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Efficient One-Pot Synthesis of Polyhydroquinoline
Derivatives Using Silica Sulfuric Acid as a

Heterogeneous and Reusable Catalyst Under
Conventional Heating and Energy-Saving

Microwave Irradiation

Akbar Mobinikhaledi, Naser Foroughifar, Mohammad Ali Bodaghi

Fard, Hassan Moghanian, Sattar Ebrahimi, and Mehdi Kalhor
Department of Chemistry, Faculty of Sciences, Arak University,

Arak, Iran

Abstract: An efficient Hantzsch four-component condensation reaction for the
synthesis of polyhydroquinoline derivatives was reported under two conditions:
solvent-free conventional heating and energy-saving microwave irradiation. The
process is simple and environmentally benign, and the use of a heterogeneous
and reusable catalyst, high yields, and short reaction times are the key features
of this protocol.

Keywords: Heterogeneous, polyhydroquinoline, silica sulfuric acid

INTRODUCTION

In recent years, much attention has been focused on the synthesis of
1,4-dihydropyridyl compounds because of their significant biological
activities.[1,2] Cardiovascular agents such as nifedipine, nicardipine, and
other related derivatives are dihydropyridyl compounds, which are
effective in the treatment of hypertention.[3] They are also common
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features of various bioactive compounds such as vasodilator, bronchodi-
lator, antiatherosclerotic, antitumor, geroprotective, hepatoprotective,
and antidiabetic agents.[4–7] Numerous methods have been reported for
the synthesis of polyhydroquinoline (PHQ) derivatives, because of biolo-
gical importance associated with these compounds. The classical method
involves a three-component coupling of an aldehyde, ethylacetoacetate,
and ammonia in acetic acid or in refluxing ethanol.[8,9] However, these
methods suffer from several disadvantages such as long reaction times,
use of volatile and excess organic solvents, low product yields, and harsh
reaction conditions. Thus, chemists have developed several efficient
methods for the synthesis of PHQ derivatives, which includes the use
of ionic liquids,[10,11] microwave irradiation,[12–14] TMSCl,[15] poly-
mers,[16] I2,[17] HClO4 � SiO2,[18] ceric ammonium nitrate (CAN),[19] metal
triflates,[20] and heteropolyacid.[21] However, the use of high tempera-
tures, expensive metal precursors, and environmentally harmful catalysts
limit the use of these methods. Thus development of a simple and efficient
method for preparation of PHQ derivatives is an active research area,
and there is a scope for further improvement involving milder and less
hazardous reaction conditions. In recent years, the preparation of silica
sulfuric acid (SSA) as a heterogeneous stable acidic reagent[22] and
some of its catalytic activities in synthetic methodology have been
reported.[23–29]

Because of the unique catalyst features of SSA, we investigated the
use of SSA for the synthesis of PHQ derivatives (Fig. 1).

RESULTS AND DISCUSSION

We optimized the conditions by examining the reaction involving
p-chlorobenzaldehyde, ethylacetoacetate, dimedone, and ammonium
acetate to afford the appropriate PHQ (4c). A summary of the obtained
results is provided in Table 1. Entry 5 describes the yields of three con-
secutive condensations leading to PHQ (4c, Table 2) and refers to the

Figure 1. Synthesis of polyhydroquinoline derivatives with the promotion of SSA.
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reusability of SSA. Entry 6 shows the catalytic effect of SSA in this
reaction. The reactions proceeded efficiently and smoothly at 60 �C
(oil bath) and were completed within 30 min–2 h. Table 2 shows the
generality of the present protocol, which is equally effective for aro-
matic, aliphatic, unsaturated, and heterocyclic aldehydes. Moreover,
the experimental procedure is very simple, and there was no undesirable
side product.

