Article

An Efficient Route to Pyrimidine Nucleoside Analogues by [4 + 2] **Cycloaddition Reaction**

Morwenna S. M. Pearson,[†] Aélig Robin,[†] Nathalie Bourgougnon,[‡] Jean Claude Meslin,[†] and David Deniaud*,[†]

Laboratoire de Synthèse Organique, UMR CNRS 6513, Faculté des Sciences et des Techniques, 2, Rue de la Houssinière 44322 Nantes Cedex 03, France, and Laboratoire de Biologie Moléculaires EA 2594, Centre de recherche et d'enseignemant Yves Coppens, Campus de Tohannic, BP 573, 56017 Vannes, France

david.deniaud@chimie.univ-nantes.fr

Received May 26, 2003

We report here an efficient synthesis for pyrimidine nucleoside analogues by [4 + 2] cycloaddition reaction. These compounds were obtained by convergent chemistry from glycosyl isothiocyanates 3a-f (pyranoses, furanoses, and dissaccharides) and diazadienium salt 5. In fact, diazapentadienium iodide 5 prepared from vinylthioamide 4 is an efficient intermediate in heterocyclic synthesis and reacts with isothiocyanates 3a-f affording β -D-uracil analogues 7a-f in good yields and with total regiocontrol. All compounds were fully characterized by IR, HRMS, and ¹³C and ¹H NMR (COSY and HMQC).

Introduction

For many years, modified nucleosides have been widely used as antiviral and antitumor agents.¹ Considerable efforts have been undertaken to exploit synthetic routes to these compounds.² In the course of the preparation of nucleosides, base moieties are generally introduced by substitution or more rarely by construction.³ Conventionally, synthesis of N-linked oligosaccharides has been achieved by coupling of activated glycosyl derivatives with heterocyclic nucleobase analogues such as pyrimidinones.⁴ Alternative methods for *N*-alkylation include heating with trimethyl phosphate⁵ and alkylation of O-silylated derivatives,⁶ which is an important method for unambiguous N-alkylation especially ribosylation of uracils.7 Complementary studies through an intramolecular transposition process were investigated in order to improve the synthesis of nucleoside pyrimidinone analogues.⁸ Significant and diverse pharmaceutical values of various nucleosides have inspired investigations toward the development of new synthetic methods for their practical preparation.

Among the *N*-glycosides, glycosyl isothiocyanates are attracting much attention because of the synthetic flexibility of the isothiocyanate function.⁹ In fact, sugar isothiocyanates play a key role in the preparation of a variety of functional groups as well as in the construction of heterocyclic ring systems. In particular, they have been used for the synthesis of a wide spectrum of carbohydrate derivatives with thiourea structure.¹⁰ Recently, glycosyl isothiocyanates were used to prepare galactofuranosidase inhibitors, ¹¹ β -amphiphilic compounds, ¹² hydantocidin, ¹³ spironucleosides,¹⁴ and glycodendrimers.¹⁵ Paradoxically, only few syntheses of nucleoside analogues by [4 + 2]

(13) (a) Shiozaki, M. *Carbohydr. Res.* **2001**, *335*, 147. (b) Shiozaki, M. Carbohydr. Res. 2002, 337, 2077.

[†] Université de Nantes.

[‡] Université de Bretagne Sud.

^{(1) (}a) Garg, R.; Gupta, S.; Gao, H.; Babu, M.; Debnath, A.; Hansch, *Chem. Rev.* **1999**, *99*, 3523. (b) Hurin, D. N.; Okabe, M. *Chem. Rev.* 1992, 92, 1745. (c) Lin, T. S.; Luo, M. Z.; Liu, M. C.; Zhu, Y. L.; Gullen, E.; Dutschman, G. E.; Cheng, Y. C. J. Med. Chem. 1996, 39, 1757. (d) Webb, T. R.; Mitsuya, H.; Broder, S. J. Med. Chem. 1988, 31, 1475 and references therein.

^{(2) (}a) Zorbach, W. W. Synthesis 1970, 7, 329. (b) Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J. Am. Chem. Soc. **1989**, *111*, 6881. (c) Ichikawa, E.; Kato, K. Curr. Med. Chem. **2001**, *8*, 385. (d) Komatsu, H.; Araki, T. Tetrahedron Lett. 2003, 44, 2899. (e) Trelles, J. A.; Fernandez, M.; Lewkowicz, E. S.; Iribarren, A. M.; Sinisterra, J. V. Tetrahedron Lett. 2003, 44, 2605.

⁽³⁾ Ané, A.; Prestat, G.; Manh, G. T.; Josse, S.; Pipelier, M.; Lebreton,

^{(4) (}a) Plimil, J.; Prystas, M. Adv. Heterocycl. Chem. 1967, 8, 115.
(b) Niedballa, U.; Vorbruggen, H. J. Org. Chem. 1974, 39, 3672. (c) Vorbruggen, H.; Krolikiewicz, K.; Bennua, B. *Chem. Ber.* **1981**, *114*, 1234. (d) Vorbruggen, H.; Hofle, G. *Chem. Ber.* **1981**, *114*, 1256. (e) Suginura, H.; Muramoto, I.; Nakamura, T.; Osumi, K. Chem. Lett. 1993, 169. (f) Jungmann, O.; Pfleiderer, W. Tetrahedron Lett. 1996, 37, 8355.

⁽⁵⁾ Yamauchi, M.; Kinoshita, M. J. Chem. Soc., Perkin Trans. 1 1973, *8*, 391.

⁽⁶⁾ Müller, C. E. Tetrahedron Lett. 1991, 32, 6539.

^{10.1021/}io034709a CCC: \$25.00 © 2003 American Chemical Society Published on Web 10/01/2003

⁽⁷⁾ Matsuda, A.; Kurasawa, Y.; Watanabe, K. Synthesis 1981, 9, 748. (8) (a) Jung, M. E.; Castro, C. *J. Org. Chem.* **1993**, *58*, 507. (b) Sujino, K.; Sugimura, H. *Chem. Lett.* **1993**, 1187. (c) Lipshutz, B. H.; Stevens, K. L.; Lowe, R. F. *Tetrahedron Lett.* **1995**, *36*, 2711. (d) Xia, X.; Wang, J.; Hager M. W.; Sisti, N.; Liotta, D. C. Tetrahedron Lett. 1997, 38,

^{(9) (}a) Mukerjee, A. K.; Ashare, R. *Chem. Lett.* **1999**, 361.
(9) (a) Mukerjee, A. K.; Ashare, R. *Chem. Rev.* **1991**, *91*, 1. (b) Al Massoudi, N.; Hassan, N. A.; Al-Soud, Y. A.; Schmidt, P.; Gaafar, A. E.-D.; Weng, M.; Marino, S.; Schoch, A.; Amer, A.; Jochins, J. C. J. Chem. Soc., Perkin Trans. 1 **1998**, 5, 947.

