One-pot Synthesis of Furfural from Xylose using Al₂O₃–Ni-Al Layered Double Hydroxide Acid-Base Bi-functional Catalyst and Sulfonated Resin

Mahiro Shirotori, Shun Nishimura, and Kohki Ebitani*

School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292

(E-mail: ebitani@jaist.ac.jp)

Furfural was effectively synthesized from xylose in a onepot manner by the combined use of Ni²⁺-modified γ -Al₂O₃ (Al₂O₃–Ni-Al layered double hydroxide (LDH)) and a sulfonated resin (Amberlyst-15) at 373 K (46% yield). The addition of Ni²⁺ onto γ -Al₂O₃ generated the bi-functional sites for Lewis acid γ -Al₂O₃ and Brønsted base Ni-Al LDH at close boundary, and these facilitate the xylose isomerization into xylulose and/or ribulose to afford good yield of furfural after successive dehydration of generated ketopentoses on Amberlyst-15.

Conversion of biomass resources into value-added chemicals/fuels is an important reaction to utilize renewable resources.^{1–3} Cellulose and hemicellulose, the major component of lignocellulosic biomass, are the most abundant compounds that are mainly composed of monosaccharides.^{4,5} Cellulose and hemicellulose can be converted into monosaccharides like glucose and xylose by the hydrolysis over activated carbons.^{6–9} Therefore, successive chemical conversion of saccharides into value-added chemicals such as furans, sugar alcohols, levulinic acid, and γ -valerolactone has attracted much attention as one of the reactions worth conducting in biorefineries.

Furfural, a dehydration product of pentoses like xylose and arabinose, has great potential as non-petroleum building blocks in the production of polymers, pharmaceuticals, biofuels, and fine chemicals.^{5,10–13} Conventionally, dehydration of xylose into furfural was examined using various solid acid catalysts such as sulfated zirconia,¹⁴ porous niobium silicate,¹⁵ sulfonic acid-modified mesoporous shell silica beads,¹⁶ propylsulfonic SBA-15,¹⁷ and zeolite-based catalysts.^{18–21} However, due to the stability of xylose, these direct dehydrations need high reaction temperatures (>423 K).

To overcome this problem, one approach was developed, merging the isomerization of xylose (aldose) into unstable xylulose (ketose) before dehydration.^{22,23} Dehydration of xylose via aldose-ketose isomerization over Lewis acid catalysts under a mild condition (373 K) has been reported by Binder et al.²³ and Suzuki et al.²⁴ using CrCl₂ with LiBr and SO₄²⁻/SnO₂, respectively. As a different expedient, we have demonstrated that a combined use of the Brønsted solid base Mg-Al layered double hydroxide (Mg-Al LDH) and the Brønsted solid acid Amberlyst-15 efficiently afforded furfural from xylose in a onepot manner. This reaction involves aldose-ketose isomerization by base LDH and successive dehydration of ketose by acid Amberlyst-15.22 As advanced research studies, the bi-functional Cr/Mg-Al LDH surface, which consists of LDH-originated Brønsted base sites and Lewis acid sites on the dispersed Cr₂O₃, was a better isomerization catalyst than bare Mg-Al LDH, where the pair of Brønsted base and Lewis acid effectively promotes the aldose-ketose isomerization.25

Scheme 1. Possible reaction path for furfural synthesis via aldose–ketose isomerization over γ -Al₂O₃-based catalyst and successive dehydration on Amberlyst-15.

Herein, we focused on the modification of typical solid Lewis acid γ -Al₂O₃ with M²⁺ ion additions. M²⁺ species from aqueous solution onto γ -Al₂O₃ can generate M²⁺-Al³⁺ LDHtype compounds,²⁶ thus, the addition of M²⁺ onto γ -Al₂O₃would easily generate bi-functional Lewis acid γ -Al₂O₃-Brønsted base M-Al LDH sites. We investigated the modification effects of adding M²⁺ ions onto γ -Al₂O₃ in the onepot synthesis of furfural from xylose with Amberlyst-15 (Scheme 1). The characterizations on crystal structure, crystallite size, and surface area of the M²⁺-modified Al₂O₃ are demonstrated. The Lewis acidity is estimated by the Meerwein– Ponndorf–Verley (MPV) reduction of furfural to furfuryl alcohol in 2-propanol (see Supporting Information (SI)).

