### Accepted Manuscript

Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer's disease: design, synthesis and evaluation of tacrine-pyrazolo[3,4b]pyridine hybrids

Tingting Pan, Shishun Xie, Yan Zhou, Jinhui Hu, Haibin Luo, Xingshu Li, Ling Huang

| PII:           | S0960-894X(19)30437-8                    |
|----------------|------------------------------------------|
| Reference:     | BMCL 26534                               |
| To appear in:  | Biographic & Medicinal Chemistry Letters |
| To appear m.   | Bioorganic & meaicinai Chemisiry Letters |
| Received Date: | 24 March 2019                            |
| Revised Date:  | 21 June 2019                             |
| Accepted Date: | 28 June 2019                             |



Please cite this article as: Pan, T., Xie, S., Zhou, Y., Hu, J., Luo, H., Li, X., Huang, L., Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer's disease: design, synthesis and evaluation of tacrine-pyrazolo[3,4-b]pyridine hybrids, *Bioorganic & Medicinal Chemistry Letters* (2019), doi: https://doi.org/10.1016/j.bmcl.2019.06.056

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com

# Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer's disease: design, synthesis and evaluation of tacrine-pyrazolo[3,4-b]pyridine hybrids

Tingting Pan, Shishun Xie, Yan Zhou, Jinhui Hu, Haibin, Luo, Xingshu Li, Ling Huang \*

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China \* For L. Huang: Tel.: +086-20-3994-3051; Fax: +086-20-3994-3051; e-mail: <u>huang172@mail.sysu.edu.cn</u>;

#### ARTICLE INFO

Article history: Received Revised Accepted Available online

Keywords: Tacrine-pyrazolo[3,4-b]pyridine hybrids Cholinesterase inhibitor PDE4D inhibitors Alzheimer's disease

#### ABSTRACT

A series of tacrine-pyrazolo[3,4-b]pyridine hybrids were synthesised and evaluated as dual cholinesterase (ChE) and phosphodiesterase 4D (PDE4D) inhibitors for the treatment of Alzheimer's disease (AD). Compound **10**j, which is tacrine linked with pyrazolo[3,4-b]pyridine moiety by a six-carbon spacer, was the most potent acetylcholinesterase (AChE) with IC<sub>50</sub> value of 0.125 $\mu$ M. Moreover, compound **10**j provided a desired balance of AChE and butylcholinesterase (BuChE) and PDE4D inhibition activities, with IC<sub>50</sub> value of 0.271  $\mu$ M, respectively. The above results indicated that this hybrid was a promising dual functional agent for the treatment of AD.

2009 Elsevier Ltd. All rights reserved.

Alzheimer's disease (AD) is a neurodegenerative illness characterized by a progressive decline in cognitive function, memory loss, extensive neuronal loss, decrease in cholinergic transmission, and the presence of senile plaques. <sup>1-2</sup> It is the most common single cause of dementia and is also became the worldwide health problem with implications for an increasing number of people and countries.<sup>3</sup> However, up to now, there is no effective treatment is available.<sup>4</sup> The decrease of cholinergic transmission, caused by the loss of basal forebrain cholinergic cells, was supposed to play an important role in the cognitive impairment associated with AD. Studies had dedicated that increase the levels in Ach by inhibiting acetylcholinesterase could effectively improve the cognitive function and memory ability.<sup>3, 5-9</sup> Based on the cholinergic hypothesis, Cholinesterase (ChE) became one of major targets in the current therapy of AD<sup>7</sup> and most of the clinically approved drugs for treatment of AD are acetylcholinesterase inhibitors (AChEIs), such as tacrine, rivastigmine, galantamine and Donepezil (Figure 1).10-11