⁽¹⁰⁾ Saleh, M. A. Nucleosides, Nucleotides Nucleic Acids 2002, 21, 401. (b) Benito, J. M.; Ortiz Mellet, C.; Sadalapure, K.; Lindhorst, T. K.; Defaye, J.; Garcia Fernández, J. M. *Carbohydr. Res.* 1999, *320*, 37. (c) Díaz Pérez, V. M.; Ortiz Mellet, C.; Fuentes, J.; Garcia Fernández, J. M. *Carbohydr. Res.* 2000, *326*, 161. (d) Fuentes, J.; Moreda, W.; Ortiz, C.; Robina, I.; Welsh, C. *Tetrahedron* 1992, *48*, 6413. (11) Marino, C.; Herczegh, P.; de Lederkremer, R. M. Carbohydr.

Res. 2001, 333, 123. (12) Prata, C.; Mora, N.; Polidori, A.; Lacombe, J.-M.; Pucci, B. *Carbohydr. Res.* **1999**, *321*, 15.

SCHEME 1. Synthetic Route to Nucleosides 7a-f

cycloaddition or addition-cyclization reactions of glycosyl isothiocyanates have been described.^{14a,16} Therefore, it would be interesting to establish simple synthetic approaches and novel concepts in the synthesis and development of pyrimidine nucleoside analogues.

During the last years, we have focused our research on the development of efficient methodologies to build heterocyclic compounds.¹⁷ In our previous paper, we described the versatility of cationic dienes as stable synthons for the preparation of various heterocyclic rings.¹⁸ We report here the reactivity of diazadienium iodide **5** in a [4 + 2] cycloaddition reaction with glycosyl isothiocyanates **3a**–**f** affording sugar pyrimidines **7a**–**f** (Scheme 1).¹⁹ This type of derivatives opens a new route to original functionalized six-membered ring heterocycles with strong biological potential.

Results and Discussion

Starting glycosyl isothiocyanates 3a-f were obtained in two steps in good to moderate overall yields. Thus, acetylated (for 3a-d) or benzoylated (for 3e,f) glycosyl bromides were prepared by stirring the respective acetates in HBr–acetic acid solution.²⁰ A subsequent step in a phase-transfer reaction using thiocyanate anion and tetrabutylammonium bromide as catalyst in acetonitrile

(16) (a) Takahashi, H.; Nimura, N.; Ogura, H. *Chem. Pharm. Bull.* **1979**, *27*, 1143. (b) Valentíny, M.; Martvon, A.; Kovác, P. *Collect. Czech. Chem. Commun.* **1981**, *46*, 2197. (c) Ogura, H.; Takahashi, H.; Sato,
O. *Chem. Pharm. Bull.* **1981**, *29*, 1838.

(17) (a) Charrier, J. D.; Landreau, C.; Deniaud, D.; Reliquet, A.; Reliquet, F.; Meslin, J. C. Tetrahedron 2001, 57, 4195. (b) Landreau, C.; Deniaud, D.; Reliquet, A.; Meslin, J. C. Synthesis 2001, 13, 2015.
(c) Landreau, C.; Deniaud, D.; Reliquet, A.; Meslin, J. C. Synthesis 2002, 3, 403. (d) Landreau, C.; Deniaud, D.; Evain, M.; Reliquet, A.; Meslin, J. C. J. Chem. Soc., Perkin Trans. 1 2002, 6, 741. (e) Landreau, C.; Deniaud, D.; Reliquet, A.; Meslin, J. C. Phosphorus, Sulfur Silicon 2002, 177, 2651. (f) Landreau, C.; Deniaud, D.; Reliquet, A.; Meslin, J. C. Tetrahedron Lett. 2002, 43, 4099. (g) Landreau, C.; Deniaud, D.; Reliquet, A.; Meslin, J. C. Eur. J. Org. Chem. 2003, 3, 421. (h) Landreau, C.; Deniaud, D.; Meslin, J. C. J. Org. Chem. 2003, 68, 4912. (18) (a) Friot, C.; Reliquet, A.; Reliquet, F.; Meslin, J. C. Synthesis 2000, 6 505. (h) Landreau, C.; Deniaud, D.; Reliquet, A.; Meslin, J. C. Synthesis

(18) (a) Friot, C.; Reliquet, A.; Reliquet, F.; Meslin, J. C. *Synthesis* **2000**, *5*, 695. (b) Landreau, C.; Deniaud, D.; Reliquet, A.; Reliquet, F.; Meslin, J. C. *J. Heterocycl. Chem.* **2001**, *38*, 93.

(19) (a) Ueda, T.; Iida, Y.; Ikeda, K.; Mizumo, Y. Chem. Pharm. Bull. **1968**, *16*, 1788. (b) Ueda, T.; Nishino, H. Chem. Pharm. Bull. **1969**, *17*, 920. (c) Bretner, M.; Felczak, K.; Dzik, J. M.; Golos, B.; Rode, W.; Drabikowska, A.; Poznanski, J.; Krawiec, K.; Piasek, A.; Shugar, D.; Kulikowski, T. Nucleosides Nucleotides **1997**, *16*, 1295.

(20) Koch, A.; Lamberth, C.; Wetterich, F.; Giese, B. J. Org. Chem. 1993, 58, 1083.

in the presence of molecular sieves (4 Å) afforded the desired N-glycosides 3a-f (Scheme 2) without yielding corresponding thiocyanates.^{21,22} The reaction is totally diastereoselective affording only the 1,2-trans-isothiocyanates, probably due to the anchimeric participation of the vicinal 2-O-acyl group.^{21a,23} The anomeric configuration could be easily determined by measuring the anomeric coupling constant $J_{1,2}$. The $J_{1,2}$ value (~8.4 Hz) indicated pyranoses 3a-d to be β . The β -D-furanose configuration of **3e**,**f** was equally established by means of H₁-H₂ coupling constant values, which being smaller than 1 Hz indicate a 1,2-trans relationship.²⁴ Compounds **2e**, **f** were reacted directly with an excess of potassium thiocyanate without purification. In fact, 2,3,5-tri-Obenzoyl-D-ribofuranosyl bromide 2e and 2,3,5-tri-O-benzoyl-D-xylofuranosyl bromide 2f proved extremely unstable and degraded on silica gel during chromatography.