Preliminarily, we investigated the activity of combined use of y-Al₂O₃ and Amberlyst-15 for xylose transformation (see Experimental procedure in SI). The time courses are shown in Figure 1. The use of γ -Al₂O₃ alone hardly yielded furfural at 373 K, whereas furfural was efficiently produced with the combined use of γ -Al₂O₃ and Amberlyst-15. In the latter case, the yield of furfural increased with time, and it became constant at ca. 45% after 17 h of the reaction. It is noteworthy that this value was higher than that in previous reports performed at 373 K using solid catalysts.^{22,24} The HPLC profile of the reaction mixture at 8 h is shown in Figure S1. In the presence of γ -Al₂O₃ alone, three peaks were observed at retention times of 7.5, 7.7, and 8.0 min, which could be assigned to the xylose, xylulose and lyxose, and ribulose and arabinose, respectively. These results indicated that γ -Al₂O₃ significantly promoted the isomerization of xylose to such pentoses. For combined use with Amberlyst-15, very few amounts of such pentoses were detected because Amberlyst-15 is ineffective for dehydration of aldopentoses such as xylose and arabinose below 373 K,^{22,25,27} the reaction path of one-pot synthesis of furfural from xylose is proposed as follows: first, γ-Al₂O₃ promoted the isomerization of xylose toward xylulose, lyxose, ribulose, and/or arabinose; thereafter, Amberlyst-15 effectively dehydrated xylulose and ribulose toward furfural.

In the next stage, we prepared various M^{2+} -modified Al_2O_3 catalysts (M^{2+}/Al^{3+} atomic ratio = 0.05, see SI) and evaluated

Figure 1. Time course of furfural yield from xylose on γ -Al₂O₃ (\bigcirc) and combined use of γ -Al₂O₃ and Amberlyst-15 (\bigcirc). *Reaction conditions:* xylose (0.67 mmol), γ -Al₂O₃ (0.2 g), Amberlyst-15 (0.1 g), DMF (3 mL), 373 K, 500 rpm, N₂ flow (30 mL min⁻¹).

Figure 2. XRD patterns of γ -Al₂O₃ and various M²⁺-modified Al₂O₃; (a) Mg²⁺-modified Al₂O₃, (b) Co²⁺-modified Al₂O₃, (c) Ni²⁺-modified Al₂O₃, (d) Cu²⁺-modified Al₂O₃, (e) Zn²⁺-modified Al₂O₃, and (f) γ -Al₂O₃.

their catalytic performances and structural properties. The XRD patterns of various M^{2+} -modified Al_2O_3 and bare γ - Al_2O_3 are shown in Figure 2. All prepared M^{2+} -modified Al_2O_3 possessed the γ - Al_2O_3 phase. Interestingly, XRD patterns of LDH structure were also observed for Mg^{2+} , Co^{2+} , Ni^{2+} , and Zn^{2+} -modified Al_2O_3 .

Table 1 summarizes the catalytic activities for one-pot synthesis of furfural from xylose using M^{2+} -modified Al_2O_3 and Amberlyst-15. Catalytic activity of M^{2+} -modified Al_2O_3 for the MPV reduction was estimated based on the initial rate for the hydrogenation of furfural. BET specific surface areas of M^{2+} -modified Al_2O_3 are also listed in Table 1. It remarkably indicated that the pairs of Ni²⁺-modified Al_2O_3 and Amberlyst-15 showed better catalytic activities for furfural synthesis than that of γ -Al₂O₃ and Amberlyst-15. Since the BET surface areas of M^{2+} -modified Al_2O_3 were almost the same values (136–158 m²g⁻¹), no significant correlation between catalytic activity for furfural synthesis and surface area were expected in these catalysts.