Phosphodiesterase 4 (PDE4) is the primary cAMP-specific hydrolase and is represented by four genes (PDE4A, B, C and D). <sup>12</sup> PDE4D, which is relatively high expression in the frontal cortex<sup>13</sup>, has been demonstrated to be the main subtype involved in the process of memory consolidation and LTP.<sup>14</sup> Rolipram (Fig. 1), a typical PDE4D inhibitor, has beneficial effects on hippocampal dependent memory tasks, but PDE4D-deficient mice did not show altered memory with the administration of rolipram, which further demonstrated the crucial role of PDE4D in memory consolidation. <sup>15</sup> Recently, several strategies were proposed to enhance cerebral cyclic adenosine monophosphate (cAMP) for the treatment of neurological disorders by PDEs

inhibition.<sup>16-19</sup> The newly developed PDE4D inhibitor GEBR-7b enhanced spatial and object memory performance in mice and rats (Fig. 1).<sup>20-21</sup> In addition, MK-0952 (Fig. 1), another PDE4 inhibitor that enhanced cognition in preclinical studies, prompted clinical trials in patients with mild-to-moderate AD from phase II clinical studies.<sup>22</sup>



Fig. 1 Structure of tacrine, rivastigmine, galantamine, donepezil, GEBR-7b, MK-0952 and rolipram.

Tacrine, the first inhibitor of both AChE and butylcholinesterase (BuChE) approved by the FDA for the treatment of AD, was withdrawn from the market due to its side effects such as hepatotoxicity. <sup>23</sup> Nevertheless, medicinal

chemists remain interested in researching tacrine analogues or related new candidates as the excellent inhibition activity. <sup>24-27</sup> Pyrazolo[3,4-b]pyridine, a novel scaffold reported as potent and selective PDE4 inhibitors, may could be bind to peripheral anionic binding site (PAS) of AChE.<sup>28</sup> Taking into account the importance of PDE4 and AChE inhibition in AD therapeutics, we designed, synthesized and evaluated a series of new tacrinepyrazolo[3,4-b]pyridine hybrids hybrids as dual functional ligands for the treatment of Alzheimer's disease (Fig. 2). In this paper, We variated the length of the linker chain between the tacrine and pyrazolo[3,4-b]pyridine moiety to obtain a hybrid with the desired balance of AChE and BuChE and PDE4D inhibition activities.



Fig. 2. Design strategy of tacrine-pyrazolo[3,4-b]pyridine hybrids

Routes for the synthesis of the key intermediate 6, target compounds 10a-1 are summarized in Scheme 1 and Scheme 2. Commercially available compound 1 was refluxed with diethyl ethoxymethylenemalonate (EMME) at high temperature for 12 hours to get compound 2, and it was refluxed with phosphorus oxychloride, now intermediate 3 has been obtained. Triethylamine was added to a mixed solution of intermediate 3 and cyclohexylamine, and stirred at room temperature for 10 hours to obtain 4. After hydrolysis, it was reacted with phosphorus oxychloride to obtain an acid chloride intermediate 6.



**Scheme 1.** Synthesis of intermediate 6. Reagents and conditions: (a) EMME, reflux 12h; (b) POCl<sub>3</sub>, 120 °C, reflux 12h; (c) cyclohexylamine, TEA, rt, 10h; (d) NaOH, CH<sub>3</sub>CH<sub>2</sub>OH, rt, 10h; (e) POCl<sub>3</sub>, reflux 2h.

The synthesis route of the target compounds **10a-1** are summarized in Scheme 2. Intermediate **9a-1** was synthesized according to the reported procedure. <sup>29-30</sup> Firstly, using anthranilic acid or 2-amino-4-chlorobenzoic acid as the starting materials, POCl<sub>3</sub> was added dropwise to the mixed solution of the starting materials and cyclohexanone at 0°C, then recrystallized to give compound **8**. Dissolving intermediate **8**, KI and diamines of different carbon chains in n-pentanol. They were refluxed at 160°C for 12 hours to give **9a-1**. Finally, in the presence of anhydrous dichloromethane, compound **9a-1** and intermediate **6** 

were stirred for 12 hours under room temperature to give the target compound **10a-1**.



Scheme 2. Synthesis of 10a-l. Reagents and conditions: (a) cyclohexanone, POCl<sub>3</sub>, 0 °C-reflux; (b) diamine, KI, 1-pentanol, 160 °C; (c) 6, CH<sub>2</sub>Cl<sub>2</sub>, TEA, rt, 12h. 69% for 10a, 68% for 10b, 73% for 10c, 65% for 10d, 68% for 10e, 71% for 10f, 78% for 10g, 75% for 10h, 70% for 10i, 65% for 10j, 72% for 10k, 75% for 10l.