Rajappa and Advani have previously reported the condensation of N,N-dimethylformamide dimethyl acetal and thioacetamide to furnish vinylthioamide **4** in very poor yields (6.5%).²⁵ An alternative preparation consisting of sulfhydratation of the commercially available 3-dimethylaminoacrylonitrile (trans/cis ratio: 95/5) in the presence of triethylamine and pyridine permitted the isolation of compound **4** in more satisfactory yields (79%), and with exclusive *E* configuration (Scheme 3).

During the past years, different types of 2-amino-1thiazabutadienes have been studied in our laboratory. We have reported that these compounds could react either as thiazadienes or diazadienes giving rise to tetrahydropyrimidines or 1,3-thiazines.^{18a,26} Vinylthioamide 4 can have also two tautomeric forms either azadiene or thiadiene, and thus probably possess a wide reactivity. With the aim to investigate the synthesis of uracil analogues, we have rigidified the structure by alkylation of compound **4** to obtain only the azadiene chain. Alkylation of vinylthioamide afforded, as the sole product, the corresponding S-methyl salt 5, due to the higher nucleophilicity of the sulfur. In contrast to the method developed in the literature, we never observed a dehydrohalogenation of iodide 5 in the basic medium to afford methylthioimine.^{26a,27} In this case, the expected product was not stable enough to be isolated (Scheme 3). This problem was solved by the use of the cationic form. In fact, the reaction of diazadienium iodide **5** in a [4 + 2]cycloaddition reaction with glycosyl isothiocyanates 3a-f afforded methylsulfanyldihydropyrimidinethiones 7a-fin good yields (Table 1). In this reaction, the intermediate 6 was never isolated and the final step consisted in a

(22) (a) Lindhorst, T. K.; Kieburg, C. *Synthesis* **1995**, *10*, 1228. (b) Somsák, L.; Czifrák, K.; Deim, T.; Szilágyi, L.; Bényei, A. *Tetrahedron: Asymmetry* **2001**, *12*, 731.

(23) Marino, C.; Varela, O.; de Lederkremer, R. M. *Carbohydr. Res.* **1997**, *304*, 257.

(24) (a) Bundle, D. R.; Lemieux, R. D. Methodol. Carbohydr. Chem. **1976**, 7, 79. (b) Marino, C.; Varela, O.; de Lederkremer, R. M. Carbohydr. Res. 1989, 190, 65. (c) de Lederkremer, R. M.; Nahmad, V. B.; Varela, O. J. Org. Chem. 1994, 59, 690.

(25) Rajappa, S.; Advani, B. G. Indian J. Chem., Sect. B 1978, 16, 819.

(26) (a) Friot, C.; Reliquet, A.; Reliquet, F.; Meslin, J. C. *Phosphorus, Sulfur Silicon* **2000**, *156*, 135. (b) Landreau, C.; Deniaud D.; Reliquet, A.; Reliquet, F.; Meslin, J. C. *Heterocycles* **2000**, *53*, 2667.

(27) Mazumdar, S. N.; Mahajan, M. P. *Synthesis* **1990**, *5*, 417.

^{(14) (}a) Fuentes, J.; Molina, J. L.; Pradera, M. A. *Tetrahedrom:* Asymmetry **1998**, *9*, 2517. (b) Gasch, C.; Pradera, M. A.; Salameh, B. A. B.; Molina, J. L.; Fuentes, J. *Tetrahedrom: Asymmetry* **2001**, *12*, 1267. (c) Gasch, C.; Salameh, B. A. B.; Pradera, M. A.; Fuentes, J. *Tetrahedron Lett.* **2001**, *42*, 8615.

^{(15) (}a) André, S.; Pieters, R. J.; Vrasidas, I.; Kaltner, H.; Kuwabara, I.; Liu, F.-T.; Liskamp, R. M. J.; Gabius, H.-J. *ChemBioChem* 2001, *2*, 822. (b) Vrasidas, I.; de Mol, N. J.; Liskamp, R. M. J.; Pieters, R. J. *Eur. J. Org. Chem.* 2001, 4685.

^{(21) (}a) Camarasa, M. J.; Fernandez-Resa, P.; Garcia-Lopez, M. T.; de las Heras, F. G.; Mendez-Castrillon, P. P.; San Felix, A. *Synthesis* **1984**, *6*, 509. (b) Kassab, R.; Félix, C.; Parrot-Lopez, H.; Bonaly, R. *Tetrahedron Lett.* **1997**, *38*, 7555.

SCHEME 2. Synthetic Route to Glycosyl Isothiocyanates 3a-fa

^a Reagents and conditions: (i) CH₂Cl₂, HBr in AcOH, 0°C, 2 h; (ii) CH₃CN, KSCN, molecular sieves 4 Å, Bu₄N⁺ Br⁻, reflux, 2 h.

SCHEME 3. Synthesis of S-Methyl Salt 5^a

 a Reagents and conditions: (i) $\rm Et_3N,$ pyridine, H_2S, rt, 48 h; (ii) $\rm CH_3I,$ THF, rt, 18 h.

TABLE 1. Yields of Compounds 7a-f and Selected NMR Data (δ , ppm; J, Hz))

compd	sugar	yield ^a (%)	H-1 (<i>J</i>)	C-1
7a	glucosyl	84	7.23 (9.5)	85.7
7b	galactosyl	82	7.21 (8.3)	86.2
7c	cellobiosyl	82	7.14 (9.2)	87.0
7d	lactosyl	73	7.28 (8.9)	86.4
7e	ribosyl	72	7.22 (3.0)	92.0
7f	xylosyl	83	6.79	94.2

^{*a*} Isolated yields. Yields of 7a-f are based on diazadienium 5.

deamination of the formed cycloadduct giving sugar pyrimidines 7a-f (Scheme 4).

Starting from salt **5**, triethylamine can be added to remove hydriodic acid. This [4 + 2] cycloaddition reaction occurs in a regiocontrolled manner. The structures of compounds **7a**-**f** were determined unequivocally by the complementary of the ¹H/¹³C-2D NMR techniques (COSY and HMQC) (Table 1). The β anomeric configuration was fully preserved, and we observed only 1,2-trans glycosidic linkage. In this reaction, the dimethylamine generated in the mixture reacted with a second equivalent of the dienophile to provide glycosyl thioureas **8a**-**f**.

These types of *N*-nucleosides may be attracting much attention from the viewpoint of antiviral and antitumor drugs. Preliminary biological tests (antiviral and cytotoxicity assays) with pyrimidine glycoside **7a** against Herpes simplex virus type 1 (HSV-1) showed a significant

SCHEME 4. Synthesis of N-Nucleosides 7a-f^a

^a Reagents and conditions: (i) CH₂Cl₂, Et₃N, rt, 3 h.

in vitro activity.²⁸ Their evaluation as antitumor agents is in progress, and these promising results led us to develop new *N*-nucleosides.

