A Convenient Preparation of C-Silylated Calixarenes

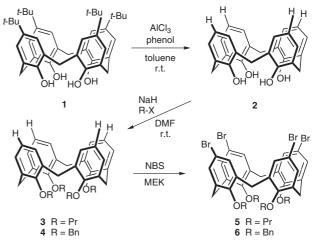
Paul F. Hudrlik,* Anne M. Hudrlik, Wondwossen D. Arasho, Raymond J. Butcher

Department of Chemistry, Howard University, Washington, DC 20059, USA Fax +1(202)8065442; E-mail: phudrlik@howard.edu *Received 20 March 2008; revised 11 June 2008*

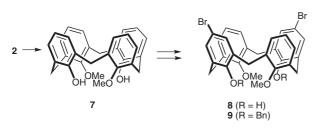
Abstract: Calix[4]arenes having multiple silyl groups on the upper (wide) rim were prepared from the corresponding bromocalixarenes by halogen-metal exchange with *t*-BuLi followed by silylation. The best results were obtained using the clear supernatant from a mixture of chlorosilane and triethylamine. With the higher molecular weight chlorosilanes, an aqueous workup was replaced by a filtration through a column of silica gel. *p*-(Trimethylsilyl)calixarene 17, the silicon analogue of the well-studied *p*-tert-butylcalixarene 1, formed a crystalline complex with toluene having a toluene molecule in the cone cavity with the toluene methyl protruding out at an angle.

Key words: calixarenes, silicon, halogen-metal exchange

Calixarenes¹ are of considerable current interest in molecular recognition and supramolecular chemistry, and as building blocks for more complicated structures. They are easily prepared from inexpensive starting materials, are easily modified at the upper (wide) and lower (narrow) rims, and have been shown to exist in several well-defined conformations (for calix[4]arenes: cone, partial cone, 1,2alternate, and 1,3-alternate). Many functional groups have been introduced onto the upper rim of calixarenes, primarily by electrophilic aromatic substitution reactions.


Silvlated calixarenes are of potential interest in molecular recognition because some tetracoordinate silicon compounds can form relatively stable hypercoordinate compounds with nucleophiles,² suggesting the possibility that silvlated calixarenes may be useful for recognition of anionic guests.³⁻⁶ Silyl ethers of calixarenes (lower rim) are well known.⁷ We became interested in the preparation of calixarenes having multiple silicon groups, especially at the upper (wide) rim. Upper rim substituents are frequently introduced onto calixarenes by electrophilic substitution reactions. However, the introduction of silvl groups onto aromatic rings by electrophilic aromatic substitution, although known, is not a general method.⁸ More commonly, carbon-silicon bonds are made by reactions of organometallic reagents with chlorosilanes. These reactions have not generally been used for the introduction of multiple silyl groups. If such reactions did not proceed in high yield, attempted introduction of multiple silyl groups onto large molecules would produce mixtures of completely and partially silvlated compounds, which might be difficult to separate. We have reported the use of the Wurtz-Fittig re-

SYNTHESIS 2008, No. 18, pp 2968–2976 Advanced online publication: 04.09.2008 DOI: 10.1055/s-2008-1067250; Art ID: M01508SS © Georg Thieme Verlag Stuttgart · New York action for the preparation of *p*-C-silylated calixarenes.^{5a,b} Two examples of *p*-C-silylated calix[4]arenes have been reported using halogen–metal exchange on bromocalixarenes with *t*-BuLi in THF, followed by treatment with Me₃SiCl.^{6,9} In each case, products were purified by chromatography. In one case, fractional crystallization was also employed to separate the tetrakis-Me₃Si compound from the tris.⁶ We report here a convenient method to introduce multiple silyl groups onto calix[4]arenes (using readily available halogenated calixarenes) via halogen–metal exchange, which generally does not require chromatography. In principle, this methodology should be applicable to the preparation of other multiply silylated molecules as well.


Preparation of Substrates

Halogenated calix[4]arenes were prepared using standard procedures as outlined below. All the reactions gave good yields, and products were easily purified by crystallization without chromatography.

The preparation of the tetrabromocalix[4]arene substrates is shown in Scheme 1. Thus, *p-tert*-butylcalix[4]arene (1)¹⁰ was dealkylated using AlCl₃ and phenol in toluene¹¹ to give *p*-H-calixarene 2^{12} (50–74% yield). Calixarene **2** was treated with NaH/PrI in DMF¹¹ to give the tetrapropyl ether **3** (80–88% yield), and with NaH/BnBr in DMF to give tetrabenzyl ether 4^{13} (76–81% yield). This procedure^{11,14} is known to give calix[4]arenes fixed in the cone conformation¹⁵ when propyl or larger groups are introduced. The tetrabromo substrates 5^{16} (86–93% yield)

Scheme 2

and 6^{17} (78–88% yield) were prepared by treatment of **3** and **4**, respectively, with NBS in methyl ethyl ketone (MEK).¹⁸

A substrate for the preparation of disilylated calix[4]arenes, the dibromide **9**, was prepared as shown in Scheme 2. Dimethoxycalixarene **7** was prepared in 70– 95% yields by selective alkylation of tetrahydroxycalixarene **2** with MeOTs and K₂CO₃ in MeCN.¹⁹ Taking advantage of the fact that the phenolic rings are more reactive toward electrophilic substitution than are the corresponding ethers, **7** can be converted to the dibromide **8**. Although attempts to effect this conversion with bromine¹⁹ did not lead cleanly to **8** in our hands, when **7** was treated with NBS in MEK,^{18,20} the dibromide **8**¹⁹ was produced cleanly in 73–96% yields. Treatment of **8** with NaH/BnBr in DMF yielded benzyl ether **9**^{5c} in 80–92% yields.

Halogen–Metal Exchange Reactions

Our initial attempts to prepare C-silylated calixarenes by halogen-metal exchange²¹ followed by silvlation led to the desired product as the major component of a mixture. For example, treatment of tetrabromide 5 with *t*-BuLi in THF at -78 °C followed by Me₃SiCl (distilled from CaH₂), gave an oily crude product. MALDI-TOF mass spectral analysis indicated that the tetrakis(trimethylsilyl)calixarene 10 was the major product, but that the corresponding tris(trimethylsilyl)calixarene 11 was also present (Figure 1). The ¹H NMR spectrum showed the peaks expected for 10 and additional small peaks, including those expected for **11**. (Samples of calixarenes **10** and 11 were available from a Wurtz–Fittig silylation reaction,^{5b} and they can be easily distinguished in the ¹H NMR spectra. The propyl OCH₂ groups of 11 give rise to multiplets of equal size at about $\delta = 4.0$ and 3.7; the propyl OCH₂ groups of **10** give a triplet at about $\delta = 3.85$. The

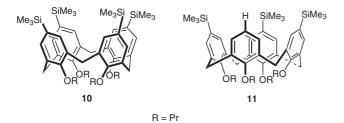


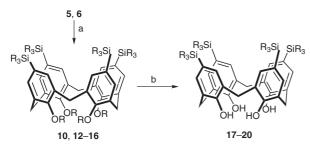
Figure 1 Calixarenes 10 and 11

spectrum of **11** indicates a flattened cone conformation.^{5c,22}) The product was purified by column chromatography, and **10** was obtained pure as white crystals in 62%yield.

