (KBr): 2950, 2930, 2842, 1765, 1738, 1484, 1437, 1298, 1268, 1068, 842 $\rm cm^{-1}.$

¹H NMR (300 MHz, CDCl₃): $\delta = 1.69-1.81$ (m, 2 H), 1.81–1.91 (m, 2 H), 2.47–2.55 (m, 2 H), 2.55–2.72 (m, 2 H), 3.32 (dd, J = 13.7, 5.9 Hz, 1 H), 3.47 (dd, J = 13.7, 7.4 Hz, 1 H), 3.62 (s, 3 H), 3.74 (s, 3 H), 6.05 (d, J = 3.0 Hz, 1 H_{pyrrole}), 6.09 (dd, J = 7.4, 5.9 Hz, 1 H), 7.01 (d, J = 3.0 Hz, 1 H_{pyrrole}), 7.23 (d, J = 8.9 Hz, 2 H_{arom}), 7.30 (d, J = 8.9 Hz, 2 H_{arom}).

¹³C NMR (75 MHz, CDCl₃): δ = 21.8 (CH₂), 23.0 (CH₂), 23.1 (CH₂), 23.4 (CH₂), 44.5 (CH₂), 52.9 (OCH₃), 53.1 (OCH₃), 77.7 (C), 80.8 (CH), 109.1 (CH), 116.5 (CH), 118.8 (C), 120.8 (2 CH), 128.2 (2 CH), 128.5 (C), 130.1 (C), 144.6 (C), 167.5 (CO), 167.6 (CO).

Anal. Calcd for $C_{21}H_{23}N_2O_3Cl:$ C, 60.22; H, 5.53; N, 6.69. Found: C, 60.03; H, 5.51; N, 6.48.

Dimethyl 2-Phenyl-5-[2-(thiophen-2-yl)-1*H*-pyrrol-1-yl]isoxazolidine-3,3-dicarboxylate (9g)

Prepared from **8a** and **2** as a pink solid; yield: 381 mg (93%); mp 105–106 °C; $R_f = 0.35$ (20% EtOAc–hexane).

IR (KBr): 3139, 3099, 3085, 3015, 2953, 2842, 1758, 1740, 1595, 1488, 1434, 1293, 1286, 1247, 1211, 1078, 697 $cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 3.31 (dd, *J* = 14.0, 4.6 Hz, 1 H), 3.52 (s, 3 H), 3.59 (dd, *J* = 14.0, 7.8 Hz, 1 H), 3.78 (s, 3 H), 6.29– 6.32 (m, 1 H_{arom}), 6.33 (dd, *J* = 3.5, 1.8 Hz, 1 H_{arom}), 6.38 (dd, *J* = 7.8, 4.6 Hz, 1 H), 7.07–7.16 (m, 3 H_{arom}), 7.25–7.34 (m, 2 H_{arom}), 7.35–7.42 (m, 3 H_{arom}), 7.43–7.47 (m, 1 H_{arom}).

¹³C NMR (100 MHz, CDCl₃): δ = 45.5 (CH₂), 52.7 (OCH₃), 53.1 (OCH₃), 77.7 (C), 81.2 (CH), 109.2 (CH), 111.2 (CH), 119.6 (2 CH), 120.2 (CH), 125.2 (CH), 125.8 (CH), 126.9 (CH), 127.2 (C), 127.5 (CH), 128.3 (2 CH), 133.6 (C), 145.8 (C), 167.3 (CO), 168.0 (CO).

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{21}H_{21}N_2O_5S$: 413.1166; found: 413.1169.

3-(4-Methoxyphenyl)-3-(phenylamino)-1-(2-phenyl-1*H*-pyrrol-1-yl)propan-1-ol (10a); Typical Procedure

To a solution of isoxazolidine **6c** (0.5 mmol) in EtOAc (4 mL) was added 5% Pd/CaCO₃ (150 mg) and the mixture was stirred under an atmosphere of H₂ at r.t. for 24 h. The mixture was filtered and concentrated. The product was purified using column chromatography (silica gel, petroleum ether–EtOAc) followed by crystallization (CH₂Cl₂–hexane) to give **10a** as a white solid; yield: 189 mg (95%); mp 114–116 °C; R_f = 0.26 (20% EtOAc–hexane).

