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ABSTRACT: We have accomplished the asymmetric total 
synthesis of arcutinidine, arcutinine, and arcutine, three 
arcutine type C20-diterpenoid alkaloids. A pentacyclic 
intermediate was rapidly assembled by using two 
Diels−Alder reactions. We developed a cascade sequence of 
Prins cyclization and Wagner−Meerwein rearrangement to 
construct the core of arcutinidine, which was then 
elaborated into an oxygenated pentacycle through a scalable 
route. Chemoselective reductive amination followed by 
spontaneous imine formation furnished the pyrroline motif 
at a final stage. We clarified the S configuration of the α-
carbon of the acyl group within arcutine through chemical 
synthesis and crystallographic analysis.

The C20-diterpenoid alkaloids1 have long been attractive 
targets for chemical synthesis from the structural and 
biological perspectives.2 Among them, members from the 
atisine,3 hetisine,4 denudatine,5 veatchine,6 napelline,7 and 
hetidine8,9 subclasses have been conquered by synthetic 
chemists. Nearly two decades ago, Bassonova and co-workers 
reported the discovery of two intricate C20-diterpenoid 
alkaloids arcutine (the structure of which was originally 
described as 1, Figure 1) and arcutinine (2) and their 
presumed biogenetic precursor arcutinidine (3).10 Their 
scaffold contains two doubly fused bicyclo[2.2.2]octane 
moieties (Figure 1; highlighted in blue) and a congested 
pyrroline motif.10 Of note, a non-alkaloidal natural product 
atropurpuran (4) relevant to 1–3 was later discovered by 
Wang and colleagues.11 Compared to the alkaloids, 
diterpenoid 4 has drawn considerable attention from the 
synthesis community.12–14 Suzuki et al. first disclosed an 
inspiring approach for construction of the core of 4,12a and 
the Qin13 and Xu14 groups recently accomplished elegant 
syntheses of this molecule in a racemic form, respectively. 
Obviously, the pyrroline and tertiary alcohol within the 
alkaloids pose an additional challenge for chemical synthesis. 
Right before our submission of this paper, Qin and co-
workers disclosed a beautiful enantioselective synthesis of 
arcutinidine and arcutinine.15 During the course of our 
synthesis of hetidine type alkaloids,9 we were intrigued by 
the relationship between the hetidine and arcutine skeletons. 

Wang and Liang recognized the arcutine skeleton as a 
rearrangement product of the hetidine or hetisine skeleton.1a 
More specifically, Sarpong and colleagues proposed a 
Wagner−Meerwein type 1,2-alkyl shift (Figure 1; key bonds 
highlighted in red) responsible for the biogenesis of the 
arcutine skeleton from the hetidine skeleton, and carried out 
DFT calculations to support this insightful hypothesis.16 
Indeed, tongolinine (5) bearing a tertiary alcohol may serve 
as a precursor of the carbocation species required for 
initiating the Wagner−Meerwein pathway. Our experience17 
with Prins reaction suggested an opportunity to generate a 
carbocation species at the end of this powerful C–C bond 
forming reaction.18 Herein, we report the asymmetric total 
synthesis of arcutinidine, arcutinine, and arcutine.19
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Figure 1. The structures of representative arcutine type 
alkaloids (1–3) and related natural products [atropurpuran 
(4) and tongolinine (5)] and the postulated biogenetic 
relationship between the hetidine and arcutine skeletons.

We first undertook a retrosynthetic analysis of 1 (Figure 2). 
Disassembly of the pyrroline within 1 gave diketoaldehyde 6; 
chemoselective reductive amination of the aldehyde 
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functionality of 6 could be a challenge at a late stage of the 
synthesis.9 Compound 6 may arise from less oxygenated 
intermediate 7. Position-selective C–H oxidation of the latter 
would furnish the corresponding lactone, and the quaternary 
C4 could be constructed through α-methylation. A key 
retrosynthesis step from 7 to compound 8 bearing a 
simplified hetidine framework relied on the design of a 
cascade sequence of Prins cyclization and Wagner−Meerwein 
rearrangement.20 The MOM group of 8 was expected to serve 
as a precursor of the oxonium ion species that would initiate 
the 6-endo-trig cyclization. Upon formation of the C−C bond 
highlighted in blue (Figure 2), the resultant tertiary 
carbocation at C5 should induce the 1,2-alkyl shift to 
construct the C−C bond highlighted in red (Figure 2). On the 
basis of our experience of septedine synthesis,9 the 
bicyclo[2.2.2]octane moiety of 8 could be assembled through 
an anionic Diels−Alder cycloaddition. Therefore, α,β-
unsaturated enone 9 was considered a suitable precursor of 8. 
Further simplification led to aldehyde 10, which may result 
from an intermolecular Diels–Alder reaction21 of known 
diene 1122 and dienophile 12. The latter was traced back to 
known enantioenriched alcohol 13 that was readily available 
through lipase-mediated resolution.23
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Figure 2. Retrosynthetic analysis of 3.