We believe that the initially-generated tetralithio intermediate was reacting in part with traces of HCl in the chlorosilane. We therefore tried repeating the reaction, and adding Et_3N to the reaction mixture before adding the chlorosilane. There was little change in the spectra of the crude product. We therefore decided to try mixtures of the amine and the chlorosilane.²³

When Me₃SiCl is mixed with Et₃N, a fine white precipitate (Et₃N·HCl) immediately appears (even when each reagent is freshly distilled from CaH₂). The precipitate settles after a few days, and the mixture can be stored for several days, especially if kept cold. However, we centrifuged the mixture, and used the clear supernatant shortly afterwards.

Typically, the Me₃SiCl and Et₃N were premixed in a nitrogen- or argon-flushed, septum-capped centrifuge tube, the resulting white precipitate was compacted by centrifuge, and the supernatant was withdrawn by a syringe, and added to the cold mixture of **5** and *t*-BuLi. This procedure gave a crystalline crude product after workup. MALDI-TOF MS of the crude product showed a peak at m/z 903.8 corresponding to the tetrasilyl compound **10** (as the Na adduct); partially silylated compounds were not observed. In addition, the ¹H NMR spectrum indicated the product was rather pure **10** with no evidence for the tris(trimethylsilyl)calixarene **11**. Calixarene **10** could be purified by a simple recrystallization, and was obtained in 79% yield.


This procedure was carried out using several chlorosilanes, and using both the propyl and benzyl ether substrates **5** and **6**. The results are summarized in Table 1. Using Me₃SiCl or PhMe₂SiCl with **6** gave the tetrasilylated calixarenes **12** (86–92% yields), and **13** (92% yield), respectively. In both cases, the products were purified only by simple recrystallization; chromatography was not necessary.

When $Ph_2MeSiCl$ and (allyl) Me_2SiCl were used as silylating agents in the above procedure, chromatography was necessary to purify the products **14**, **15**, and **16**. [In all of these reactions, the reaction mixtures were worked up by concentration on the rotary evaporator, partitioning between aqueous NaHCO₃ and $Et_2O_3^{24}$ drying, and again concentrating. The products were routinely placed under oil-pump vacuum (ca. 0.05 mm) for about two hours. The aqueous workup would be expected to convert any remaining chlorosilane into silanol and disiloxane, and the higher molecular weight disiloxanes are not volatile.]

For benzyl ether substrate **6** with $Ph_2MeSiCl$, a solid crude product was obtained, but recrystallization did not provide a pure product. Chromatography resulted in silylated calixarene **14** in 61% yield, which appeared to be almost pure by ¹H NMR spectroscopy. For propyl ether substrate **5** and (allyl)Me₂SiCl, a crude product consisting of an oil and solid was obtained, and chromatography resulted in

Synthesis 2008, No. 18, 2968–2976 © Thieme Stuttgart · New York

 Table 1
 Silylations of Tetraabromocalixarenes and Removal of Benzyl Ethers

(a) (1) t-BuLi, THF, -78 °C; (2) R₃SiCl, Et₃N. (b) H₂, Pd/C, EtOAc.

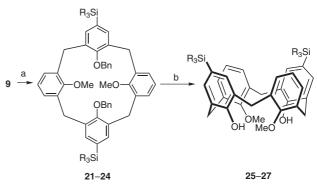
OR	Product	R ₃ Si	Yield (%)	Product	Yield (%)
OPr	10	Me ₃ Si	79	_	-
OBn	12	Me ₃ Si	92	17	88
OBn	13	PhMe ₂ Si	92	18	92
OBn	14	Ph ₂ MeSi	79ª	19	68
OPr	15	(allyl)Me ₂ Si	86 ^a	-	_
OBn	16	(allyl)Me ₂ Si	65	20 ^b	86

^a Non-aqueous workup.

^b PrMe₂Si.

pure silylated calixarene **15** in 52% yield. For **6** and (allyl)Me₂SiCl, an oily crude product was obtained, and chromatography resulted in pure silylated calixarene **16** as a colorless oil in 48–65% yields. In this reaction, MALDI-TOF MS was run on the crude product, and a large peak for the tetrasilylated compound **16** (as Na adduct) was observed; no trisilylated material was detected.

To avoid the problem of separating the product from the higher molecular weight disiloxanes, we developed a nonaqueous workup procedure in which the crude product was concentrated by rotary evaporator as before, and then immediately passed through a silica gel column without taking fractions. The chlorosilanes presumably react with the silica gel and do not elute. The reactions which were rerun using this procedure gave products that could be purified by crystallization, and yields were better. Thus, treatment of benzyl ether substrate **6** with *t*-BuLi followed by the supernatant from Ph₂MeSiCl/Et₃N, and using the nonaqueous workup procedure, resulted in pure silylated calixarene **14** in 79% yield. A similar reaction using the propyl ether substrate **5** and (allyl)Me₂SiCl resulted in silylated calixarene **15** in 86% yield.


The benzyl groups in calixarenes 12–14 and 16 were removed by hydrogenolysis (treatment with H_2 in the presence of Pd/C) to give the hydroxycalixarenes 17–20 (see Table 1). Hydrogenolysis of the Ph₂MeSi calixarene 14 to give 19 was slow (complete in 6 h), while with the other substrates, the reactions were complete in two hours. (The product from the hydrogenolysis of allyldimethylsilylcalixarene 16 was propyldimethylsilylcalixarene 20.) The Ph₂MeSi calixarenes 14 and 19 are notable in that four

Synthesis 2008, No. 18, 2968–2976 © Thieme Stuttgart · New York

very bulky groups have been incorporated on the upper rim.

Dibromide **9** was used as a substrate for reactions to introduce two silicon groups. As in the above silylations, compound **9** was treated with *t*-BuLi in THF followed by the chlorosilane/Et₃N mixture (clear supernatant after centrifugation). Disilylated calixarenes **21–24** were obtained in good yields in most cases. The results are summarized in Table 2.

Table 2Silylations of Dibromocalixarene 9 and Removal of BenzylEthers

(a) (1) *t*-BuLi, THF, -78 °C; (2) R₃SiCl, Et₃N.
(b) H₂, Pd/C, EtOAc.

R ₃ Si	Product	Yield (%)	Product	Yield (%)
Me ₃ Si	21	84	25	78
PhMe ₂ Si	22	57	26	84
Ph ₂ MeSi	23	79 ^a	-	_
(allyl)Me ₂ Si	24	60	27 ^b	95

^a Non-aqueous workup.

^b PrMe₂Si.

Initially the aqueous workup procedure was used for these reactions. When Me_3SiCl was used as the silylating agent, the product **21** was purified by only recrystallization (81–84% yields). Chromatography was initially used for purification of the other products, giving **22** from PhMe₂SiCl in 57–66% yields as a crystalline product and **24** from (al-lyl)Me₂SiCl in 60% yield as an oil. Attempts were made to purify calixarene **23** (from **9** and Ph₂MeSiCl) by recrystallization, but the product was not pure by ¹H NMR spectroscopic analysis. A reaction in which the product was purified by careful chromatography resulted in pure **23** in 65% yield.