Recently Bose and coworkers have developed an energy-efficient
protocol for a solvent-free reaction that is mildly exothermic but not
spontaneous. They found that many of these reactions require a short
burst of energy for the initiation of the reaction. After such initiation,
the exothermic reaction proceeds on its own to completion without addi-
tional energy input.[30] We used this protocol for the synthesis of PHQ
derivatives using a domestic oven at medium high power in the presence
of SSA as a catalyst. Interestingly, we found that this method was very
efficient, and the products were prepared in high yields in a short time
with only a short burst of microwave energy needed. A summary of
obtained data is provided in Table 3.

CONCLUSION

In conclusion, we have demonstrated that the four-component Hantzsch
reaction can effectively synthesize PHQ derivatives with the promotion of
SSA, which provides a simple and efficient method in two conditions.
Mild reaction conditions, high yields, generality, and simplicity of the
procedure; stability and reusability of the catalyst, and avoidance of
harmful organic solvents are features of this new protocol.

Table 1. Optimization of reaction conditions

Entry Solventa Catalyst Yield (%)

1 CH2Cl2 SSA 35
2 CH3CN SSA 67
3 C2H5OH SSA 73
4 Toluene SSA 39
5 Noneb SSA 91,93,90d

6 Nonec None 43

aRefluxed for 6 h.
b60 �C for 40 min.
c100 �C for 3 h.
dIsolated yield after three consecutive runs.

1168 A. Mobinikhaledi et al.

D
ow

nl
oa

de
d 

by
 [

B
ro

w
n 

U
ni

ve
rs

ity
] 

at
 0

2:
18

 2
8 

D
ec

em
be

r 
20

12
 



T
a

b
le

2
.

S
S

A
ca

ta
ly

ze
d

th
e

sy
n

th
es

is
o

f
p

o
ly

h
y

d
ro

q
u

io
li

n
e

d
er

iv
a

ti
v

es
th

ro
u

g
h

H
a

n
tz

sc
h

re
a

ct
io

n
w

it
h

v
a

ri
o

u
s

a
ld

eh
y

d
es

a
n

d
1

,3
-d

ik
et

o
n

e
u

n
d

er
co

n
v

en
ti

o
n

a
l

m
et

h
o

d

E
n

tr
y

1
R

1
R

2
R

3
P

ro
d

u
ct

T
im

e
(m

in
)

Y
ie

ld
(%

)a
M

p
(f

o
u

n
d

)b
M

p
(r

ep
o

rt
ed

)[L
it

.]

1
1

a
P

h
H

H
4

a
4

5
9

2
2

4
3

–
2

4
5

2
4

0
–

2
4

1
[1

8
]

2
1

b
4

-M
e�

C
6
H

4
H

H
4

b
5

0
9

2
2

4
2

–
2

4
3

2
4

1
–

2
4

2
[1

8
]

3
1

c
4

-C
l�

C
6
H

4
H

H
4

c
4

0
9

1
2

3
4

–
2

3
6

2
3

4
–

2
3

5
[1

8
]

4
1

d
4

-M
eO
�

C
6
H

4
H

H
4

d
5

0
9

4
1

9
4

–
1

9
6

1
9

3
–

1
9

5
[1

8
]

5
1

e
2

-N
O

2
�

C
6
H

4
H

H
4

e
6

0
9

0
1

9
2

–
1

9
4

1
9

0
–

1
9

1
[1

8
]

6
1

f
3

-N
O

2
�

C
6
H

4
H

H
4

f
8

0
9

0
2

0
0

–
2

0
1

1
9

8
–

2
0

0
[1

8
]

7
1

g
P

h
C

H
3

C
H

3
4

g
3

0
9

4
2

0
3

–
2

0
5

2
0

2
–

2
0

4
[1

9
]

8
1

h
4

-M
e�

C
6
H

4
C

H
3

C
H

3
4

h
4

0
9

4
2

6
1

–
2

6
3

2
6

0
–

2
6

1
[1

9
]

9
1

i
4

-C
l�

C
6
H

4
C

H
3

C
H

3
4

i
3

0
9

1
2

4
2

–
2

4
4

2
4

5
–

2
4

6
[1

7
]