In contrast, the good correlation was observed between the catalytic activities of γ -Al₂O₃ and Mg²⁺-, Co²⁺-, Cu²⁺-, and Zn²⁺-modified Al₂O₃ for furfural synthesis and MPV reduction, as shown in Figure 3 (open circle); the activity for furfural synthesis increased with increasing activity for MPV reduction.

Table 1. Catalytic activities and surface area of M²⁺-modified Al₂O₃

Modified metal ion	Furfural yield ^{a,b} /%	Initial rate for furfural synthesis ^{a,c} $/mmol g^{-1} h^{-1}$	Initial rate for MPV reduction ^d $/mmol g^{-1} h^{-1}$	$S_{\rm BET}^{\rm e}/{\rm m}^2{\rm g}^{-1}$
Mg ²⁺	38	0.36	2.32	154
Co ²⁺	37	0.30	2.22	155
Ni ²⁺	46	0.45	2.25	158
Cu ²⁺	25	0.21	0.47	153
Zn^{2+}	33	0.32	1.82	136
_	40	0.37	2.92	193

^aReaction conditions: xylose (0.67 mmol), M^{2+} -modified Al_2O_3 (0.2 g), Amberlyst-15 (0.1 g), DMF (3 mL), 373 K, N_2 flow (30 mL min⁻¹). ^b8 h. ^c1 h. ^dReaction conditions: furfural (1.3 mmol), 2-propanol (83 mmol), M^{2+} -modified Al_2O_3 (0.1 g), 355 K, 1 h. ^eBET specific surface area.

Figure 3. Correlation of activities for MPV reduction and furfural synthesis over various M^{2+} -modified Al_2O_3 catalysts.

Román-Leshkov et al. have reported that the isomerization of aldose into ketose over Lewis acid catalysts like tin-containing zeolite proceeded via MPV reduction under hydride shift mechanism.²⁸ Therefore, Lewis acidity is an important factor in M^{2+} -modified Al_2O_3 catalysts. In fact, a linear trend $(R^2 = 0.90)$ was assigned in Figure 3 except for Ni²⁺-modified Al_2O_3 (closed circle); i.e. the initial rate for furfural production of Ni²⁺-modified Al_2O_3 is faster than Mg²⁺- or Co²⁺-modified Al_2O_3 , whereas MPV reduction occurs with almost the same rate. This result suggested that the improvement of activity for furfural synthesis in Ni²⁺-modified Al_2O_3 (2.25 mmol g⁻¹ h⁻¹) was slower than that on γ -Al₂O₃ (2.92 mmol g⁻¹ h⁻¹).²⁹ Thus, the effects of generated Ni-Al LDH need to be considered.

To discuss the singularity of Ni²⁺ modification, basic density of Ni²⁺-modified Al₂O₃ and crystallite size of generated Ni-Al LDH on γ -Al₂O₃ were investigated. An increase of base density of Ni²⁺-modified Al₂O₃ (0.71 nm⁻²) from γ -Al₂O₃ (0.59 nm⁻²) owing to generation of Ni-Al LDH on γ -Al₂O₃ was determined by N₂ adsorption and titration with benzoic acid. Interestingly, it was observed that the generated LDH (003) plane crystallite size over Ni²⁺-modified Al₂O₃ was obviously smaller (7 nm) than Mg²⁺-modified Al₂O₃ (25 nm), Co²⁺- modified Al₂O₃ (33 nm), and Zn²⁺-modified Al₂O₃ (43 nm) (see SI, Figure S2). These suggested the possibility that xylose is successfully converted using coexistence of small basic Ni-Al LDH with γ -Al₂O₃.