When the nonaqueous workup procedure became available, this was applied to the reaction of **9** and Ph₂MeSiCl, giving pure **23** as a white powder in 79% yield. The other silylations were not repeated using the nonaqueous workup procedure, but that is expected to be the better procedure for reactions with the higher molecular weight chlorosilanes.

The benzyl groups were removed from calixarenes 21, 22, and 24 uneventfully by treating with H_2 in the presence of

C-Silylated Calixarenes 2971

Pd/C in ethyl acetate, giving the hydroxycalixarenes 25-27 (27 as the PrMe₂Si compound, Table 2). However, attempted debenzylation of the Ph₂MeSi calixarene 23 under the same conditions (2 h) led to recovered 23. Use of reaction times up to seven hours led to small amounts of product, but the reaction did not go to completion.

The conformations and NMR spectra of these calixarenes deserve comment. All of the previously reported calixarenes prepared in this work, and most of the new calixarenes (except as noted below) were in the cone conformation as shown by NMR spectroscopy.^{25,26} The cone conformation of the tetrahydroxy and dihydroxycalixarenes is presumably due to the stability provided by hydrogen bonding, while that of the tetrapropyloxy and tetrabenzyloxy calixarenes arises from the method of preparation¹⁴ of **3** and **4**, and the fact that conformational interconversion of calix[4]arenes is blocked when the phenolic oxygens are alkylated with propyl (or larger) groups.¹⁵ However, while dihydroxy(dimethoxy) calixarene 8 is a cone, the benzylated compound 9 (drawn as a cone) appeared to be a mixture, and the silvlation products 21–24 showed broad resonances in the ¹H NMR spectra, suggesting conformational equilibrium on the ¹H NMR time scale. Removal of the benzyl groups gave calixarenes 25–27, which again showed sharp ¹H NMR spectra characteristic of the cone conformation, presumably because the H-bonding ability was restored.

The ¹H NMR spectrum of tetrahydroxy(tetrakis)TMS calixarene **17** showed the presence of CH_2Cl_2 (ca. 1:1 ratio) when it was recrystallized from CH_2Cl_2 –MeOH, even after placing under oil-pump vacuum (0.1 mm) for two hours. (The elemental analysis showed the presence of $CHCl_3$, which was used in the preparation of the analytical sample.) Some samples of the other calixarenes showed smaller amounts of CH_2Cl_2 by ¹H NMR spectroscopy, suggesting an affinity for complexing with these solvents.

Complexation Studies

Although complexation of the silylated calixarenes with nucleophilic or anionic groups is expected to be more favorable if there are electron-withdrawing groups on the silicon, we briefly studied some of the calixarenes synthesized here. We did not observe complex-induced shifts by ¹H NMR titration (using MeNO₂ and calixarenes **12**, **17**, or 25 in CDCl₃, or calixarene 10 in xylene- d_{10} ; an attempt with calixarene 18 suffered from low solubility in xylene). A brief extraction study²⁷ showed some extraction of tetrabutylammonium benzoate28 from water into CDCl3 using the tetrahydroxycalixarene 20 (with p-xylene as standard). Suspecting this might be due to an acid-base interaction with the calixarene hydroxyls, we also tried using the dihydroxycalixarene 25, which should have a considerably higher pK_a value,²⁹ and did not observe any extraction of the benzoate. We have prepared a complex of tetrakis(trimethylsilyl)calixarene 17 with toluene, and obtained a crystal structure by X-ray diffraction (below).

Calixarene 17 is the silicon analogue of the well-studied *p-tert*-butylcalix[4]arene 1. The complex of 1 and toluene is well known,³⁰ and was the first^{30a} solid state complex involving a calixarene to be reported.³¹ The X-ray crystal structure showed a cone conformation of the calixarene, with the methyl group of the toluene inserted well into the cone cavity. (Further refinement aided by solid-state NMR indicated that the toluene symmetry axis is slightly tilted off the axis of symmetry of the calixarene,^{30d,e} and that about 5–10% of the toluene has the methyl protruding out of rather than into the calix cavity.^{30d})

A diametrically dimethylated (25,27-dimethoxy-26,28dihydroxy)-*tert*-butylcalixarene formed a complex with toluene analogous to that of $1.^{32}$ A number of X-ray structures of *tert*-butylcalixarenes complexed with metals at the oxygens have been reported, many including a toluene in the calix cavity. Different orientations of toluene in the cavities have been observed,³³ possibly due to differences in pitch of the cavity due to hydrogen bonding or metal complexation at the oxygen atoms.³²

The *tert*-butyl groups extend the calix cavity, and are believed to be instrumental in the complexation of neutral guests by simple calixarenes.^{30d} Removal of the *tert*-butyl group from **1** (to give **2**) dramatically reduces the ability of the calixarene to complex simple aromatic guest molecules.³⁴ X-ray crystal structures of toluene complexes of simple calix[4]arenes having some other *para* substituents have been reported. An analogue of **1** having 1,1,3,3tetramethylbutyl groups showed a cone structure with toluene in the lattice,³⁴ while the isopropyl analog of **1** showed a structure with toluene in the cavity, but with the opposite orientation, with the methyl group pointing straight out.³⁵

We obtained crystals by allowing a solution of **17** in toluene immersed in a hot water bath to cool to room temperature overnight. Diffraction data were collected at 93 K. The structure is shown in Figure 2. There is no crystallographically imposed symmetry on the molecule – every atom is unique. The structure has two molecules of toluene per calixarene. One toluene is in the lattice. The other is in the cone cavity with the methyl group pointing out, with the symmetry axis of the toluene tilted by about 60° from that of the calixarene.

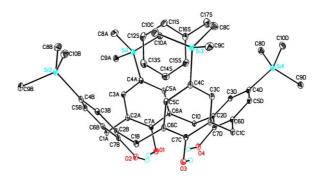


Figure 2 Structure of the toluene complex with calixarene 17; the toluene in the lattice is omitted³⁶

Synthesis 2008, No. 18, 2968-2976 © Thieme Stuttgart · New York

If the four rings in the calixarene system are consecutively labeled as A, B, C, and D, then the plane of the encapsulated toluene is parallel to the B–D vector and perpendicular to the A–C vector. With the CH_3 group of the toluene tilted by 60° from the vertical plane it is expected that the H's attached to this group and those attached to ring carbons C13S, C14S, and C15S would make the closest contacts with the calixarene skeleton. There are no close contacts involving the hydrogen attached to C14S as it projects into the cavity between the four oxygen atoms.

However, there are close contacts involving the H's attached to C13S and C15S (H13A and H15A) and the phenyl carbon atoms of ring B and D (Table 3). There are also close contacts between the toluene methyl H's (H17A) and the methyl H's (H10L) of the calixarene *tert*-butyl groups. As is usual in calixarenes, the protons attached to the four oxygen atoms are involved in hydrogen bonding interactions in a head to tail fashion.

Atom 1	Atom 2	H…X distance (Å)	C–H…X angle (°)
H13A	C3B	2.924	158.4
H13A	C4B	2.802	173.4
H13A	C5B	2.955	147.8
H15A	C2D	2.934	141.8
H15A	C3D	2.975	160.2
H15A	C4D	2.948	168.9
H17A	H10L (C10D)	2.363	158.5
H17B ^a	H8BA (C8B)	2.513	132.0

^a Intermolecular contact.