1
0

1
j

2
-N

O
2
�

C
6
H

4
C

H
3

C
H

3
4

j
6

0
9

2
2

0
3

–
2

0
6

2
0

6
–

2
0

7
[1

7
]

1
1

1
k

3
-N

O
2
�

C
6
H

4
C

H
3

C
H

3
4

k
6

0
9

0
1

7
8

–
1

8
0

1
7

8
–

1
7

9
[1

7
]

1
2

1
l

4
-N

O
2
�

C
6
H

4
C

H
3

C
H

3
4

l
9

0
9

1
2

4
2

–
2

4
4

2
4

3
–

2
4

4
[1

7
]

1
3

1
m

4
-O

H
�

C
6
H

4
C

H
3

C
H

3
4

m
8

0
9

6
2

3
1

–
2

3
3

2
3

0
–

2
3

1
[1

7
]

1
4

1
n

4
-B

r�
C

6
H

4
C

H
3

C
H

3
4

n
3

0
9

3
2

5
3

–
2

5
5

2
5

3
–

2
5

5
[1

9
]

1
5

1
o

4
-N

(M
e)

2
�

C
6
H

4
C

H
3

C
H

3
4

o
4

0
9

6
2

6
0

–
2

6
2

2
6

2
–

2
6

3
[1

7
]

1
6

1
p

4
-M

eO
�

C
6
H

4
C

H
3

C
H

3
4

p
3

0
9

4
2

5
2

–
2

5
5

2
5

6
–

2
5

7
[1

7
]

1
7

1
q

2
-C

l�
C

6
H

4
C

H
3

C
H

3
4

q
6

0
9

1
2

0
2

–
2

0
5

2
0

7
–

2
0

8
[1

7
]

1
8

1
r

3
,4

-(
O

M
e)

2
�

C
6
H

3
C

H
3

C
H

3
4

r
3

0
9

2
2

0
1

–
2

0
3

1
9

8
–

1
9

9
[1

7
]

1
9

1
s

2
,4

-(
C

l)
2
�

C
6
H

3
C

H
3

C
H

3
4

s
2

5
9

5
2

4
0

–
2

4
3

2
4

1
–

2
4

3
[1

9
]

2
0

1
t

C
6
H

5
-C

H
¼

C
H

2
C

H
3

C
H

3
4

t
7

5
8

9
2

0
0

–
2

0
2

2
0

4
–

2
0

6
[1

9
]

2
1

1
u

n
�

C
3
H

7
C

H
3

C
H

3
4

u
3

0
9

1
1

4
6

–
1

4
8

1
4

7
–

1
4

8
[1

9
]

2
2

1
v

5
-M

e-
2

-T
h

ie
n

y
l

C
H

3
C

H
3

4
v

4
0

9
2

2
2

8
–

2
3

0
2

2
6

–
2

2
9

[1
9

]

a
Is

o
la

te
d

y
ie

ld
.

b
M

el
ti

n
g

p
o

in
ts

a
re

n
o

t
co

rr
ec

te
d

.

1169

D
ow

nl
oa

de
d 

by
 [

B
ro

w
n 

U
ni

ve
rs

ity
] 

at
 0

2:
18

 2
8 

D
ec

em
be

r 
20

12
 



T
a

b
le

3
.

S
S

A
ca

ta
ly

ze
d

th
e

sy
n

th
es

is
o

f
p

o
ly

h
y

d
ro

q
u

io
li

n
e

d
er

iv
a

ti
v

es
th

ro
u

g
h

H
a

n
tz

sc
h

re
a

ct
io

n
w

it
h

v
a

ri
o

u
s

a
ld

eh
y

d
es

a
n

d
1

,3
-d

ik
et

o
n

e
u

n
d

er
sh

o
rt

b
u

rs
ts

o
f

M
W

ir
ra

d
ia

ti
o

n

E
n

tr
y

1
R

1
R

2
R

3
P

ro
d

u
ct

Ir
ra

d
ia

ti
o

n
ti

m
e

(m
in

)
T

o
ta

l
ti

m
e

(m
in

)
Y

ie
ld

(%
)a

M
p

(f
o

u
n

d
)b

M
p

(r
ep

o
rt

ed
)[L

it
.]