In summary, we have developed an effective method for the synthesis of various pyrimidine nucleoside analogues by [4 + 2] cycloaddition reaction between glycosyl isothiocyanates and diazadienium iodide. Advantages of the present method are: easy availability of starting materials, good yields in the [4 + 2] cycloaddition reaction, high diastereoselectivity and regioselectivity, and experimental simplicity of the procedure. Substitution of methylsulfanyl group using diverse nucleophiles is now under investigation.

Experimental Section

2-Amino-4-(dimethylamino)-1-thiabuta-1,3-diene (4). Hydrogen sulfide was passed at room temperature for 4 h through a solution of 3-dimethylaminoacrylonitrile (3.84 g, 40

⁽²⁸⁾ Cytotoxic effect of pyrimidine glycoside **7a** on the Vero cells was not observed in the range of the concentrations tested. After 3 days of treatment, 39% cellular destruction was observed at 200 μ g/mL (CC₅₀ > 200 μ g/mL). Compound **7a** is efficient against HSV-1 in vitro. 59% cellular protection was obtained for 200 μ g/mL 72 h after infection (EC₅₀ 111.20 μ g/mL).

mmol) in triethylamine (25 mL) and pyridine (25 mL). The solvents were removed, and the residue was crystallized from dichloromethane then methanol to provide **4** as a white solid (4.12 g, 31.7 mmol, 79%). Mp: 189–191 °C. IR (KBr): 3342, 1605, 1344, 1116 cm⁻¹. ¹H NMR (DMSO-*d*₆) δ : 2.88 (br s, 6H, N(C*H*₃)₂), 5.20 (d, 1H, *J* = 12.2 Hz, C*H*CS), 7.69 (d, 1H, *J* = 12.2 Hz, C*H*CS), 7.69 (d, 1H, *J* = 12.2 Hz, C*H*CS), 7.69 (d, 1H, *J* = 12.2 Hz, C*H*N), 7.85 (br s, 1H, N*H*₂), 7.99 (br s, 1H, N*H*₂). ¹³C NMR (DMSO-*d*₆) δ : 38.7 and 43.76 (N(C*H*₃)₂), 96.4 (*C*HCS), 155.2 (*C*HN), 194.6 (*C*S). MS: *m*/*z* 130 (M⁺, 100), 97 [M – SH]⁺, 86 (10). Anal. Calcd for C₅H₁₀N₂S: C, 46.12; H, 7.74; N, 21.51. Found: C, 46.34; H, 7.54; N, 21.74.

1,1-Dimethyl-4-methylsulfanyl-1,5-diazapentadienium Iodide (5). A suspension of thiabutadiene **4** (1 g, 7.7 mmol) in methyl iodide (6 mL) and tetrahydrofuran (6 mL) was stirred for 18 h at room temperature. The mixture was evaporated under reduced pressure. After addition of diethyl ether (40 mL), compound **5** was precipitated and collected by filtration to leave a white solid, which was dried under vacuum (2.02 g, 74.3 mmol, 96%). Mp: 182–184 °C. IR (KBr): 3257, 3107, 1632, 1533, 1282, 1056 cm^{-1.} ¹H NMR (D₂O) δ : 2.55 (s, 3H, CH_3 S), 3.03 (s, 3H, N(CH_3)₂), 3.27 (s, 3H, N(CH_3)₂), 5.5 (d, 1H, J = 12.2 Hz, CHCS), 7.95 (d, 1H, J = 12.2 Hz, CHN). ¹³C NMR (D₂O) δ : 13.1 (CH_3 S), 37.5 and 45.6 (N(CH_3)₂), 89.2 (CHCS), 156.7 (CHN), 176.3 (CSCH₃). Anal. Calcd for C₆H₁₃-IN₂S: C, 26.48; H, 4.81; N, 10.29. Found: C, 26.22; H, 5.03; N, 10.97.

Pyrimidine Nucleoside (7). Diazapentadienium iodide **5** (0.42 mmol) was added to a solution of glycoside isothiocyanates **3a**-**f** (0.85 mmol) in dichloromethane (20 mL). After 1 h of stirring at room temperature, the reaction mixture was cooled to 0 °C, and triethylamine (0.85 mmol) was added. The mixture was stirred at room temperature for an additional 2 h, and then the solvent was removed in vacuo. The resulting residue was partitioned between CH₂Cl₂ (20 mL) and water (2 × 20 mL). The organic extract was dried (MgSO₄), filtered, and evaporated. The residue was purified by flash chromatography on silica using hexane/AcOEt (9/1) and then hexane/AcOEt (4/6) mixture as eluent to give compounds **7** and **8**.

1-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-4-methylsulfanyl-1,2-dihydropyrimidin-2-thione (7a). Yellow crystals (yield 84%). Mp: 94–96 °C. IR (KBr): 1753, 1612, 1492, 1223 cm⁻¹. ¹H NMR (CDCl₃) δ : 2.00 (s, 3H, COCH₃), 2.02 (s, 3H, COCH₃), 2.06 (s, 3H, COCH₃), 2.08 (s, 3H, COCH₃), 2.60 (s, 3H, CH₃S), 4.01 (ddd, 1H, J = 9.5, 5.1, 2.0 Hz, glu H₅), 4.10 (dd, 1H, J = 12.6, 2.0 Hz, glu H_{6b}), 4.29 (dd, 1H, J = 12.6, 5.1 Hz, glu H_{6a}), 5.14 (t, 2H, J = 9.5 Hz, glu H_2 and H_4), 5.49 (t, 1H, J = 9.5 Hz, glu H_3), 6.56 (d, 1H, J = 7.2 Hz, H_5 pyr), 7.23 (d, 1H, J = 9.5 Hz, glu H_1), 7.49 (d, 1H, J = 7.2 Hz, H_6 pyr). ¹³C NMR (CDCl₃) δ : 13.1 (*C*H₃S), 20.5 and 20.7 (4 CO*C*H₃), 61.6 (glu C_6), 67.9 and 71.0 (glu C_2 and C_4), 72.4 (glu C_3), 75.2 (glu \bar{C}_5), 85.7 (glu C_1), 108.6 (C_5 pyr), 139.4 (C_6 pyr), 169.6, 170.0, 170.5 and 173.1 (4 COCH₃ and C=N), 181.3 (C=S). MS: m/z 489 ([M + H]⁺), 331 (100). HRMS (CI): m/z calcd for $C_{19}H_{25}N_2O_9S_2$ [M + H]⁺ 489.1002, found 489.1005.