Conclusion

Calixarenes with multiple silyl groups on the upper rim can be easily prepared in high yields from the corresponding halogenated calixarenes by halogen-metal exchange followed by silylation. Yields and purities are improved when the silylation is carried out using the clear supernatant from a mixture of chlorosilane and triethylamine. Presumably this removes the proton source as Et_3N ·HCl. Silylation reactions using higher molecular weight chlorosilanes were further improved by omitting an aqueous workup, and instead passing the concentrated reaction mixture through a silica gel column. In principle, this methodology should be applicable to the preparation of other multiply silylated molecules,³⁷ such as organosilicon dendrimers and hyper-branched polymers,³⁸ and silicon-bridged macrocycles, such as siloxane-bridged cyclophanes.³⁹ A complex of toluene with calixarene 17, the silicon analogue of *p*-*tert*-butylcalixarene 1, was prepared and a toluene was shown by X-ray to be in the cone cavity with the toluene methyl protruding out of the cavity.

Unless otherwise stated, all reactions were carried out under argon or N₂, and transfers of liquids were carried out with N₂- or argonflushed syringes. For experiments requiring anhydrous conditions, glassware was dried overnight at 120 °C, and cooled in a desiccator. The verb 'concentrated' refers to removal of solvent using a rotary evaporator. THF was distilled from sodium and benzophenone. DMF, Et₃N, and Me₃SiCl were distilled from CaH₂. Petroleum ether (PE) used refers to the fraction boiling in the range 30-60 °C. The chlorosilane/Et₃N mixtures were prepared by mixing equal volumes of the chlorosilane and Et_3N in a centrifuge tube (which had been flushed with argon, capped with a septum, and connected to the argon line via a syringe needle), centrifuging for 3 min, and taking the supernatant solution by a syringe. Column chromatography was done as flash chromatography using 200-425 mesh silica gel. All products were placed under oil pump vacuum (0.1-0.05 mm) at r.t. for at least 2 h. ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were obtained in CDCl₃. Chemical shifts were reported in δ using CHCl₃ (7.26) or CH₂Cl₂ (5.32) for ¹H NMR (indicated as standard), and CDCl₃ (77.00) for ¹³C NMR as internal references. ¹³C NMR assignments were made using DEPT. MALDI-TOF mass spectra were performed using 2,5-dihydroxybenzoic acid as the matrix.

Silylation of Calixarenes 5, 6, and 9; Typical Procedures 1. Procedure Using Aqueous Workup; Preparation of Compound 13

A solution of tetrabromocalixarene **6** (0.30 g, 0.27 mmol) in THF (15 mL) was cooled to -78 °C. A solution of *t*-BuLi (2.0 mL, 1.5 M in pentane, 3.0 mmol) was slowly added to the stirred mixture and the stirring was continued for 2 h. A mixture of PhMe₂SiCl and Et₃N (1:1 v/v; 1.0 mL, ca. 3 mmol of chlorosilane) was slowly added at -78 °C. The resulting mixture was slowly warmed to r.t. in 45 min and stirred for 2 h at r.t. The mixture was then transferred to a one-necked flask and concentrated giving a solid, which was partitioned between Et₂O (20 mL) and H₂O (15 mL). The organic layer was washed with brine (15 mL), dried (MgSO₄), and concentrated giving a solid product. Recrystallization from MeOH–CH₂Cl₂ (9:1) yielded 0.33 g (92%) of **13** as white crystals.

2. Procedure Using Non-aqueous Workup; Preparation of Compound 15

A solution of tetrabromotetrapropoxycalixarene **5** (0.348 g, 0.38 mmol) in THF (15 mL) was cooled to -78 °C, and a solution of *t*-BuLi (3.0 mL, 1.5 M in pentane, 4.5 mmol) was added slowly. The mixture was stirred for 1.5 h at -78 °C. A mixture of allyldimethyl-chlorosilane and Et₃N (1:1 v/v; 1.0 mL, ca. 3.3 mmol of chlorosilane) was slowly added at -78 °C. The mixture was then allowed to warm up to r.t. gradually in about 45 min and was stirred at r.t. for 2 h. The mixture was then transferred to a one-necked flask and concentrated. The crude mixture was immediately passed through a silica gel chromatography column (9.0 g, 1.2×22 cm) using PE–CH₂Cl₂ (1:1) as eluent. The eluent (ca. 150 mL) was concentrated and the residue recrystallized from MeOH–CH₂Cl₂ (9:1) to give 0.324 g (86%) of **15** as white crystals.

Hydrogenation of Benzyl Ethers; Typical Procedure Preparation of Compound 18

A three-necked 50 mL flask, fitted with a stopcock adapter attached to a H_2 -filled balloon, was placed under argon on an argon line. The tetrakis(dimethylphenylsilyl)calix[4]arene **13** (0.12 g, 0.091 mmol), 10% Pd/C (0.10 g), and EtOAc (20 mL) were added to the

flask. The connection to the argon bubbler was closed, the stopcock to the H_2 -filled balloon was opened, and a small amount of H_2 was allowed to sweep through the flask for a few seconds by slightly opening a septum on one of the necks. The mixture was stirred for 2 h. The mixture was then filtered using Celite and concentrated. The crude solid was recrystallized from MeOH–CH₂Cl₂ (9:1) to give 0.080 g (92%) of **18** as white crystals.

Tetrakis(trimethylsilyl)calixarenes 5,11,17,23-Tetrakis(trimethylsilyl)-25,26,27,28-tetrapropoxycalix[4]arene (10)

The crude product was recrystallized from 4:1 MeOH–acetone; white powder; mp 196–197 °C; 198–199 °C (analytical sample).

IR (CHCl₃): 2953, 2871, 1464, 1382, 1267, 1247, 1122, 1006, 881, 833 $\rm cm^{-1}$.

¹H NMR (CHCl₃ standard): $\delta = 6.89$ (s, 8 H, ArH), 4.44 (d, J = 12.5 Hz, 4 H, ArCH₂Ar), 3.85 (t, J = 7.6 Hz, 8 H, OCH₂CH₂), 3.17 (d, J = 12.5 Hz, 4 H, ArCH₂Ar), 2.03 (m, 8 H, OCH₂CH₂), 1.00 (t, J = 7.4 Hz, 12 H, OCH₂CH₂CH₃), 0.05 [s, 36 H, Si(CH₃)₃].

¹³C NMR: δ = 156.8 (C), 133.9 (C), 133.3 (CH), 132.8 (C), 77.0 (CH₂), 30.6 (CH₂), 23.3 (CH₂), 10.3 (CH₃), -0.9 (CH₃).

MALDI-TOF MS (crude product): m/z calcd for $[M + Na]^+$: 903.5; found: 903.8; with no visible peak at $m/z = 832 [11 + Na]^+$ (less than 1% would have been visible).

Anal. Calcd for $C_{52}H_{80}O_4Si_4$: C, 70.85; H, 9.15. Found: C, 70.99; H, 9.57.

25,26,27,28-Tetrabenzyloxy-5,11,17,23-tetrakis(trimethyl-silyl)calix[4]arene (12)

The crude product crystallized out from the Et_2O solution in white crystals; mp 176–177 °C.