IR (KBr): 3471, 3382, 2948, 2920, 2838, 1765, 1603, 1508, 1282, 1232, 750 $\rm cm^{-1}.$

¹H NMR (400 MHz, CDCl₃): δ = 2.29 (ddd, *J* = 14.1, 6.3, 4.0 Hz, 1 H), 2.57 (ddd, *J* = 14.1, 8.0, 7.6 Hz, 1 H), 3.80 (s, 3 H), 3.40–4.00

(m, 2 H, NH, OH, exchange), 4.40 (dd, J = 7.6, 6.3 Hz, 1 H), 5.74 (dd, J = 8.0, 4.0 Hz, 1 H), 6.21 (s, 1 H_{pytrole}), 6.34 (t, J = 2.9 Hz, 1 H_{pytrole}), 6.53 (d, J = 7.9 Hz, 2 H_{arom}), 6.67–6.74 (m, 1 H_{arom}), 6.83 (d, J = 8.4 Hz, 2 H_{arom}), 7.12 (d, J = 8.4 Hz, 2 H_{arom}), 7.06–7.13 (m, 1 H_{arom}), 7.14–7.23 (m, 4 H_{arom}), 7.23–7.35 (m, 3 H_{arom}).

¹³C NMR (100 MHz, CDCl₃): δ = 45.5 (CH₂), 55.2 (OCH₃), 55.3 (CH), 77.7 (CH), 109.3 (CH), 109.7 (CH), 114.1 (2 CH), 114.2 (2 CH), 117.7 (CH), 118.0 (CH), 127.1 (CH), 127.2 (2 CH), 128.4 (2 CH), 129.0 (2 CH), 129.1 (2 CH), 132.6 (C), 134.1 (C), 134.6 (C), 146.7 (C), 158.8 (C).

HRMS (ESI): $m/z \ [M + H]^+$ calcd for $C_{26}H_{27}N_2O_2$: 399.2067; found: 399.2068.

N-(4-Chlorophenyl)-4-hydroxy-2-(phenylamino)-4-(2-phenyl-1*H*-pyrrol-1-yl)butanamide (10b)

Prepared from isoxazolidine **7c** as a white solid; yield: 147 mg (66%); mp 140–145 °C; $R_f = 0.24$ (20% EtOAc–hexane).

IR (KBr): 3440, 3402, 3370, 3314, 3285, 3102, 2892, 1666, 1604, 1512, 1494, 1401, 1286, 1090, 1053, 757 cm $^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 2.48 (ddd, *J* = 14.5, 8.1, 8.0 Hz, 1 H), 2.58 (ddd, *J* = 14.5, 4.2, 3.9 Hz, 1 H), 3.55 (d, *J* = 3.8 Hz, 1 H, NH), 3.78 (ddd, *J* = 8.0, 3.9, 3.8 Hz, 1 H), 4.53 (d, *J* = 3.2 Hz, 1 H, OH), 5.90 (ddd, *J* = 8.1, 4.2, 3.2 Hz, 1 H), 6.22 (dd, *J* = 1.7, 3.3 Hz, 1 H_{pytrole}), 6.35 (t, *J* = 3.3 Hz, 1 H_{pytrole}), 6.55 (d, *J* = 7.8 Hz, 2 H_{arom}), 6.80–6.90 (t, *J* = 7.4 Hz, 1 H_{arom}), 7.08–7.12 (m, 1 H_{pytrole}), 7.15–7.25 (m, 2 H_{arom}), 7.26–7.38 (m, 6 H_{arom}), 7.40 (d, *J* = 8.8 Hz, 2 H_{arom}), 8.73 (s, 1 H, C(O)NH).

¹³C NMR (100 MHz, CDCl₃): δ = 39.6 (CH₂), 58.5 (CH), 78.2 (CH), 109.8 (CH), 110.0 (CH), 114.4 (2 CH), 117.9 (CH), 120.1 (CH), 121.2 (2 CH), 127.4 (CH), 128.7 (2 CH), 128.9 (2 CH), 129.0 (2 CH), 129.5 (2 CH), 129.7 (C), 132.4 (C), 133.8 (C), 135.5 (C), 146.0 (C), 171.2 (CO).

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{26}H_{25}CIN_3O_2$: 446.1630; found: 446.1634.

1-(4-Chlorophenyl)-5-hydroxy-3-(phenylamino)-1,5-dihydro-2*H*-pyrrol-2-one (11a)

To a solution of isoxazolidine **7c** (0.66 mmol) in anhydrous THF (6 mL) was added TBAF·3H₂O (1 mmol) and the mixture was stirred for 4 h at r.t. The mixture was quenched with H₂O (3 mL), and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 5 mL), and the combined organic extracts were dried (Na₂SO₄) and concentrated. The product was purified by column chromatography (silica gel, petroleum ether–EtOAc) followed by crystallization (EtOH) to give a yellowish solid; yield: 138 mg (75%); mp 170–175 °C (dec); $R_f = 0.30$ (17% EtOAc–hexane).