The synthesis commenced with scalable preparation of 
pentacyclic intermediate 8 (Scheme 1). Silylation of 
enantioenriched alcohol 13 (>99% ee) provided compound 14 
in 93% yield. Treatment of 14 with t-BuLi generated the 
alkenyl lithium species, which was quenched by DMF to give 
aldehyde 12 in 91% yield. We then examined a variety of 
conditions for the intermolecular Diels–Alder reaction of 11 
and 12; acid lability of the ketal group of the former turned 
out to be a problem. To our delight, BF3•OEt2 was found to 
be an effective promoter for the cycloaddition at –78 °C, and 
compound 10 was obtained in 68% isolated yield. One-pot 

vinyllithium addition and MOM protection afforded allylic 
ether 15 in 85% yield as a single detectable diastereomer. 
Exposure to aq. HClO4 resulted in selective hydrolysis of the 
ketal followed by C═C bond migration, furnishing α,β-
unsaturated enone 9 in 72% yield. Following from our 
experience with the anionic [4+2]-cycloaddition,9 we 
subjected 9 to deprotonation with LiHMDS. The resultant 
1,3-dienolate underwent an intramolecular Diels−Alder 
reaction at 22 °C, and subsequent desilylation of the 
cycloadduct with TBAF provided alcohol 16 in 84% overall 
yield. Of note, complete removal of O2 in the reaction system 
by the freeze−pump−thaw cycling was crucial to the success 
of this anionic cycloaddition. X-ray crystallographic analysis 
of 16 (Scheme 1) confirmed the stereochemical outcomes of 
the two Diels−Alder reactions. Dehydration of 16 with 
SOCl2/pyridine gave trisubstituted olefin 8 in 76% yield.17a 
Indeed, 8 could also serve as a versatile intermediate for the 
synthesis of hetidine type alkaloids.

Scheme 1. Construction of Pentacyclic Intermediate 8
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Table 1. Conditions for the Cationic Cascade Reaction

With a large quantity of 8 in hand, we investigated the 
conditions for its conversion into 7; the results are 
summarized in Table 1. In the presence of a suitable, 
stoichiometric acid promoter, 8 should undergo a 
Prins/Wagner−Meerwein cascade to give 7 bearing an 
arcutine scaffold, presumably via the intermediacy of two 
cationic species 17 and 18. To our delight, exposure of 8 to 
TFA gave 7 in 22% yield (entry 1), despite a significant 
amount of the alcohol resulting from MOM deprotection. 
TESOTf caused severe substrate decomposition (entry 2). 
BF3•OEt2 slightly increased the yield of 7 (entry 3), while 
TiCl4 preferentially led to MOM removal (entry 4). SnCl4 was 
then found to be an optimal promoter for the cascade 
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reaction, and 7 was obtained in 63% yield on a gram scale 
(entry 5). We briefly explored the possibility of trapping the 
post-rearrangement carbocation species with an oxygen 
nucleophile (TMSOAc); however, proton elimination 
(leading to olefin 7) remained the predominant reaction 
pathway (entry 6).