The AChE and BuChE inhibitory effects of the hybrids were determined by the spectroscopic method described by Ellman et al. using tacrine as the standard.<sup>31</sup> AChE (E.C.3.1.1.7) and BuChE (E.C. 3.1.1.8) were obtained from electric eel and equine serum, respectively. The  $IC_{50}$  values for AChE and BuChE inhibition are summarized in Table 1. Most of the hybrids demonstrated potent inhibitory activity against AChE and BuChE with  $IC_{50}$  values in the micromolar to sub-micromolar range. The results of eeAChE inhibition of compounds showed that the AChE inhibitory potency was closely related to the length of the alkylene chain. It appears that a 6-carbon spacer seems to be the proper length for a linker between the two pharmacophore groups in both series. Compounds 10d and 10j gave the most active AChE inhibitory activities with  $IC_{50}$  value of 0.149 and 0.125 $\mu$ M, respectively. Increasing or decreasing the length of carbon linker resulted a slightly decreasing the inhibitory activities (10c, n = 5,  $IC_{50} = 0.358 \ \mu M$ ; **10e**, n = 7,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = 5,  $IC_{50} = 0.316 \ \mu M$ ; **10i**, n = $0.306\mu$ M ; **10k**, n = 5, IC<sub>50</sub> =  $0.0.391\mu$ M). However, the same trend was not observed in BuChE inhibition. Almost all the compounds showed potent activity against BuChE. Additionally, some compounds exhibited almost equal inhibitory activity with AChE. Based on these results, these hybrids should be good dual AChE/BChE inhibitors to treat AD.

As PDE4D is one of the key subtypes participating in LTP, the inhibition of PDE4D2 by the tacrine-pyrazolo[3,4-b]pyridine hybrids were determined using a previously described method, with rolipram as the reference compounds. <sup>32</sup> The results in Table 1 indicated that most of the hybrids exhibited more potent or similar inhibitory activities against PDE4D2 compared to rolipram. The results of PDE4D2 inhibition of compounds showed that 6-chlorin substituted group in tacrine was beneficial to the inhibitory activities of PDE4D2, for example, compound **10f** (IC<sub>50</sub> = 0.025  $\mu$ M) was more potent than **10a** (IC<sub>50</sub> = 0.041 µM) by 1.5-fold improvement. Similar to the SAR of AChE inhibitory activities, a structure-activity relationship analysis showed that the PDE4D2 inhibitory potency was closely related to the length of the alkylene chain. 2-carbon spacer was more favorable for the activity than the other positions. For example, hybrids 10a and 10g demonstrated the most potent PDE4D2 inhibitory activities with  $IC_{50}$  value of 0.041 and 0.0.025 $\mu$ M, respectively, which are about 10-fold more active than rolipram. When the length of the alkyl chain was changed from 2 to 8, the activity against PDE4D2 decreased slightly. The hybrids 10b, 10c, 10d, 10e and 10f, with four, five, six, seven, and eight carbon spacers between tacrine and tacrine-pyrazolo[3,4b]pyridine hybrids unit (10b, n = 4, IC<sub>50</sub> = 0.108  $\mu$ M ; 10c, n = 6,  $IC_{50} = 0.477 \mu M$ ; **10d**, n = 7,  $IC_{50} = 0.501 \mu M$ ; **10e**, n = 8,  $IC_{50}$ 

=  $1.071\mu$ M) had slightly weak inhibitory activities than 10a. The same tread was also observed in 6- chlorinetacrine-pyrazolo[3,4-b]pyridine series compounds. Considering the results in

inhibiting AChE and BuChE, compound **10j** provided a desired balance of AChE and BuChE and PDE4D inhibition activities, with  $IC_{50}$  value of 0.125, 0.449 and 0.271  $\mu$ M, respectively.