IR (KBr): 3032, 2955, 1465, 1245, 1209, 1117, 984, 891, 830, 748, 692 $\rm cm^{-1}$

¹H NMR (CH₂Cl₂ standard): δ = 7.31–7.24 (m, 20 H, C₆H₅), 6.84 (s, 8 H, ArH), 4.92 (s, 8 H, OCH₂Ph), 4.20 (d, *J* = 12.7 Hz, 4 H, ArCH₂Ar), 2.93 (d, *J* = 12.8 Hz, 4 H, ArCH₂Ar), 0.07 [s, 36 H, Si(CH₃)₃].

¹³C NMR: δ = 155.9 (C), 138.1 (C), 133.9 (C), 133.4 (CH), 133.1 (C), 129.8 (CH), 128.0 (CH), 127.7 (CH), 76.6 (CH₂), 31.1 (CH₂), -0.9 (CH₃).

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 1095.5; found: 1096.0.

25,26,27,28-Tetrahydroxy-5,11,17,23-tetrakis(trimethyl-silyl)calix[4]arene (17)

The crude product was recrystallized from 9:1:1 MeOH–acetone– CH₂Cl₂; white crystals; mp 265–267 °C; 263.6–264.6 °C (analytical sample recrystallized from MeOH–acetone–CHCl₃).

IR (KBr): 3155, 3012, 2950, 1588, 1470, 1245, 1127, 906, 835, 753 $\rm cm^{-1}.$

¹H NMR (CHCl₃ standard): $\delta = 10.2$ (s, 4 H, ArO*H*), 7.18 (s, 8 H, ArH), 4.26 (d, J = 14.0 Hz, 4 H, ArC*H*₂Ar), 3.55 (d, J = 13.8 Hz, 4 H, ArC*H*₂Ar), 0.17 [s, 36 H, Si(CH₃)₃].

In the ¹H NMR spectrum of the original sample, an additional peak was present at $\delta = 5.3$, assigned to CH₂Cl₂. The integration suggested a 1:1 complex (area ratio of the peaks at $\delta = 5.3$ to 4.26 is 1.7:4.0).

¹³C NMR: δ = 149.6 (C), 134.2 (CH), 133.6 (C), 127.8 (C), 31.7 (CH₂), -1.1 (CH₃).

MALDI-TOF MS: *m/z* calcd for [M + Na]⁺: 735.3; found: 737.0.

Anal. Calcd for $C_{40}H_{56}O_4Si_4.0.5$ CHCl₃: C, 62.94; H, 7.37. Found: C, 62.65; H, 7.37.

Tetrakis(phenyldimethylsilyl)calixarenes 25,26,27,28-Tetrabenzyloxy-5,11,17,23-tetrakis(phenyldimethylsilyl)calix[4]arene (13)

The crude product was recrystallized from 9:1 MeOH–CH₂Cl₂; white crystals: mp 170–172 °C.

IR (KBr): 3062, 3021, 2955, 1465, 1424, 1255, 1245, 1209, 1116, 1107, 983, 830, 805, 774, 697 $\rm cm^{-1}.$

¹H NMR (CH₂Cl₂ standard): δ = 7.37–7.27 (m, 40 H, C₆H₅), 6.86 (s, 8 H, ArH), 4.98 (s, 8 H, OCH₂Ph), 4.18 (d, *J* = 12.8 Hz, 4 H, ArCH₂Ar), 2.86 (d, *J* = 12.9 Hz, 4 H, ArCH₂Ar), 0.33 [s, 24 H, Si(CH₃)₂].

¹³C NMR: δ = 156.2 (C), 139.5 (C), 137.8 (C), 134.3 (CH), 134.2 (C), 134.0 (CH), 130.4 (C), 130.0 (CH), 128.7 (CH), 128.0 (CH), 127.9 (CH), 127.7 (CH), 76.5 (CH₂), 31.3 (CH₂), -2.2 (CH₃).

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 1343.6; found: 1344.4.

25,26,27,28-Tetrahydroxy-5,11,17,23-tetrakis(phenyldimethyl-silyl)calix[4]arene (18)

The crude product was recrystallized from 9:1 MeOH–CH₂Cl₂; white crystals: mp 194–196 °C; 192.9–193.4 °C (analytical sample).

IR (KBr): 3206, 3170, 3017, 2950, 1588, 1475, 1245, 1127, 906, 835, 753 $\rm cm^{-1}.$

¹H NMR (CHCl₃ standard): δ = 10.35 (s, 4 H, ArO*H*), 7.50 (d, *J* = 1.7 Hz, 8 H, C₆H₅), 7.35 (m, 12 H, C₆H₅), 7.15 (s, 8 H, C₆H₅), 4.25 (d, *J* = 13.9 Hz, 4 H, ArC*H*₂Ar), 3.53 (d, *J* = 13.9 Hz, 4 H, ArC*H*₂Ar), 0.45 [s, 24 H, Si(CH₃)₂].

 13 C NMR: δ = 150.0, 138.2, 135.1, 134.1, 131.4, 129.1, 127.8, 127.7, 31.8, -2.2.

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 983.4; found: 983.4.

Anal. Calcd for $C_{60}H_{64}O_4Si_4$: C, 74.95; H, 6.71. Found: C, 74.61; H, 6.85.

Tetrakis(diphenylmethylsilyl)calixarenes

25,26,27,28-Tetrabenzyloxy-5,11,17,23-tetrakis(diphenylmethylsilyl)calix[4]arene (14)

The reaction mixture was concentrated on the rotary evaporator, and immediately passed through a silica gel column $(2.5 \times 10 \text{ cm})$ using ca. 150 mL of 1:1 hexane–CH₂Cl₂. The solution was concentrated and recrystallized from 9:1 MeOH–CHCl₃; white powder; mp 94–97 °C.

IR (KBr): 3062, 3022, 2950, 2919, 1460, 1424, 1250, 1209, 1122, 1107, 974, 784, 723, 697 cm $^{-1}$.

¹H NMR (CH₂Cl₂ standard): δ = 7.31–7.16 (m, 60 H, C₆H₅), 6.83 (s, 8 H, ArH), 5.03 (s, 8 H, OCH₂Ph), 4.16 (d, *J* = 12.7 Hz, 4 H, ArCH₂Ar), 2.82 (d, *J* = 12.9 Hz, 4 H, ArCH₂Ar), 0.46 (s, 12 H, SiCH₃).

¹³C NMR: δ = 156.4 (C), 137.6 (C), 137.0 (C), 135.5 (CH), 135.2 (CH), 134.4 (C), 130.1 (CH), 129.0 (CH), 128.4 (C), 127.9 (CH), 127.6 CH), 76.3 (CH₂), 31.7 (CH₂), -3.1 (CH₃).

MALDI-TOF MS: *m/z* calcd for [M + Na]⁺: 1591.6; found: 1594.0.

25,26,27,28-Tetrahydroxy-5,11,17,23-tetrakis(diphenylmethylsilyl)calix[4]arene (19)

The crude product was recrystallized from 9:1 MeOH–acetone; white powder; mp 241–243 °C; 249–250 °C (analytical sample).

IR (KBr): 3219, 3167, 3068, 3045, 3016, 2955, 1476, 1451, 1424, 1249, 1127, 1108, 787, 739, 725, 701 $\rm cm^{-1}$.