1-(2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl)-4-methylsulfanyl-1,2-dihydropyrimidin-2-thione (7b). Yellow crystals (yield 82%). Mp: 93-95 °C. IR (KBr): 1749, 1613, 1493, 1224 cm⁻¹. ¹H NMR (CDCl₃) δ : 2.01 (s, 3H, COCH₃), 2.03 (s, 3H, COCH3), 2.06 (s, 3H, COCH3), 2.20 (s, 3H, COCH3), 2.62 (s, 3H, CH₃S), 4.11–4.22 (m, 2H, gal H_{6a} and H_{6b}), 4.13 (dd, 1H, J = 7.1, 2.7 Hz, gal H_4), 5.27–5.31 (m, 1H, gal H_5), 5.29 (dd, 1H, J = 8.3, 0.8 Hz, gal H_2), 5.54 (dd, 1H, J = 2.7, 0.8 Hz, gal H_3), 6.58 (d, 1H, J = 7.3 Hz, H_5 pyr), 7.21 (d, 1H, J = 8.3Hz, gal H_1), 7.54 (d, 1H, J = 7.3 Hz, H_6 pyr). ¹³C NMR (CDCl₃) δ : 13.1 (CH₃S), 20.5 and 20.7 (4 COCH₃), 61.2 (gal C₆), 67.0 (gal C₃), 68.7 (gal C₂), 70.6 (gal C₅), 74.1 (gal C₄), 86.2 (gal C₁), 108.6 (C₅ pyr), 139.8 (C₆ pyr), 169.0 and 170.4 (4 COCH₃ and C=N), 180.0 (C=S). MS: m/z 489 ([M + H]⁺), 331 (100). HRMS (CI): m/z calcd for $C_{19}H_{25}N_2O_9S_2$ [M + H]⁺ 489.1002, found 489.0999.

1-(2,3,6,2',3',4',6'-Hepta-*O*-acetyl-β-D-cellobiopyranosyl)-4-methylsulfanyl-1,2-dihydropyrimidin-2-thione (7c). Yellow crystals (yield 82%). Mp: 124-126 °C. IR (KBr): 1750, 1613, 1493, 1228 cm⁻¹. ¹H NMR (CDCl₃) δ : 1.99 (s, 3H, COCH₃), 2.00 (s, 3H, COCH₃), 2.01 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 2.04 (s, 3H, COCH₃), 2.10 (s, 3H, COCH₃), 2.12 (s, 3H, COCH₃), 2.60 (s, 3H, CH₃S), 3.68 (ddd, 1H, J = 9.4, 4.5, 2.2 Hz, glu $H_{5'}$), 3.85 (dd, 1H, J = 10.3, 9.2 Hz, glu H_4), 3.93 (ddd, 1H, J = 10.3, 5.5, 1.6 Hz, glu H_5), 4.04 (dd, 1H, J =12.5, 2.2 Hz, glu $H_{6'b}$), 4.15 (m, 1H, glu H_{6b}), 4.35 (dd, 1H, J =12.5, 4.5 Hz, glu $H_{6'a}$), 4.48 (dd, 1H, J = 12.2, 1.6 Hz, glu H_{6a}), 4.55 (d, 1H, J = 8.0 Hz, glu H_1), 4.94 (dd, 1H, J = 9.4, 8.0 Hz, glu $H_{2'}$), 5.08 (t, 1H, J = 9.2 Hz, glu H_{2}), 5.10 (t, 1H, J = 9.4Hz, glu $H_{4'}$), 5.18 (t, 1H, J = 9.4 Hz, glu $H_{3'}$), 5.47 (t, 1H, J =9.2 Hz, glu H_3), 6.51 (d, 1H, J = 7.3 Hz, H_5 pyr), 7.14 (d, 1H, J = 9.2 Hz, glu H_1), 7.41 (d, 1H, J = 7.3 Hz, H_6 pyr). ¹³C NMR (CDCl₃) δ : 14.3 (CH₃S), 21.7 and 22.0 (7 COCH₃), 62.8 and 63.0 (glu $C_{6'}$ and C_{6}), 69.0 (glu C_{2}), 72.1 (glu $C_{5'}$), 72.1 (glu $C_{4'}$), 73.0 (glu C₂'), 73.3 (glu C₃), 74.0 (glu C₃'), 77.2 (glu C₄ and C₅), 87.0 (glu C₁), 101.7 (glu C₁'), 109.6 (C₅ pyr), 140.4 (C₆ pyr), 170.2, 170.5, 171.4 and 171.7 (7 COCH₃ and C=N), 183.0 (C= S). MS: m/z777 ([M + H]+), 717 (100), 331. HRMS (DCI): m/z calcd for $C_{31}H_{41}N_2O_{17}S_2$ [M + H]⁺ 777.1847, found 777.1851.

1-(2,3,6,2',3',4',6'-Hepta-O-acetyl-β-D-lactopyranosyl)-4methylsulfanyl-1,2-dihydropyrimidin-2-thione (7d). Yellow crystals (yield 73%). Mp: 131-133 °C. IR (KBr): 1753, 1613, 1493, 1226 cm⁻¹. ¹H NMR (CD₃COCD₃) δ: 1.92 (s, 3H, COCH₃), 1.94 (s, 3H, COCH₃), 2.07 (s, 3H, COCH₃), 2.09 (s, 3H, COCH3), 2.10 (s, 3H, COCH3), 2.11 (s, 3H, COCH3), 2.16 (s, 3H, COCH₃), 2.59 (s, 3H, CH₃S), 4.17-4.29 (m, 6H, glu H₄, H_5 , H_{6b} and gal H_5 , H_{6a} , H_{6b}), 4.64 (d, 1H, J = 10.3 Hz, glu H_{6a}), 4.94 (m, 1H, gal H_1), 5.08–5.15 (m, 2H, gal H_2 and H_3), 5.25 (t, 1H, J = 8.9 Hz, glu H_2), 5.39 (s, 1H, gal H_4), 5.58 (t, 1H, J = 8.9 Hz, glu H_3), 6.81 (d, 1H, J = 7.1 Hz, H_5 pyr), 7.28 (d, 1H, J = 8.9 Hz, glu H_1), 8.06 (d, 1H, J = 7.1 Hz, H_6 pyr). ¹³C NMR (CD₃COCD₃) δ: 12.8 (CH₃S), 20.6 (7 COCH₃), 61.9 (gal C₆), 62.9 (glu C₆), 68.1 (gal C₅), 69.9 (gal C₄), 71.5 and 71.7 (gal C₂ and C₃), 72.5 (glu C₂ and C₃), 76.7 (glu C₄ and C₅), 86.4 (glu C₁), 101.6 (gal C₁), 108.6 (C₅ pyr), 142.4 (C₆ pyr), 169.6, 169.8, 170.2, 170.8 and 171.5 (7 COCH₃ and C=N), 182.0 (C=S). MS: m/z 777 ([M + H]⁺), 71, 559, 331 (100). HRMS (DCI): m/z calcd for $C_{31}H_{41}N_2O_{17}S_2 [M + H]^+$ 777.1847, found 777.1836.