MOMO

O

8

O

O
H

H

7

conditions

O

O

O

O

17 18

Prins

WagnerMeerweinacid

entry conditionsa yield (%)

1 TFA, 0 °C, 24 h 22

2 TESOTf, 0 °C, 1 h 16

3 BF3•OEt2, −15 °C, 6 h 37

4 TiCl4, −15 °C, 1 h 24

5 SnCl4, −15 °C, 1 h 63

6 SnCl4, TMSOAc, −15 °C, 1 h 55
a 1.0 equiv. acid. Reactions performed in CH2Cl2.

Scheme 2. Preparation of Oxygenated Pentacycle 6
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We then developed a robust route from 7 to oxygenated 
pentacycle 6 (Scheme 2). Face-selective Mukaiyama 
hydration of the trisubstituted olefin followed by position-
selective C−H oxidation using the Sharpless protocol24 
(RuCl3•3H2O, NaIO4) afforded alcohol 19, the structure of 
which was confirmed by X-ray crystallographic analysis 
(Scheme 2). Of note, Mn(acac)2

25 was superior to Co(acac)2 as 
a precatalyst for this particular olefin hydration. The alcohol 

underwent one-pot Wittig methylenation and silylation to 
give compound 20 in 87% yield. α-Methylation of this 
lactone turned out to be a challenge; MeI was ineffective 
under various conditions. To our delight, MeOTf proved to 
be a more powerful reagent in this case.26 The lithium 
enolate of 20 was methylated smoothly in the presence of 
HMPA, and desilylation with TBAF furnished alcohol 21 in 
one pot with good overall efficiency. The stereochemistry at 
C4 was secured by the rigid polycyclic system. Oxidation of 
21 with SeO2/TBHP gave allylic alcohol 22 in 81% yield as an 
undesired diastereomer, which was then subjected to a 
sequence of LiAlH4 reduction and CrO3•2pyr oxidation.27 
Thus, diketoaldehyde 6 was obtained in 58% overall yield. 
We expected to address the stereochemical issue at C15 by 
face-selective ketone reduction at a final stage of the 
synthesis.

Scheme 3. Completion of the Synthesis of 3 and 2
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Completion of the synthesis of 3 and 2 relied on 
differentiating the reactivity of the three carbonyls of 6 
(Scheme 3). Chemoselective condensation of the aldehyde 
with NH2OH followed by face-selective 1,2-reduction of the 
α,β-unsaturated enone with NaBH4 afforded compound 23 as 
a single diastereomer in 65% yield. The most hindered 
carbonyl group remained untouched through this reaction 
sequence. Exposure of 23 to TiCl3 led to reductive cleavage of 
the N−O bond.28 The resultant aldimine intermediate was 
further reduced in situ by NaBH3CN to form primary amine 
24,28 which underwent spontaneous cyclization upon 
aqueous workup to give 3 in 71% yield. More than 200 mg of 
3 have been prepared in total. Acylation of the allylic alcohol 
(i-PrCO2H, DCC, DAMP) provided 2 in 77% yield. The 
structures of 2 and 3 were verified by X-ray crystallographic 
analysis (Scheme 3).

Finally, we directed our attention to the synthesis of 
arcutine (Scheme 4). Under the esterification conditions 
used for preparing 2, arcutinidine (3) reacted with 
commercially available (R)-s-BuCO2H to form the originally 
described structure of arcutine (1). However, the crystal 
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structure of synthetic 1 (Scheme 4) differed from that of 
authentic arcutine presented in the isolation paper,10a with 
regard to the acyl groups. We then checked the X-ray 
crystallographic data of authentic arcutine (CCDC 1150924) 
and realized that the configuration of the α-carbon of the 
acyl group was S. The description of this crucial 
configuration in the literature10a was incorrect. To our delight, 
acylation of arcutinidine (3) with commercially available (S)-
s-BuCO2H afforded arcutine (25) in 74% yield; the crystal 
structures of synthetic 25 (Scheme 4) and authentic arcutine 
were identical.

Scheme 4. Completion of the Synthesis of Arcutine and 
the Originally Described Structure of Arcutine

ORTEP of 1

3: arcutinidine
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In summary, we have accomplished the asymmetric total 
synthesis of arcutinidine (3), arcutinine (2), and arcutine (25). 
An expeditious and scalable route to a pentacyclic 
intermediate with hetidine features was established. A 
bioinspired Prins/Wagner−Meerwein cascade was then 
developed for conversion of the hetidine core structure into 
an arcutine core structure. These endeavors may facilitate 
studies of the biology of arcutine and hetidine type alkaloids.
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7

The graphic entry for the TOC

RO

N
H

HHO

Me

arcutinidine; R = H
arcutinine; R = i-PrCO
arcutine; R = (S)-s-BuCO
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