Table 1. In vitro inhibition of AChE, BuChE and PDE4D activities of tacrine-pyrazolo[3,4-b]pyridine hybrids 10a-l.

|           |   |    | 10a-l                                 |                    |      |                          |
|-----------|---|----|---------------------------------------|--------------------|------|--------------------------|
|           |   |    | IC <sub>50</sub> (µM)±SD <sup>a</sup> |                    | SIe  | IC <sub>50</sub> (µM)±SD |
| compounds | n | R  | AChE <sup>c</sup>                     | BuChE <sup>d</sup> |      | PDE4D2 <sup>b</sup>      |
| 10a       | 2 | Н  | 0.243 ± 0.023                         | 0.891 ± 0.084      | 3.67 | 0.041 ± 0.007            |
| 10b       | 4 | Н  | $0.333 \pm 0.015$                     | 0.889 ± 0.010      | 2.67 | $0.108 \pm 0.003$        |
| 10c       | 5 | Н  | $0.358 \pm 0.018$                     | 0.264 ± 0.028      | 0.73 | $0.477 \pm 0.015$        |
| 10d       | 6 | Н  | $0.149\pm0.009$                       | 0.332 ± 0.009      | 2.23 | $0.501 \pm 0.012$        |
| 10e       | 7 | Н  | $0.316 \pm 0.015$                     | 0.324 ± 0.009      | 1.02 | $1.071 \pm 0.081$        |
| 10f       | 8 | Н  | $0.392 \pm 0.020$                     | $0.320 \pm 0.003$  | 0.82 | $1.307\pm0.020$          |
| 10g       | 2 | Cl | $0.412 \pm 0.013$                     | $0.713 \pm 0.020$  | 6.54 | $0.025 \pm 0.001$        |
| 10h       | 4 | Cl | 0.335 ± 0.030                         | $1.283 \pm 0.020$  | 3.82 | $0.087\pm0.009$          |
| 10i       | 5 | Cl | 0.306 ± 0.023                         | $0.434 \pm 0.053$  | 1.42 | $0.308 \pm 0.003$        |
| 10j       | 6 | Cl | 0.125 ± 0.010                         | $0.449\pm0.062$    | 3.60 | $0.271 \pm 0.011$        |
| 10k       | 7 | Cl | $0.391 \pm 0.019$                     | $0.245\pm0.004$    | 0.63 | $0.934 \pm 0.021$        |
| 101       | 8 | Cl | $0.812 \pm 0.003$                     | $0.314 \pm 0.065$  | 4.30 | $1.077 \pm 0.034$        |
| Tacrine   | - | -  | $0.110 \pm 0.007$                     | $0.216 \pm 0.018$  | 1.96 | /                        |
| Rolipram  | / | 1  |                                       | /                  | /    | $0.671\pm0.03$           |

<sup>a</sup>Result are the mean of three independent experiments(n=3)  $\pm$  SD

<sup>b</sup>Result are the mean of three independent experiments(n=3)  $\pm$  SD

<sup>C</sup>AChE from electriceel was used

<sup>d</sup>BuChE from equine serum was used.

<sup>e</sup>Selectivity ratio: IC<sub>50</sub> (BuChE)/ IC<sub>50</sub> (AChE)

In summary, this study involved the design, synthesis and biological evaluation of a novel series of tacrine-pyrazolo[3,4b]pyridine hybrids as dual cholinesterase (ChE) and phosphodiesterase 4D (PDE4D) inhibitors for the treatment of Alzheimer's disease (AD). Most of the target compounds displayed excellent inhibition of AChE and BuChE and PDE4D activity . The results indicated that both the AChE and PDE4D2 inhibitory potency were closely related to the length of the alkylene chain. Anomy them, compound 10j, which is tacrine linked with pyrazolo[3,4-b]pyridine moiety by a six-carbon spacer, was the most potent acetylcholinesterase (AChE) with IC<sub>50</sub> value of 0.125µM. Moreover, compound **10** provided a desired balance of AChE and butylcholinesterase (BuChE) and PDE4D inhibition activities, with IC<sub>50</sub> value of 0.449 and 0.271 µM, respectively. The above results indicated that this hybrid was a promising dual functional agent for the treatment of AD.