1-(2,3,5-Tri-O-benzoyl-B-D-ribofuranosyl)-4-methylsulfanyl-1,2-dihydropyrimidin-2-thione (7e). Yellow crystals (yield 72%). Mp: 89-91 °C. IR (KBr): 1727, 1601, 1450, 1269 cm⁻¹. ¹H NMR (CDCl₃) δ: 2.61 (s, 3H, CH₃S), 4.66 (dd, 1H, J = 12.6, 3.2 Hz, rib H_{5b}), 4.84 (ddd, 1H, J = 7.0, 3.2, 2.4 Hz, rib H₄), 4.91 (dd, 1H, J = 12.6, 2.4 Hz, rib H_{5a}), 5.77 (dd, 1H, J = 7.0, 5.3 Hz, rib H₃), 5.94 (dd, 1H, J = 5.3, 3.0 Hz, rib H₂), 6.32 (d, 1H, J = 7.3 Hz, H_5 pyr), 7.22 (d, 1H, J = 3.0 Hz, rib H_1), 7.30-7.69 (m, 9H, CHar meta and CHar para), 7.86 (d, 2H, J = 8.5 Hz, CHar ortho), 7.96 (d, 1H, $J = \hat{7}.3$ Hz, H_6 pyr), 8.07 (m, 4H, CHar ortho). ¹³C NMR (CDCl₃) δ : 13.1 (CH₃S), 62.6 (rib C₅), 69.4 (rib C₃), 75.0 (rib C₂), 80.1 (rib C₄), 92.0 (rib C₁), 108.3 (C₅ pyr), 128.5, 128.8, 129.6 and 130.1 (3 Car, 6 CHar meta, 3 CHar para), 133.7 (6 CHar ortho), 138.1 (C₆ pyr), 164.8 and 172.8 (3 COC_6H_5 and C=N), 180.0 (C=S). MS m/z 603 $([M + H]^+)$, 359 (100), 297, 123. HRMS (DCI): m/z calcd for $C_{31}H_{27}N_2O_7S_2 [M + H]^+$ 603.1260, found 603.1302.

1-(2,3,5-Tri-*O***-benzoyl**-*β*-D-**xylofuranosyl**)-**4-methylsulfanyl-1,2-dihydropyrimidin-2-thione (7f).** Yellow crystals (yield 83%). Mp: 89–91 °C. IR (KBr): 1728, 1600, 1450, 1260, 1090, 707 cm⁻¹. ¹H NMR (CDCl₃) δ: 2.65 (s, 3H, CH₃S), 4.73 (dd, 1H, J = 12.3, 4.2 Hz, xyl H_{5a}), 4.87 (dd, 1H, J = 12.3, 4.2 Hz, xyl H_{5b}), 5.03 (m, 1H, xyl H_4), 5.77 (d, 1H, J = 3.1 Hz, xyl H_3), 5.94 (s, 1H, xyl H_2), 6.55 (d, 1H, J = 7.3 Hz, H_5 pyr), 6.79 (s, 1H, xyl H_1), 7.34–7.64 (m, 9H, CHar meta and CHar para), 7.77 (dd, 2H, J = 8.5, 1.4 Hz, CHar ortho), 7.92 (dd, 2H, J =8.5, 1.4 Hz, CHar ortho), 8.15 (dd, 2H, J = 8.6, 1.5 Hz, CHar ortho), 8.21 (d, J = 7.3 Hz, H_6 pyr). ¹³C NMR (CDCl₃) δ: 13.1 (CH₃S), 61.4 (xyl C_5), 74.6 (xyl C_3), 80.2 and 81.9 (xyl C_2 and C_4), 94.2 (xyl C_1), 107.5 (C_5 pyr), 128.1, 128.5, 128.6, 129.1, 129.7, 129.9, 130.2, 133.5, 133.8 and 134.1 (3 Car, 6 CHar meta, 3 *C*Har para, and 6 *C*Har ortho), 139.3 (C_6 pyr), 164.3, 164.4, 166.1 and 172.8 (3 COC_6H_5 and C=N), 179.4 (C=S). MS: m/z 603 ([M + H]⁺), 359, 123 (100). HRMS (DCI): m/z calcd for $C_{31}H_{27}N_2O_7S_2$ [M + H]⁺ 603.1260, found 603.1267.

N,*N*-Dimethyl-*N*-(2,3,4,6-tetra-*O*-acetyl-β-D-glucopyranosyl)thiourea (8a). Yellow crystals (yield 72%). Mp: 72–74 °C. IR (KBr): 1750, 1550, 1229, 1067 cm⁻¹. ¹H NMR (CDCl₃) δ : 2.03 (s, 3H, COC*H*₃), 2.06 (s, 3H, COC*H*₃), 2.07 (s, 3H, COC*H*₃), 2.08 (s, 3H, COC*H*₃), 3.25 (br s, 6H, N(C*H*₃)₂), 3.88 (ddd, 1H, J = 9.5, 4.6, 2.0 Hz, glu *H*₅), 4.11 (dd, 1H, J = 12.5, 2.0 Hz, glu *H*₆b), 4.32 (dd, 1H, J = 12.5, 4.6 Hz, glu *H*₆a), 5.00 (t, 1H, J = 9.5 Hz, glu *H*₂), 5.08 (t, 1H, J = 9.5 Hz, glu *H*₄), 5.40 (t, 1H, J = 9.5 Hz, glu *H*₃), 5.77 (dd, 1H, J = 8.2, 9.5 Hz, glu *H*₁), 6.41 (d, 1H, J = 8.2 Hz, N*H*). ¹³C NMR (CDCl₃) δ : 20.6, 20.8 and 20.9 (4 COCH₃ and N(CH₃)₂), 61.7 (glu *C*₆), 68.5 (glu *C*₄), 71.2 (glu *C*₂), 72.6 (glu *C*₅), 73.2 (glu *C*₃), 83.7 (glu *C*₁), 169.7, 170.7 and 172.2 (4 COCH₃), 182.1 (*C*=S). MS: *m*/z 435 ([M + H]⁺), 403, 331 (100), 213. HRMS (CI): *m*/z calcd for C₁₇H₂₇N₂O₉S [M + H]⁺ 435.1436, found 435.1440.