¹H NMR (CH₂Cl₂ standard): δ = 10.63 (s, 4 H, ArO*H*, exch. D₂O), 7.46–7.21 (m, 40 H, C₆H₃), 7.14 (s, 8 H, ArH), 4.28 (d, *J* = 13.6 Hz, 4 H, ArC*H*₂Ar), 3.52 (d, *J* = 13.7 Hz, 4 H, ArC*H*₂Ar), 0.71 (s, 12 H, SiCH₃). ¹³C NMR: δ = 150.3 (C), 136.3 (CH), 136.2 (C), 135.2 (CH), 129.3 (CH), 129.2 (C), 127.8 (CH), 127.7 (C), 31.9 (CH₂), -3.0 (CH₃).

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 1231.4; found: 1232.1.

Anal. Calcd for $C_{80}H_{72}O_4Si_4$: C, 79.42; H, 6.00. Found: C, 79.29; H, 5.74.

Tetrakis(allyldimethylsilyl) and (Propyldimethylsilyl)calixarenes

5,11,17,23-Tetrakis(allyldimethylsilyl)-25,26,27,28-tetrapropoxycalix[4]arene (15)

The reaction mixture was concentrated on the rotary evaporator, and immediately passed through a silica gel column $(1.2 \times 22 \text{ cm})$ using ca. 150 mL of 1:1 PE–CH₂Cl₂. The solution was concentrated and recrystallized from 9:1 MeOH–CH₂Cl₂; white crystals; mp 142–143 °C; 145.9–146.5 °C (analytical sample).

¹H NMR (CHCl₃ standard): $\delta = 6.89$ (s, 8 H, ArH), 5.76–5.65 (m, 4 H, CH=CH₂), 4.78 (d, *J* = 12.9 Hz, 8 H, CH=CH₂), 4.45 (d, *J* = 12.6 Hz, 4 H, ArCH₂Ar), 3.86 (t, *J* = 7.7 Hz, 8 H, OCH₂CH₂), 3.18 (d, *J* = 12.7 Hz, 4 H, ArCH₂Ar), 2.05–2.00 (m, 8 H, OCH₂CH₂), 1.56 (d, *J* = 8.1 Hz, 8 H, CH₂CH=CH₂), 1.01 (t, *J* = 7.5 Hz, 12 H, OCH₂CH₂CH₃), 0.07 [s, 24 H, Si(CH₃)₂].

¹³C NMR: δ = 157.1 (C), 135.0 (CH), 133.9 (C), 133.6 (CH), 131.2 (C), 113.0 (CH₂), 77.2 (CH₂), 30.7 (CH₂), 24.0 (CH₂), 23.3 (CH₂), 10.3 (CH₃), -3.4 (CH₃).

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 1007.6; found: 1008.8.

Anal. Calcd for $C_{60}H_{88}O_4Si_4$: C, 73.11; H, 9.00. Found: C, 72.78; H, 9.05.

5,11,17,23-Tetrakis(allyldimethylsilyl)-25,26,27,28-tetrabenzyloxycalix[4]arene (16)

The crude product was chromatographed (silica gel, 2.5×12 cm, PE, 10 mL fractions, fractions 20–24); colorless oil.

IR (CHCl₃): 3028, 3009, 2960, 2925, 1631, 1583, 1470, 1455, 1256, 1245, 1124, 989, 897, 830, 698 $\rm cm^{-1}.$

¹H NMR (CH₂Cl₂ standard): δ = 7.36–7.27 (m, 20 H, C₆H₅), 6.86 (s, 8 H, ArH), 5.75–5.66 (m, 4 H, CH=CH₂), 4.97 (s, 8 H, OCH₂Ph), 4.83–4.78 (m, 8 H, CH=CH₂), 4.21 (d, *J* = 12.8 Hz, 4 H, ArCH₂Ar), 2.93 (d, *J* = 12.9 Hz, 4 H, ArCH₂Ar), 1.60 (d, *J* = 8.1 Hz, 8 H, CH₂CH=CH₂), 0.12 [s, 24 H, Si(CH₃)₂].

¹³C NMR: δ = 156.0 (C), 137.9 (C), 135.1 (CH), 134.1 (C), 133.7 (CH), 131.5 (C), 129.9 (CH), 128.0 (CH), 127.8 (CH), 113.0 (CH₂), 76.6 (CH₂), 31.3 (CH₂), 24.2 (CH₂), -3.4 (CH₃).

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 1199.6; found: 1200.2.

25,26,27,28-Tetrahydroxy-5,11,17,23-tetrakis(propyldimethyl-silyl)calix[4]arene (20)

The crude product was recrystallized from 10:1 MeOH–acetone; white crystals; mp 153–155 °C; 156–157 °C (analytical sample).

IR (KBr): 3165, 3012, 2955, 2863, 1588, 1475, 1455, 1245, 1158, 1127, 1102, 1061, 902, 830, 799 cm⁻¹.

¹H NMR (CHCl₃ standard): $\delta = 10.32$ (s, 4 H, ArOH, exch. D₂O), 7.19 (s, 8 H, ArH), 4.28 (d, J = 14.0 Hz, 4 H, ArCH₂Ar), 3.58 (d, J = 13.9 Hz, 4 H, ArCH₂Ar), 1.57–1.32 (m, 8 H, SiCH₂CH₂CH₃), 0.96 (t, J = 7.2 Hz, 12 H, SiCH₂CH₂CH₃), 0.67 (crude t, J = 8.4 Hz, 8 H, SiCH₂CH₂CH₃), 0.17 [s, 24 H, Si(CH₃)₂].

¹³C NMR: δ = 149.6 (C), 134.5 (CH), 132.9 (C), 127.7 (C), 31.8 (CH₂), 18.6 (CH₂), 18.4 (CH₃), 17.4 (CH₂), -2.9 (CH₃).

MALDI-TOF MS *m*/*z* calcd for [M + Na]⁺: 847.4; found: 847.8.

Anal. Calcd for $C_{48}H_{72}O_4Si_4$: C, 69.84; H, 8.79. Found: C, 69.52; H, 8.78.

Bis(trimethylsilyl)calixarenes

26,28-Dibenzyloxy-25,27-dimethoxy-5,17-bis(trimethylsilyl)calix[4]arene (21)

The crude product was crystallized from CH_2Cl_2–MeOH; white crystals; mp 148–150 $^\circ\text{C}.$

IR (CHCl₃): 3007, 2950, 2920, 2848, 1583, 1496, 1460, 1419, 1373, 1260, 1246, 1112, 1025, 917, 835, 690 cm⁻¹.

¹H NMR (CH₂Cl₂ standard): δ = 7.55–6.61 (m, 20 H), 5.00–3.11 (m, 18 H), two singlets at 0.11 and -0.10 in 4:1 ratio (total integration 18 H).

¹³C NMR: δ (major peaks) = 157.0, 138.1, 133.0, 128.1, 127.7, 127.4, 30.9, -0.9.

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 799.4; found: 800.0.

26,28-Dihydroxy-25,27-dimethoxy-5,17-bis(trimethylsilyl)calix[4]arene (25)

The crude product (in EtOAc) was concentrated to give a white powder; mp 301-302 °C; 301-302 °C (analytical sample).

IR (KBr): 3390, 3012, 2950, 2925, 2899, 2822, 1583, 1460, 1428, 1290, 1245, 1204, 1163, 1113, 912, 835, 774, 754 cm⁻¹.