To verify this hypothesis, we prepared the physically mixed catalyst of small Ni-Al LDH (5 nm) and y-Al₂O₃ following to the estimation; viz. the weight ratio of Ni-Al LDH and γ -Al₂O₃ in the Ni²⁺-modified Al₂O₃ is 0.16 by the XRD peak intensities for Ni-Al LDH (003) and γ -Al₂O₃ (440) plane (see SI, Figure S3), and then applied it to furfural synthesis with Amberlyst-15. Initial rate of the physically mixed catalyst $(0.34 \text{ mmol g}^{-1} \text{ h}^{-1})$ is almost similar to that of bare γ -Al₂O₃, and significantly smaller than Ni²⁺-modified Al₂O₃ $(0.45 \text{ mmol g}^{-1} \text{ h}^{-1})$. Furthermore, when the physical mixture of γ -Al₂O₃ and Ni-Al LDH was applied to the MPV reduction, the initial rate for furfuryl alcohol was $2.22 \text{ mmol g}^{-1} \text{ h}^{-1}$, similar to that of Ni²⁺-modified Al₂O₃ (2.25 mmol $g^{-1}h^{-1}$). Therefore, the enhanced activity for xylose conversion by the Ni²⁺-modified Al₂O₃ could not be explained in terms of the Lewis acidity or simple coexistence of fine Ni-Al LDH and γ -Al₂O₃.

Figure S4 shows TEM images of γ -Al₂O₃ and Ni²⁺modified Al₂O₃. Ni²⁺-modified Al₂O₃ possess a morphology in which acicular γ -Al₂O₃ and flat plate Ni-Al LDH are mixed uniformly. Caillerie et al. have reported that the breaking of Al–O bonds of γ -Al₂O₃ can be promoted by Ni²⁺ or Co²⁺ ions at neutral pH, thus the adsorption of Co^{2+} or Ni^{2+} complexes from aqueous solution onto y-Al₂O₃ can generate Ni-Al and Co-Al hydrotalcite-type compounds via three simultaneous phenomena at the oxide/water interface; the adsorption of ions, the alumina dissolution, and the coprecipitation of M^{2+} with Al^{3+} ions extracted from support.26 Accordingly, we considered that Ni2+modified Al₂O₃ possess boundaries between Al₂O₃ and LDH more abundantly than a simple mixture of y-Al₂O₃ and Ni-Al LDH. In addition, since the crystallite size of Ni-Al LDH in Ni^{2+} -modified Al_2O_3 was much smaller than that of Mg^{2+} -, Co²⁺-, and Zn²⁺-modified Al₂O₃, the Ni²⁺-modified Al₂O₃ would possess a lot of close boundaries compared to other M²⁺-modified Al₂O₃. Therefore, we suggested that the close boundaries between γ -Al₂O₃ and Ni-Al LDH facilitated the isomerization xylose into xylulose as bi-functional Lewis acid-Brønsted base active sites. Finally, it was noted that the combined use of Ni²⁺-modified Al₂O₃ and Amberlyst-15 yielded 46% furfural from xylose in 8h, though the pair of bare γ -Al₂O₃ and Amberlyst-15 needed 17 h (yield = 45%).

In conclusion, one-pot synthesis of furfural from xylose efficiently proceeded by a combined use of Ni²⁺-modified Al₂O₃, which contains fine Ni-Al layered double hydroxide (LDH) crystal, and Amberlyst-15. The close boundaries between Lewis acid γ -Al₂O₃ and Brønsted base Ni-Al LDH facilitated the isomerization of xylose into xylulose and ribulose, which in turn is dehydrated into furfural catalyzed by Brønsted acid Amberlyst-15.

This work was supported by a Grants-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows (No. 15J10050).

Supporting Information is available on http://dx.doi.org/ 10.1246/cl.151064.