N,*N*-Dimethyl-*N*-(2,3,4,6-tetra-*O*-acetyl-β-D-galactopyranosyl)thiourea (8b). Yellow crystals (yield 82%). Mp: 192–194 °C. IR (KBr): 1746, 1548, 1227, 1084 cm⁻¹. ¹H NMR (CDCl₃) δ: 2.01 (s, 3H, COC*H*₃), 2.05 (s, 3H, COC*H*₃), 2.09 (s, 3H, COC*H*₃), 2.15 (s, 3H, COC*H*₃), 2.06 (br s, 6H, N(C*H*₃)₂), 4.07–4.19 (m, 3H, gal *H*₄, *H*_{6a} and *H*_{6b}), 5.19 (d, 1H, *J* = 8.1 Hz, gal *H*₂), 5.18–5.21 (m, 1H, gal *H*₅), 5.47 (d, 1H, *J* = 2.7 Hz, gal *H*₃), 5.77 (t, 1H, *J* = 8.1 Hz, gal *H*₁), 6.44 (d, 1H, *J* = 8.1 Hz, N*H*). ¹³C NMR (CDCl₃) δ: 19.5, 19.6, 19.8 and 20.0 (4 COC*H*₃ and N(*CH*₃)₂), 60.1 (gal *C*₆), 66.0 (gal *C*₃), 67.8 (gal *C*₂), 70.0 (gal *C*₅), 71.1 (gal *C*₄), 83.0 (gal *C*₁), 168.7, 169.1, 169.5 and 171.3 (4 COCH₃), 181.0 (*C*=S). MS: *m*/z 435 ([M + H]⁺, 100), 403, 331. HRMS (CI): *m*/z calcd for C₁₇H₂₇N₂O₉S [M + H]⁺ 435.1436, found 435.1431

N,N-Dimethyl-N-(2,3,6,2',3',4',6'-hepta-O-acetyl-β-D-cellobiopyranosyl)thiourea (8c). Yellow crystals (yield 80%). Mp: 112–114 °C. IR (KBr): 1748, 1548, 1230, 1040 cm⁻¹. ¹H NMR (CDCl₃) δ: 1.98 (s, 3H, COCH₃), 2.00 (s, 3H, COCH₃), 2.04 (s, 3H, COCH₃), 2.05 (s, 3H, COCH₃), 2.06 (s, 3H, COCH₃), 2.09 (s, 3H, COCH₃), 2.12 (s, 3H, COCH₃), 3.21 (br s, 6H, $N(CH_3)_2$, 3.65 (ddd, 1H, J = 9.2, 4.6, 2.1 Hz, glu $H_{5'}$), 3.70-3.77 (m, 2H, glu H_4 and glu H_5), 4.03 (dd, 1H, J = 12.4, 2.1 Hz, glu $H_{6'b}$), 4.14 (dd, 1H, J = 11.7, 4.5 Hz, glu H_{6b}), 4.35 (dd, 1H, J = 12.4, 4.6 Hz, glu $H_{6'a}$), 4.47 (d, 1H, J = 8.0 Hz, glu $H_{1'}$), 4.45–4.55 (m, 1H, glu H_{6a}), 4.91 (t, 1H, J = 9.3 Hz, glu H_2), 4.93 (dd, 1H, J = 9.2, 8.0 Hz, glu H_2), 5.05 (t, 1H, J = 9.2Hz, glu $H_{4'}$), 5.13 (t, 1H, J = 9.2 Hz, glu $H_{3'}$), 5.33 (t, 1H, J =9.3 Hz, glu H_3), 5.67 (dd, 1H, J = 9.3, 8.0 Hz, glu H_1), 6.37 (d, 1H, J = 8.0 Hz, NH). ¹³C NMR (CDCl₃) δ: 20.5, 20.7 and 20.9 (7 COCH₃ and N(CH₃)₂), 61.7 (glu C_6), 62.1 (glu C_6), 67.9 (glu $C_{4'}$), 71.5 (glu C_2 , $C_{2'}$ and $C_{5'}$), 72.0 (glu C_3 and $C_{3'}$), 72.9 (glu C₅), 74.1 (glu C₄), 83.6 (glu C₁), 100.6 (glu C₁), 169.0, 169.3, 170.2, 170.4, 170.5 and 172.5 (7 COCH₃), 182.1 (C=S). MS: m/z 723 ([M + H]⁺), 619, 331 (100). HRMS (DCI): m/z calcd for $C_{29}H_{43}N_2O_{17}S \ [M + H]^+ 723.2282$, found 723.2301.

N,*N*-Dimethyl-*N*-(2,3,6,2',3',4',6'-hepta-*O*-acetyl- β -D-lactopyranosyl)thiourea (8d). Yellow crystals (yield 73%). Mp: 123–125 °C. IR (KBr): 1749, 1548, 1231, 1083 cm⁻¹. ¹H NMR (CDCl₃) δ : 1.96 (s, 3H, COC*H*₃), 2.06 (s, 6H, 2 COC*H*₃), 2.07 (s, 6H, 2 COC*H*₃), 2.12 (s, 3H, COC*H*₃), 2.17 (s, 3H, COC*H*₃), 3.22 (br s, 6H, N(*CH*₃)₂), 3.76–3.86 (m, 2H, glu *H*₄ and gal *H*₅), 4.07–4.15 (m, 3H, glu *H*₆b, gal *H*_{6a} and *H*_{6b}), 4.20 (dd, 1H, *J* = 4.5, 2.2 Hz, glu *H*₅), 4.43 (d, 1H, *J* = 7.8 Hz, gal *H*₁), 4.41–4.46 (m, 1H, glu *H*_{6a}), 4.92 (t, 1H, *J* = 9.1 Hz, glu *H*₂), 4.94 (dd, 1H, *J* = 10.4, 2.9 Hz, gal *H*₃), 5.11 (dd, 1H, *J* = 10.4, 7.8 Hz, gal *H*₂), 5.36 (d, 1H, *J* = 9.1 Hz, glu *H*₁), 6.38 (d, 1H, *J* = 7.9 Hz, N*H*). ¹³C NMR (CDCl₃) δ : 20.6 and 20.9 (7 CO*C*H₃ and N(*C*H₃)₂), 61.0 and 62.1 (glu *C*₆ and gal *C*₆), 66.7 (gal *C*₄), 68.9 (gal C_2), 70.8 and 71.0 (gal C_3 and C_5), 71.5 and 72.0 (glu C_2 , C_3 and C_5), 74.1 (glu C_4), 83.6 (glu C_1), 100.8 (gal C_1), 169.0, 169.3, 170.1, 170.4 and 172.5 (7 *C*OCH₃), 182.1 (*C*=S). MS: *m*/*z* 723 ([M + H]⁺), 331 (100). HRMS (DCI): *m*/*z* calcd for $C_{29}H_{43}N_2O_{17}S$ [M + H]⁺ 723.2282, found 723.2296.