#### Acknowledgments

We thank the National Natural Science Foundation of China (21772241), Guangdong High-level personnel of special support program -Young top-notch talent project (2015TQ01R244), Guangzhou Pearl River New Star Fund Science And Technology Planning Project (201610010111) and Guangdong Provincial Key Laboratory of Construction Foundation (No. 2017B030314030) for financial support of this study.

#### **References and notes**

- Masters, C. L.; Bateman, R.; Blennow, K.; Rowe, C. C.; Sperling, R. A.; Cummings, J. L., *Nat. Rev. Dis. Primers* 2015, 1, 15056–15058.
- 2. Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M., *Lancet Neurol.* **2010**, *9*, 702-716.
- Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K., *Expert. Opin. Drug Saf.* 2014, *13*, 759-774.
- 4. Rafii, M. S.; Aisen, P. S., CNS Drugs 2019, 33, 99-106.
- Munoz-Ruiz, P.; Rubio, L.; Garcia-Palomero, E.; Dorronsoro, I.; del Monte-Millan, M.; Valenzuela, R.; Usan, P.; de Austria, C.; Bartolini, M.; Andrisano, V.; Bidon-Chanal, A.; Orozco, M.; Luque, F. J.; Medina, M.; Martinez, A., *J. Med. Chem.* 2005, *48*, 7223-7233.

- McGleenon, B. M.; Dynan, K. B.; Passmore, A. P., *Brit. J. Clin. Pharmaco.* 1999, 48, 471-480.
- 7. Munoz-Torrero, D., Curr. Med. Chem. 2008, 15, 2433-2455.
- Pang, Y.-P.; Quiram, P.; Jelacic, T.; Hong, F.; Brimijoin, S., J. Biol. Chem. 1996, 271, 23646-23649.
- Lalut, J.; Santoni, G.; Karila, D.; Lecoutey, C.; Davis, A.; Nachon, F.; Silman, I.; Sussman, J.; Weik, M.; Maurice, T.; Dallemagne, P.; Rochais, C., *Eur. J. Med. Chem.* **2019**, *162*, 234-248.
- 10. Pepeu, G.; Giovannini, M. G., Curr. Alzheimer. Res. 2009, 6, 86-96.
- 11. Kryger, G.; Silman, I.; Sussman, J. L., *Structure* **1999**, *7*, 297-307.
- Burgin, A. B.; Magnusson, O. T.; Singh, J.; Witte, P.; Staker, B. L.; Bjornsson, J. M.; Thorsteinsdottir, M.; Hrafnsdottir, S.; Hagen, T.; Kiselyov, A. S.; Stewart, L. J.; Gurney, M. E., *Nat. Biotechnol.* 2010, 28, 63-70.
- 13. Lakics, V.; Karran, E. H.; Boess, F. G., *Neuropharmacology* **2010**, *59*, 367-374.
- Sierksma, A. S. R.; van den Hove, D. L. A.; Pfau, F.; Philippens, M.; Bruno, O.; Fedele, E.; Ricciarelli, R.; Steinbusch, H. W. M.; Vanmierlo, T.; Prickaerts, J., *Neuropharmacology* 2014, *77*, 120-130.
- 15. Ji, H.-F.; Shen, L., Molecules 2011, 16, 6732-6740.
- Mclachlan, C. S.; Chen, M. L.; Lynex, C. N.; Goh, D. L.; Brenner, S.; Tay, S. K., Arch. Neurol-Chicago 2007, 64, 456-457.
- 17. Zebda, R.; Paller, A. S., J. Am. Acad. Dermatol. 2018, 78, S43-s52.
- Guo, H.; Cheng, Y.; Wang, C.; Wu, J.; Zou, Z.; Niu, B.; Yu, H.; Wang, H.; Xu, J., *Neuropharmacology* 2017, *116*, 260-269.
- Ricciarelli, R.; Brullo, C.; Prickaerts, J.; Arancio, O.; Villa, C.; Rebosio, C.; Calcagno, E.; Balbi, M.; van Hagen, B. T.; Argyrousi, E. K.; Zhang, H.; Pronzato, M. A.; Bruno, O.; Fedele, E., *Sci. Rep.-UK* 2017, 7, 46320.
- Bruno, O.; Romussi, A.; Spallarossa, A.; Brullo, C.; Schenone, S.; Bondavalli, F.; Vanthuyne, N.; Roussel, C., *J. Med. Chem.* 2009, *52*, 6546-57.