1
1

a
P

h
H

H
4

a
1

2
0

9
1

2
4

2
–

2
4

4
2

4
0

–
2

4
1

[1
8

]

2
1

b
4

-M
e-

C
6
H

4
H

H
4

b
1

2
0

9
0

2
4

1
–

2
4

3
2

4
1

–
2

4
2

[1
8

]

3
1

c
P

h
C

H
3

C
H

3
4

c
1

1
5

9
3

2
0

4
–

2
0

5
2

0
2

–
2

0
4

[1
9

]

4
1

d
4

-M
e-

C
6
H

4
C

H
3

C
H

3
4

d
1

1
5

9
4

2
6

0
–

2
6

3
2

6
0

–
2

6
1

[1
9

]

5
1

e
4

-B
r-

C
6
H

4
C

H
3

C
H

3
4

e
1

2
0

9
2

2
5

2
–

2
5

4
2

5
3

–
2

5
5

[1
9

]

6
1

f
2

-N
O

2
-C

6
H

4
C

H
3

C
H

3
4

f
1

2
5

9
0

2
0

4
–

2
0

6
2

0
6

–
2

0
7

[1
7

]

7
1

g
4

-N
O

2
-C

6
H

4
C

H
3

C
H

3
4

g
1

2
5

8
9

2
4

2
–

2
4

5
2

4
3

–
2

4
4

[1
7

]

8
1

h
4

-N
(M

e)
2
-C

6
H

4
C

H
3

C
H

3
4

h
1

2
0

9
3

2
6

1
–

2
6

3
2

6
2

–
2

6
3

[1
7

]

9
1

i
3

,4
-(

O
M

e)
2
-C

6
H

3
C

H
3

C
H

3
4

i
1

1
5

9
4

2
0

2
–

2
0

4
1

9
8

–
1

9
9

[1
7

]

a
Is

o
la

te
d

y
ie

ld
.

b
M

el
ti

n
g

p
o

in
ts

a
re

n
o

t
co

rr
ec

te
d

.

1170

D
ow

nl
oa

de
d 

by
 [

B
ro

w
n 

U
ni

ve
rs

ity
] 

at
 0

2:
18

 2
8 

D
ec

em
be

r 
20

12
 



EXPERIMENTAL

General

All of the products are known compounds and were characterized by
comparison of their physical and spectroscopic data with those
reported in the literature. Melting points were obtained in open capil-
laries on an Electrothermal 5000 digital apparatus and are not cor-
rected. A National microwave oven, model no. NN-K571MF
(1000 W), was used for microwave-assisted reactions. Infrared (IR)
spectra were recorded on a Galaxy series Fourier transform infrared
(FT-IR) 5000 spectrometer. NMR spectra were recorded on a Brucker
300-MHz spectrometer in dimethyl sulfoxide (DMSO-d6) with tetra-
methylsilane (TMS) as an internal standard. Silica sulfuric acid was
prepared according to the reported procedure.[22] Progress of the reac-
tions was followed by dissolving a sample in ethyl acetate and
monitoring by thin-layer chromatography (TLC) using n-hexane=
EtOAc (2:1 v=v) as an eluent.

General Procedure for the Synthesis of 4a–v (Table 2) Under

Solvent-Free Conventional Heating Conditions

A mixture of aldehyde (1.0 mmol), dimedone or 1,3-cyclohexanedione
(1.0 mmol), ethyl acetoacetate (1.0 mmol), ammonium acetate (2.0 mmol),
and silica sulfuric acid (0.08 g, 0.20 mmol) was heated at 60 �C for an
appropriate time (TLC). The resulting solid product was treated
with hot ethanol or acetonitrile and then filtered. The filtrate was
concentrated to afford the crude product. The pure product was obtained
by recrystallization from absolute ethanol.