References and Notes

- G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, *Science* 2005, 308, 1446.
- 2 R. Karinen, K. Vilonen, M. Niemelä, *ChemSusChem* 2011, 4, 1002.
- 3 P. Gallezot, Chem. Soc. Rev. 2012, 41, 1538.
- 4 G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044.
- 5 J. N. Chheda, G. W. Huber, J. A. Dumesic, *Angew. Chem.*, *Int. Ed.* 2007, 46, 7164.
- 6 S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 2008, 130, 12787.
- 7 A. Onda, T. Ochi, K. Yanagisawa, Green Chem. 2008, 10, 1033.
- 8 H. Kobayashi, T. Komanoya, K. Hara, A. Fukuoka, *ChemSusChem* **2010**, *3*, 440.
- 9 T. Komanoya, H. Kobayashi, K. Hara, W.-J. Chun, A. Fukuoka, *Appl. Catal.*, A 2011, 407, 188.
- 10 C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Chem. Soc. Rev. 2011, 40, 5588.
- 11 H. Choudhary, S. Nishimura, K. Ebitani, *Chem. Lett.* **2012**, *41*, 409.
- B. Danon, G. Marcotullio, W. de Jong, *Green Chem.* 2014, 16, 39.
- 13 G. W. Huber, A. Corma, Angew. Chem., Int. Ed. 2007, 46, 7184.
- 14 A. S. Dias, S. Lima, M. Pillinger, A. A. Valente, *Catal. Lett.* 2007, 114, 151.
- 15 A. S. Dias, S. Lima, P. Brandão, M. Pillinger, J. Rocha, A. A. Valente, *Catal. Lett.* **2006**, *108*, 179.
- 16 G. H. Jeong, E. G. Kim, S. B. Kim, E. D. Park, S. W. Kim, *Microporous Mesoporous Mater.* 2011, 144, 134.
- 17 I. Agirrezabal-Telleria, J. Requies, M. B. Güemez, P. L. Arias, *Appl. Catal., B* 2014, 145, 34.
- 18 A. S. Dias, M. Pillinger, A. A. Valente, *Appl. Catal.*, A 2005, 285, 126.
- 19 S. Lima, M. Pillinger, A. A. Valente, *Catal. Commun.* **2008**, *9*, 2144.
- 20 R. O'Neill, M. N. Ahmad, L. Vanoye, F. Aiouache, *Ind. Eng. Chem. Res.* 2009, 48, 4300.
- 21 S. Lima, A. Fernandes, M. M. Antunes, M. Pillinger, F. Ribeiro, A. A. Valente, *Catal. Lett.* 2010, 135, 41.
- 22 A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani, *Chem. Lett.* 2010, 39, 838.
- 23 J. B. Binder, J. J. Blank, A. V. Cefali, R. T. Raines, *ChemSusChem* 2010, *3*, 1268.
- 24 T. Suzuki, T. Yokoi, R. Otomo, J. N. Kondo, T. Tatsumi, *Appl. Catal.*, A 2011, 408, 117.
- 25 M. Shirotori, S. Nishimura, K. Ebitani, *Catal. Sci. Technol.* 2014, 4, 971.
- 26 J.-B. d'Espinose de la Caillerie, M. Kermarec, O. Clause, J. Am. Chem. Soc. 1995, 117, 11471.
- 27 J. Tuteja, S. Nishimura, K. Ebitani, Bull. Chem. Soc. Jpn. 2012, 85, 275.
- 28 Y. Román-Leshkov, M. Moliner, J. A. Labinger, M. E. Davis, *Angew. Chem., Int. Ed.* 2010, 49, 8954.
- 29 Lewis acid amount of Ni²⁺-modified Al₂O₃ was tentetively estimated to be 63 μ mol g⁻¹ on the basis of the initial rates for MPV reduction and Lewis acid value of γ -Al₂O₃ (JRC-ALO-8) (82 μ mol g⁻¹) reported in ref 30.
- 30 T. Kitano, T. Shishido, K. Teramura, T. Tanaka, *J. Phys. Chem. C* 2012, *116*, 11615.