¹H NMR (CHCl₃ standard): δ = 8.01 (s, 2 H, ArO*H*), 7.18 (s, 4 H, ArH), 6.90 (d, *J* = 7.3 Hz, 4 H, ArH), 6.77 (t, *J* = 7.3 Hz, 2 H, ArH), 4.30 (d, *J* = 13.0 Hz, 4 H, ArCH₂Ar), 4.00 (s, 6 H, OCH₃), 3.43 (d, *J* = 13.0 Hz, ArCH₂Ar), 0.24 [s, 18 H, Si(CH₃)₃].

¹³C NMR: δ = 153.9 (C), 153.1 (C), 133.7 (CH), 133.1 (C), 129.7 (C), 129.0 (CH), 127.6 (C), 125.4 (CH), 63.7 (CH₃), 31.2 (CH₂), -0.76 (CH₃).

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 619.3; found: 620.96.

Anal. Calcd for $C_{36}H_{44}O_4Si_2$: C, 72.44; H, 7.43. Found: C, 72.66; H, 7.28.

Bis(phenyldimethylsilyl)calixarenes

26,28-Dibenzyloxy-25,27-dimethoxy-5,17-bis(phenyldimethyl-silyl)calix[4]arene (22)

The crude product was chromatographed (silica gel, 1.2×21 cm, 4:1 PE–CH₂Cl₂, 7 mL fractions, fractions 5–8); colorless oil; $R_f = 0.4$ (3:2 PE–CH₂Cl₂).

IR (CHCl₃): 3012, 2950, 2919, 1583, 1460, 1424, 1260, 1112, 1015, 835, 810, 702, 671 cm⁻¹.

¹H NMR (CH₂Cl₂ standard): δ = 7.52–6.72 (m, 30 H), 4.93–3.12 (m, 18 H), 0.36 (s, major), 0.11 (s, minor), overlapping with 0.0–0.5 (m, small) (total integration 12 H).

¹³C NMR: δ (major peaks) = 157.4, 139.1, 138.0, 136.3, 135.2, 134.2, 132.7, 131.3, 130.3, 128.7, 128.1, 127.9, 127.6, 122.8, 60.6, 30.9, -2.0.

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 923.4; found: 923.8.

26,28-Dihydroxy-25,27-dimethoxy-5,17-bis(phenyldimethyl-silyl)calix[4]arene (26)

The crude product was recrystallized from 9:1 MeOH–acetone; white crystals; mp 249–251 °C; 255–256 °C (analytical sample).

IR (KBr): 3380, 3063, 3017, 2945, 2925, 2822, 1583, 1470, 1424, 1286, 1250, 1209, 1158, 1117, 1020, 994, 912, 815, 769, 733, 702 cm⁻¹.

¹H NMR (CH₂Cl₂ standard): $\delta = 8.14$ (s, 2 H, ArO*H*), 7.52 (br, 4 H, C₆H₅), 7.38 (br, 6 H, C₆H₅), 7.23 (s, 4 H, ArH), 6.88 (d, *J* = 7.4 Hz, 4 H, ArH), 6.78 (t, *J* = 7.3 Hz, 2 H, ArH), 4.32 (d, *J* = 13.1 Hz, 4 H, ArCH₂Ar), 4.01 (s, 6 H, OCH₃), 3.42 (d, *J* = 13.1 Hz, 4 H, ArCH₂Ar), 0.54 [s, 12 H, Si(CH₃)₂].

¹³C NMR: δ = 154.3 (C), 153.1 (C), 139.3 (C), 134.8 (CH), 134.3 (CH), 133.0 (C), 129.1 (CH), 128.9 (CH), 127.7 (CH), 127.1 (C), 125.5 (CH), 63.7 (CH₃), 31.2 (CH₂), -1.9 (CH₃).

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 743.3; found: 743.6.

Anal. Calcd for $C_{46}H_{48}O_4Si_2$: C, 76.62; H, 6.71. Found: C, 76.13; H, 6.97.

Bis(diphenylmethylsilyl)calixarenes

26,28-Dibenzyloxy-25,27-dimethoxy-5,17-bis(diphenylmethylsilyl)calix[4]arene (23)

The reaction mixture was concentrated on the rotary evaporator, and immediately passed through a silica gel column $(1.2 \times 20 \text{ cm})$ using ca. 150 mL of 4:1 PE–CH₂Cl₂. The solution was concentrated and recrystallized from 9:1 MeOH–CHCl₃; white powder; mp 84–86 °C.

¹H NMR (CH₂Cl₂ standard): δ = 7.6–6.8 (40 H), 5.1–2.8 (18 H), 0.8–0.3 (6 H).

¹³C NMR: δ (major peaks) = 137.8, 136.8, 135.5, 135.3, 135.2, 134.9, 134.5, 134.3, 128.9, 128.8, 128.3, 128.1, 127.6, 127.5, 127.4, 127.3, -2.9.

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 1047.4; found: 1047.8.

Bis(allyldimethylsilyl) and (Propyldimethylsilyl)calixarenes 5,17-Bis(allyldimethylsilyl)-26,28-dibenzyloxy-25,27-dimeth-oxycalix[4]arene (24)

The product was chromatographed (silica gel, 4:1 PE–CH $_2$ Cl $_2$) to give a cloudy oil.

IR (CHCl₃): 3063, 2955, 2925, 1630, 1460, 1419, 1260, 1113, 1025, 989, 917, 902, 825, 671 $\rm cm^{-1}.$

¹H NMR (CH₂Cl₂ standard): δ = 7.54–6.65 (m, 20 H), 5.60 (m, 2 H), 4.95–3.09 (m, 22 H), 1.55 (unresolved doublet, 4 H), two singlets at 0.14 and -0.05 in 4:1 ratio (total integration 12 H) (s, 12 H).

¹³C NMR: δ (major peaks) = 157.3, 138.1, 136.3, 135.0, 134.5, 133.2, 132.4, 131.4, 128.6, 128.2, 127.9, 127.5, 122.8, 113.0, 30.9, 24.1, -3.5.

MALDI-TOF MS: *m*/*z* calcd for [M + Na]⁺: 851.4; found: 851.7.

26,28-Dihydroxy-25,27-dimethoxy-5,17-bis(propyldimethyl-silyl)calix[4]arene (27)

The crude product was recrystallized from 9:1 MeOH–CH₂Cl₂; white powder; mp 239–241 $^{\circ}$ C.

IR (KBr): 3391, 3012, 2950, 2919, 2863, 1588, 1573, 1465, 1429, 1286, 1250, 1199, 1158, 1117, 994, 912, 820, 769 cm⁻¹.

¹H NMR (CHCl₃ standard): $\delta = 8.01$ (s, 2 H, ArO*H*), 7.17 (s, 4 H, ArH), 6.90 (d, J = 7.5 Hz, 4 H, ArH), 6.76 (m, 2 H, ArH), 4.30 (d, J = 13.0 Hz, 4 H, ArCH₂Ar), 4.00 (s, 6 H, OCH₃), 3.42 (d, J = 13.1 Hz, ArCH₂Ar), 1.36 (m, 4 H, SiCH₂CH₂CH₃), 0.96 (t, J = 7.2 Hz, 6 H, SiCH₂CH₂CH₃), 0.71 (crude t, J = 8.5 Hz, 4 H, SiCH₂CH₂CH₃), 0.23 [s, 12 H, Si(CH₃)₂].