General Procedure for the Synthesis of 4a–i (Table 3) Under
MW Irradiation

A mixture of aldehyde (1.0 mmol), dimedone or 1,3-cyclohexanedione
(1.0 mmol), ethyl acetoacetate (1.0 mmol), ammonium acetate (2.0 mmol),
and SSA (0.08 g, 0.20 mmol) was mixed and irradiated by microwaves for
1 min and then allowed to go to completion. The resulting solid product
was treated with hot ethanol or acetonitrile and then filtered. The filtrate
was concentrated to afford the crude product. The pure product was
obtained by recrystallization from absolute ethanol.

One-Pot Synthesis of Polyhydroquinoline 1171
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Physical and Spectroscopic Data for Selected Compounds

Ethyl-1,4,7,8-tetrahydro-2-methyl-4-(phenyl)-5(6H)-oxoquinoline-3-
carboxylate (Table 2, 4a)

Mp 243–245 �C; IR (KBr) (nmax): 3284, 3140, 1691, 1608, 1479, 1379,
1222, 1180, 1072 cm�1; 1H NMR (DMSO-d6): dH: 1.12 (3H, t, J¼ 7.0 Hz,
CH3), 1.87–2.27 (6H, m, CH2), 2.46 (3H, s, CH3), 3.97 (2H, q, J¼ 7.0 Hz,
CH2), 4.90 (1H, s, CH), 7.04–7.20 (5H, m, Ar), 9.14 (1H, s, NH) ppm.

Ethyl-1,4,7,8-tetrahydro-2,7,7-trimethyl-4-(phenyl)-5(6H)-oxoquinoline-
3-carboxylate (Table 2, 4g)

Mp 203–205 �C; IR (KBr) (nmax): 3288, 2962, 1699, 1610, 1485, 1381,
1211,1072 cm�1; 1H NMR (DMSO-d6): dH: 0.84 (3H, s, CH3), 1.00
(3H, s, CH3), 1.13 (3H, t, J¼ 7.1 Hz, CH3), 2.14–2.50 (4H, m, CH2),
3.97 (2H, q, J¼ 7.1 Hz, CH2), 4.84 (1H, s, CH), 7.03–7.20 (5H, m, Ar),
9.07 (1H, s, NH) ppm.

Ethyl-1,4,7,8-tetrahydro-2,7,7-trimethyl-4-(4-methylphenyl)-5(6H)-
oxoquinoline-3-carboxylate (Table 2, 4h)

Mp 261–262 �C; IR (KBr) (nmax): 3277, 3207, 3078, 2962, 1701, 1647, 1604,
1493, 1381, 1280, 1215, 1090 cm�1; 1H NMR (DMSO-d6): dH: 0.84 (3H, s,
CH3), 1.00 (3H, s, CH3), 1.14 (3H, t, J¼ 7.1 Hz, CH3), 1.98–2.44 (4H, m,
CH2), 2.24 (3H, s, CH3), 2.29 (3H, s, CH3), 3.96 (2H, q, J¼ 7.1 Hz,
CH2), 4.79 (1H, s, CH), 6.95–7.03 (4H, m, Ar), 9.03 (1H, s, NH) ppm.

Ethyl-1,4,7,8-tetrahydro-2,7,7-trimethyl-4-(4-bromophenyl)-5(6H)-
oxoquinoline-3-carboxylate (Table 2, 4n)

Mp 253–255 �C; IR (KBr) (nmax): 3280, 3217, 3065, 2951, 1695, 1637,
1608, 1489, 1381, 1263, 1210, 1092 cm�1; 1H NMR (DMSO-d6): dH:
0.82 (3H, s, CH3), 1.00 (3H, s, CH3), 1.12 (3H, t, J¼ 7.0 Hz, CH3),
1.94–2.44 (4H, m, CH2), 2.29 (3H, s, CH3), 3.96 (2H, q, J¼ 7.0 Hz,
CH2), 4.82 (1H, s, CH), 7.08–7.39 (4H, m, Ar), 9.12 (1H, s, NH) ppm.
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