N,N-Dimethyl-N-(2,3,5-tri-O-benzoyl-D-ribofuranosyl)**thiourea (8e).** Yellow oil (yield 75%). Mixture of anomer α and β. Mp: 69-71 °C. IR (KBr): 1726, 1600, 1538, 1269, 709 cm⁻¹. ¹H NMR (CDCl₃) δ: 3.22 (br s, 12H, N(CH₃)₂), 4.57-4.75 (m, 6H, rib H_4 , H_{5a} and H_{5b}), 5.82–5.92 (m, 4H, rib H_2 and H_3), 6.39 (d, 1H, J = 7.3 Hz, NH of one anomer), 6.50– 6.57 (m, 2H, NH of one anomer and rib H_1 of one anomer), 6.93 (dd, 1H, J = 8.5, 4.8 Hz, rib H_1 of one anomer), 7.34 7.51 (m, 12H, CHar meta), 7.51-7.62 (m, 6H, CHar para), 7.89 (dd, 2H, J = 8.3, 1.3 Hz, CHar ortho), 7.93 (dd, 2H, J = 8.4, 1.3 Hz, CHar ortho), 7.97 (dd, 2H, J = 8.5, 1.4 Hz, CHar ortho), 8.04 (dd, 2H, J = 8.5, 1.4 Hz, CHar ortho), 8.10 (dd, 4H, J = 7.1 Hz, J = 1.2 Hz, CHar ortho). ¹³C NMR (CDCl₃) δ : 40.5 (N(CH₃)₂), 64.3 (rib C₅), 70.8, 71.9, 73.4 and 74.1 (rib C₂ and C_3), 78.8 and 79.4 (rib C_4), 84.6 (rib C_1 of one anomer), 87.6 (rib C_1 of one anomer), 128.5, 128.6, 129.5, 129.7, 129.8 and 129.9 (6 Car, 12 CHar meta and 12 CHar ortho), 133.3, 133.4, 133.7 and 133.8 (6 CHar para), 164.5, 165.1, 165.6, 166.0 and 166.2 (6 COC₆H₅), 181.9 and 182.1 (C=S). MS: m/z 549 ([M + H]⁺), 445 (100), 123. HRMS (DCI): *m*/*z* calcd for C₂₉H₂₉N₂O₇S $[M + H]^+$ 549.1694, found 549.1680.

N,N-Dimethyl-N-(2,3,5-tri-O-benzoyl-D-xylofuranosyl)**thiourea (8f).** Yellow oil (yield 82%). Mixture of anomers α and β . Anomer α or β : $\tilde{R}_f = 0.43$ (hexane/AcOEt 6/4). IR (KBr): 1725, 1600, 1536, 1262, 708 cm⁻¹. ¹H NMR (CDCl₃) δ : 3.20 (br s, 6H, N(C H_3)₂), 4.64 (d, 2H, J = 5.3 Hz, xyl H_{5a} and H_{5b}), 4.86 (q, 1H, J = 5.3 Hz, xyl H_4), 5.82 (t, 1H, J = 3.7 Hz, xyl H_2), 5.90 (dd, 1H, J = 5.3, 3.7 Hz, xyl H_3), 6.27 (d, 1H, J =7.7 Hz, NH), 6.49 (dd, 1H, J = 7.7, 3.7 Hz, xyl H_1), 7.35–7.65 (m, 9H, CHar meta and para), 7.97-8.03 (m, 4H, Har ortho), 8.07 (dd, 2H, J = 8.4, 1.3 Hz, Har ortho). ¹³C NMR (CDCl₃) δ : 40.6 (N(CH_3)₂), 62.5 (xyl C_5), 75.3 and 75.7 (xyl C_3 and C_4), 79.5 (xyl C₂), 88.6 (xyl C₁), 128.6, 128.7, 128.9, 129.7, 130.1, 133.3 and 133.8 (3 Car, 6 CHar meta, 6 CHar ortho, and 3 *C*Har para), 165.0, 165.5 and 166.2 (3 *C*OC₆H₅), 181.6 (*C*=S). **Anomer** α or β : $R_f = 0.34$ (hexane/AcOEt 6/4). IR (KBr): 1725, 1600, 1536, 1262, 708 cm⁻¹. ¹H NMR (CDCl₃) δ : 3.21 (br s, 6H, N(CH₃)₂), 4.56 (dd, 1H, J = 11.6, 5.8 Hz, xyl H_{5a}), 4.67 (dd, 1H, J = 11.6, 5.9 Hz, xyl H_{5b}), 4.87 (m, 1H, xyl H_4), 5.80 (dd, 1H, J = 4.2, 1.8 Hz, xyl H_2), 5.89 (dd, 1H, J = 4.2, 1.8 Hz, xyl H_3), 6.12 (d, 1H, J = 9.0 Hz, NH), 7.02 (dd, 1H, J = 9.0, 4.2 Hz, xyl H₁), 7.40–7.70 (m, 9H, CHar meta and CHar para), 8.01 (dd, 2H, J = 8.6 Hz, J = 1.5 Hz, CHar ortho), 8.04-8.11 (m, 4H, CHar ortho). ¹³C NMR (CDCl₃) δ: 40.6 (N(CH₃)₂), 62.4 (xyl C_5), 75.3 and 75.6 (xyl C_2 and C_3), 76.2 (xyl C_4), 85.5 (xyl C₁), 128.4, 128.5, 128.6, 128.9, 130.0, 133.2, 133.3, 133.8 and 134.1 (3 Car, 6 CHar meta, 6 CHar ortho, and 3 CHar para), 164.1, 165.0 and 166.1 (3 COC₆H₅), 181.5 (C=S). MS: m/z 549 $([M + H]^+)$, 445, 305, 123 (100). HRMS (DCI): m/z calcd for $C_{29}H_{29}N_2O_7S \ [M + H]^+ 549.1696$, found 549.1688.

Acknowledgment. We are grateful to the French Ministry of Education and the CNRS for financial support.

Supporting Information Available: General procedures, copies of ¹H and ¹³C NMR for compounds **4** and **5**, and copies of ¹H, ¹³C NMR, and 2D NMR (COSY and HMQC) for compounds **7a**–**f** and **8a**–**f** (except COSY of one anomer **8f**). This material is available free of charge via the Internet at http://pubs.acs.org.

JO034709A