IR (KBr): 3296, 3219, 3122, 3057, 1680, 1658, 1594, 1477, 1428, 1402, 1070 $\rm cm^{-1}.$

¹H NMR (400 MHz, DMSO- d_6): $\delta = 6.07$ (dd, J = 10.1, 2.3 Hz, 1 H), 6.12 (d, J = 2.3 Hz, 1 H, OH), 6.32 (d, J = 10.1 Hz, 1 H), 6.92–6.96 (m, 1 H_{arom}), 7.25–7.38 (m, 4 H_{arom}), 7.49 (d, J = 8.8 Hz, 2 H_{arom}), 7.80 (d, J = 8.8 Hz, 2 H_{arom}), 8.16 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 81.7 (CH), 106.2 (CH), 117.6 (2 CH), 121.2 (CH), 122.6 (2 CH), 128.5 (C), 129.1 (2 CH), 129.5 (2 CH), 133.9 (C), 136.6 (C), 142.2 (C), 165.6 (CO).

HRMS (ESI): m/z [M + H]⁺ calcd for $C_{16}H_{14}CIN_2O_2$: 301.0738; found: 301.0733.

5-Hydroxy-1-phenyl-3-(*p*-tolylamino)-1,5-dihydro-2*H*-pyrrol-2-one (11b)

To a solution of isoxazolidine **7d** (281 mg, 0.66 mmol) in anhydrous THF (6 mL) was added NaH (35 mg, 60%, 0.88 mmol) and the mixture was stirred for 4 h at r.t. The mixture was quenched with H₂O (3 mL), and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 5 mL), and the combined organic extracts were dried (Na₂SO₄) and concentrated. The product was puri-

fied by column chromatography (silica gel, petroleum ether-EtOAc) followed by crystallization (EtOH) to give a grey solid; yield: 103 mg (55%); mp 155–157 °C; $R_f = 0.44$ (11% EtOAc-hexane).

IR (KBr): 3289, 3131, 3063, 3030, 2915, 1680, 1659, 1503, 1435, 1404, 1061 cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.25 (s, 3 H), 6.02 (d, *J* = 2.3 Hz, 1 H, OH), 6.06 (dd, *J* = 9.9, 2.3 Hz, 1 H), 6.24 (d, *J* = 9.9 Hz, 1 H), 7.11 (d, *J* = 8.4 Hz, 2 H_{arom}), 7.15–7.21 (m, 1 H_{arom}), 7.23 (d, *J* = 8.4 Hz, 2 H_{arom}), 7.39–7.49 (m, 2 H_{arom}), 7.75 (d, *J* = 7.6 Hz, 2 H_{arom}), 8.02 (s, 1 H, NH).

¹³C NMR (75 MHz, DMSO- d_6): δ = 20.8 (CH₃), 81.7 (CH), 105.2 (CH), 117.7 (2 CH), 121.3 (2 CH), 124.6 (CH), 129.1 (2 CH), 129.9 (2 CH), 130.0 (C), 134.2 (C), 137.7 (C), 139.8 (C), 165.6 (CO).

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{17}H_{17}N_2O_2$: 281.1285; found: 281.1295.

Acknowledgement

We gratefully acknowledge the financial support from the Russian Foundation for Basic Research (Project No 12-03-01008-a). In this research were used resources of the X-ray Diffraction Centre, the Centre for Magnetic Resonance and the Centre for Chemical Analysis and Material of Saint Petersburg State University.

References

- (a) Jones, R. C. F.; Martin, J. N. Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, In Chemistry of Heterocyclic Compounds; Vol. 59; Padwa, A.; Pearson, W. H., Eds.; Wiley: New York, 2002, 1–81. (b) Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chemistry; Vol 2; Padwa, A., Ed.; Wiley: New York, 1984, 83–168. (c) Torsell, K. B. G. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis; VCH: Weinheim, 1988.
- (2) (a) Tran, T. Q.; Diev, V. V.; Starova, G. L.; Gurzhiy, V. V.; Molchanov, A. P. Eur. J. Org. Chem. 2012, 2054. (b) Stepakov, A. V.; Larina, A. G.; Boitsov, V. M.; Molchanov, A. P.; Gurzhiy, V. V.; Starova, G. L. Tetrahedron Lett. 2012, 53, 3411. (c) Diev, V. V.; Tran, Q. T.; Molchanov, A. P. Eur. J. Org. Chem. 2009, 525. (d) Tran, T. Q.; Diev, V. V.; Molchanov, A. P. Tetrahedron 2011, 67, 2391. (e) Larina, A. G.; Stepakov, A. V.; Boitsov, V. M.; Molchanov, A. P.; Gurzhiy, V. V.; Starova, G. L.; Lykholay, A. N. Tetrahedron Lett. 2011, 52, 5777. (f) Molchanov, A. P.; Tran, T. Q. Russ. J. Org. Chem. (Engl. Transl.) 2012, 48, 1283. (g) Tran, T. Q.; Savinkov, R. S.; Diev, V. V.; Starova, G. L.; Molchanov, A. P. Tetrahedron 2013, 69, 5173. (h) Diev, V. V.; Stetsenko, O. V.; Tran, T. Q.; Kopf, Y.; Kostikov, R. R.; Molchanov, A. P. J. Org. Chem. 2008, 73, 2396.
- (3) Joule, J. A.; Mills, K.; Smith, G. F. *Heterocyclic Chemistry*, 4th ed.; Blackwell Science: Oxford, 2000.
- (4) Sobenina, L. N.; Tomilin, D. N.; Ushakov, I. A.; Mikhaleva,
 A. I.; Ma, J. Sh.; Yang, G.; Trofimov, B. A. Synthesis 2013, 45, 678.