- Brullo, C.; Massa, M.; Rocca, M.; Rotolo, C.; Guariento, S.; Rivera, D.; Ricciarelli, R.; Fedele, E.; Fossa, P.; Bruno, O., *J. Med. Chem.* 2014, 57, 7061-72.
- Gallant, M.; Aspiotis, R.; Day, S.; Dias, R.; Dube, D.; Dube, L.; Friesen, R. W.; Girard, M.; Guay, D.; Hamel, P.; Huang, Z.; Lacombe, P.; Laliberte, S.; Levesque, J.-F.; Liu, S.; Macdonald, D.; Mancini, J.; Nicholson, D. W.; Styhler, A.; Townson, K.; Waters, K.; Young, R. N.; Girard, Y., *Bioorg. Med. Chem. Lett.* **2010**, *20*, 6387-6393.
- 23. Watkins, P. B.; Zimmerman, H. J.; Knapp, M. J.; Gracon, S. I.; Lewis, K. W., *JAMA (J. Am. Med. Assoc.)* **1994**, *271*, 992-998.
- Li, X.; Wang, H.; Xu, Y.; Liu, W.; Gong, Q.; Wang, W.; Qiu, X.; Zhu, J.; Mao, F.; Zhang, H.; Li, J., ACS Chem. Neurosci. 2017, 8, 2708-2721.
- Zha, X.; Lamba, D.; Zhang, L.; Lou, Y.; Xu, C.; Kang, D.; Chen, L.; Xu, Y.; Zhang, L.; De Simone, A.; Samez, S.; Pesaresi, A.; Stojan, J.; Lopez, M. G.; Egea, J.; Andrisano, V.; Bartolini, M., *J. Med. Chem.* 2016, *59*, 114-131.
- Mao, F.; Li, J.; Wei, H.; Huang, L.; Li, X., J Enzym. Inhib. Med. Chem. 2015, 30, 995-1001.
- Sashidhara, K. V.; Modukuri, R. K.; Jadiya, P.; Rao, K. B.; Sharma, T.; Haque, R.; Singh, D. K.; Banerjee, D.; Siddiqi, M. I.; Nazir, A., *ACS Med. Chem. Lett.* **2014**, *5*, 1099-1103.
- Hamblin, J. N.; Angell, T. D. R.; Ballantine, S. P.; Cook, C. M.; Cooper, A. W. J.; Dawson, J.; Delves, C. J.; Jones, P. S.; Lindvall, M.; Lucas, F. S.; Mitchell, C. J.; Neu, M. Y.; Ranshaw, L. E.; Solanke, Y. E.; Somers, D. O.; Wiseman, J. O. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 4237-4241.
- Bolognesi, M. L.; Cavalli, A.; Valgimigli, L.; Bartolini, M.; Rosini, M.; Andrisano, V.; Recanatini, M.; Melchiorre, C. J. Med. Chem. 2007, 50, 6446.
- Bornstein, J. J.; Eckroat, T. J.; Houghton, J. L.; Jones, C. K.; Green, K. D.; GarneauTsodikova, S. *MedChemComm* 2011, 2, 406.
- Ellman, G. L.; Courtney, K. D.; Andres, V., Jr.; Feather-Stone, R. M. Biochem. Pharmacol. 1961, 7,88.
- 32. Liu, X.; Luo, H. B.; Huang, Y. Y.; Bao, J. M.; Tang, G. H.; Chen, Y. Y.; Wang, J.; Yin, S. *Org. Lett.* **2014**, 16, 282-285.

### **Graphical Abstract**

### Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer's disease: design, synthesis and evaluation of tacrine-pyrazolo[3,4-b]pyridine hybrids

Tingting Pan, Shishun Xie, Yan Zhou, Jinhui Hu, Haibin, Luo, Xingshu Li, Ling Huang \* School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