- (5) Belyaeva, K. V.; Andriankova, L. V.; Nikitina, L. P.; Ivanov, A. V.; Afonin, A. V.; Ushakov, I. A.; Malkina, A. G.; Mikhaleva, A. I.; Trofimov, B. A. *Synthesis* **2011**, 2843.
- (6) (a) Tedeschi, R. J. Acetylene, In Encyclopedia of Physical Science and Technology, Vol. 1, 3rd ed.; Meyers, R. A., Ed.; Academic Press: San Diego, 2001, 55–89. (b) Wang, Z. Comprehensive Organic Name Reactions and Reagents, Part 3; Wiley: London, 2009, 2793–2796. (c) Name Reactions in Heterocyclic Chemistry II; Li, J. J., Ed.; Wiley-VCH: Hoboken, 2011, 72–82.
- (7) Suitable crystals were obtained from abs EtOH. Crystallographic data for the structures 6d and 7g have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 973813 and 945026 respectively. Copies of these data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk).
- (8) (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213. (b) Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589. (c) Goti, A.; Cordero, F. M.; Brandi, A. Top. Curr. Chem. 1996, 178, 1. (d) Revuelta, J.; Cicchi, S.; de Meijere, A.; Brandi, A. Eur. J. Org. Chem. 2008, 1085. (e) Cardona, F.; Goti, A.; Brandi, A. Eur. J. Org. Chem. 2007, 1551. (f) Marradi, M.; Brandi, A.; Magull, J.; Schill, H.; de Meijere, A. Eur. J. Org. Chem. 2006, 5485.
- (9) Huisgen, R.; Hauck, H.; Grashey, R.; Seidl, H. Chem. Ber. 1968, 101, 2568.
- (10) Huisgen, R.; Hauck, H.; Grashey, R.; Seidl, H. Chem. Ber. 1969, 102, 736.
- (11) LeBel, N. A.; Post, M. E.; Whang, J. J. J. Am. Chem. Soc. 1964, 86, 3759.
- (12) Tice, C. M.; Ganem, B. J. Org. Chem. 1983, 48, 5048.
- (13) DeShong, P.; Leginus, J. M. J. Am. Chem. Soc. 1983, 105, 1686.
- (14) Es-Sayed, M.; Devine, P.; Burgess, L. E.; de Meijere, A.; Meyers, A. I. J. Chem. Soc., Chem. Commun. 1995, 141.
- (15) Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; De Sarlo, F. *Tetrahedron Lett.* **1990**, *31*, 3351.
- (16) Dhavale, D. D.; Gentilucci, L.; Piazza, M. G.; Trombini, C. Liebigs Ann. Chem. 1992, 1289.
- (17) Revuelta, J.; Cicchi, S.; Brandi, A. *Tetrahedron Lett.* 2004, 45, 8375.
- (18) Aziza, J.; Font, J.; Ortuno, R. M. Tetrahedron Lett. 1991, 32, 1979.
- (19) Chiacchio, U.; Corsaro, A.; Iannazzo, D.; Piperno, A.; Procopio, A.; Rescifina, A.; Romeo, G.; Romeo, R. J. Org. Chem. 2002, 67, 4380.
- (20) Iannazzo, D.; Brunaccini, E.; Giofre, S. V.; Piperno, A.; Romeo, G.; Ronsisvalle, S.; Chiacchio, M. A.; Lanza, G.; Chiacchio, U. *Eur. J. Org. Chem.* **2010**, 5897.
- (21) Trofimov, B. A.; Korostova, S. E.; Balabanova, L. N.; Mikhaleva, A. I. *Russ. J. Org. Chem. (Engl. Transl.)* **1978**, *14*, 1614.
- (22) (a) Gautheron-Chapoulaud, V.; Pandya, S. U.; Cividino, P.; Masson, G.; Py, S.; Vallee, Y. Synlett 2001, 1281.
 (b) Tomioka, Y.; Nagahiro, C.; Nomura, Y.; Maruoka, H. J. Heterocycl. Chem. 2003, 40, 121. (c) Molchanov, A. P.; Tran, T. Q.; Kostikov, R. R. Russ. J. Org. Chem. (Engl. Transl.) 2011, 47, 269.