¹³C NMR: δ = 153.9 (C), 153.1 (C), 134.0 (CH), 133.0 (C), 129.0 (CH), 128.9 (C), 127.5 (C), 125.4 (CH), 63.7 (CH₃), 31.2 (CH₂), 18.8 (CH₂), 18.4 (CH₃), 17.5 (CH₂), -2.7 (CH₃).

MALDI-TOF MS: m/z calcd for major component [M + Na]⁺: 675.3; found: 675.7; m/z calcd for the monsilylated minor component [M + Na]⁺: 575.3; found: 575.5.

Acknowledgment

This material is based upon work supported in part by the U.S. Army Research Office under contract/grant number DAAD13-98-C-0042. We are very grateful to the W. M. Keck Foundation for financial support. NMR spectra were obtained on a spectrometer

purchased in part with funds from NSF (CHE-0091603). We thank Dr. Harold Banks for helpful discussions.

References

- (a) Gutsche, C. D. Calixarenes, In Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: London, **1989**. (b) Böhmer, V. Angew. Chem., Int. Ed. Engl. **1995**, 34, 713. (c) Gutsche, C. D. Calixarenes Revisited, In Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: London, **1998**. (d) Calixarenes in Action; Mandolini, L.; Ungaro, R., Eds.; Imperial College Press: London, **2000**. (e) Calixarenes 2001; Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht, **2001**.
- (2) (a) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371. (b) Chuit, C.; Corriu, R. J. P.; Reye, C. In Chemistry of Hypervalent Compounds; Akiba, K., Ed.; Wiley-VCH: New York, 1999, 81–146. (c) Kira, M.; Zhang, L. C. In Chemistry of Hypervalent Compounds; Akiba, K., Ed.; Wiley-VCH: New York, 1999, 147–169.
- (3) Recognition of anions: (a) Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486. (b) Matthews, S. E.; Beer, P. D. In Calixarenes 2001; Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J., Eds.; Kluwer Academic Publishers: Dordrecht, 2001, 421–439.
- (4) Blanda, M. T.; Frels, J.; Lewicki, J. Supramol. Chem. 1998, 9, 255.
- (5) (a) Hudrlik, P. F.; Hudrlik, A. M.; Arasho, W. D.; Zhang, L.; Cho, J. *Abstracts of Papers*, 60th Southwest Regional Meeting of the American Chemical Society, Fort Worth TX, Sept 29–Oct 5, 2004; American Chemical Society: Washington DC, **2004**, Abstract 301. (b) Hudrlik, P. F.; Arasho, W. D.; Hudrlik, A. M. *J. Org. Chem.* **2007**, *72*, 8107. (c) Hudrlik, P. F.; Hudrlik, A. M.; Zhang, L.; Arasho, W. D.; Cho, J. *J. Org. Chem.* **2007**, *72*, 7858.
- (6) Billo, F.; Musau, R. M.; Whiting, A. *ARKIVOC* **2006**, *(x)*, 199.
- (7) For examples, see: (a) Shang, S.; Khasnis, D. V.; Burton, J. M.; Santini, C. J.; Fan, M.; Small, A. C.; Lattman, M. Organometallics 1994, 13, 5157. (b) Neda, I.; Plinta, H.-J.; Sonnenburg, R.; Fischer, A.; Jones, P. G.; Schmutzler, R. Chem. Ber. 1995, 128, 267. (c) Fan, M.; Zhang, H.; Lattman, M. Organometallics 1996, 15, 5216. (d) Martz, J.; Graf, E.; Hosseini, M. W.; De Cian, A.; Fischer, J. J. Mater. Chem. 1998, 8, 2331. (e) Fan, M.; Shevchenko, I. V.; Voorhies, R. H.; Eckert, S. F.; Zhang, H.; Lattman, M. Inorg. Chem. 2000, 39, 4704. (f) Anwander, R.; Eppinger, J.; Nagl, I.; Scherer, W.; Tafipolsky, M.; Sirsch, P. Inorg. Chem. 2000, 39, 4713. (g) Sood, P.; Zhang, H.; Lattman, M. Organometallics 2002, 21, 4442.
- (8) (a) Wright, A. J. Organomet. Chem. 1978, 145, 307.
 (b) Olah, G. A.; Bach, T.; Prakash, G. K. S. J. Org. Chem. 1989, 54, 3770. (c) Keay, B. A. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, Vol. 4; Fleming, I., Ed.; Georg Thieme Verlag: Stuttgart, 2001, 685–712.
- (9) Ihm, H.; Paek, K. Bull. Korean Chem. Soc. 1995, 16, 71.
- (10) (a) Gutsche, C. D.; Iqbal, M. Org. Synth., Coll. Vol. 8;
 Wiley: New York, **1993**, 75. (b) Percec, V.; Bera, T. K.; De B, B.; Sanai, Y.; Smith, J.; Holerca, M. N.; Barboiu, B.; Grubbs, R. B.; Fréchet, J. M. J. J. Org. Chem. **2001**, 66, 2104.
- (11) Arduini, A.; Casnati, A. In *Macrocycle Synthesis: A Practical Approach*; Parker, D., Ed.; Oxford University Press: Oxford, **1996**, 145–173.

Synthesis 2008, No. 18, 2968–2976 © Thieme Stuttgart · New York

- (12) Gutsche, C. D.; Lin, L.-G. Tetrahedron 1986, 42, 1633.
- (13) Gutsche, C. D.; Dhawan, B.; Levine, J. A.; No, K. H.; Bauer, L. J. *Tetrahedron* **1983**, *39*, 409.
- (14) (a) Groenen, L. C.; Ruël, B. H. M.; Casnati, A.; Timmerman, P.; Verboom, W.; Harkema, S.; Pochini, A.; Ungaro, R.; Reinhoudt, D. N. *Tetrahedron Lett.* **1991**, *32*, 2675.
 (b) Gutsche, C. D.; Reddy, P. A. J. Org. Chem. **1991**, *56*, 4783.
- (15) Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955.
- (16) Larsen, M.; Jørgensen, M. J. Org. Chem. 1996, 61, 6651.
- (17) Gutsche, C. D.; Pagoria, P. F. J. Org. Chem. 1985, 50, 5795.
- (18) Conner, M.; Janout, V.; Regen, S. L. J. Org. Chem. **1992**, 57, 3744.
- (19) van Loon, J.-D.; Arduini, A.; Coppi, L.; Verboom, W.;
 Pochini, A.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N. *J. Org. Chem.* **1990**, *55*, 5639.
- (20) Shimizu, S.; Moriyama, A.; Kito, K.; Sasaki, Y. J. Org. Chem. 2003, 68, 2187.
- (21) (a) For a recent example of halogen-metal exchange on a calixarene, see: Gagnon, J.; Vézina, M.; Drouin, M.; Harvey, P. D. *Can. J. Chem.* 2001, *79*, 1439. (b) See also references 9, 16, and 17.
- (22) (a) Arduini, A.; Fabbi, M.; Mantovani, M.; Mirone, L.; Pochini, A.; Secchi, A.; Ungaro, R. *J. Org. Chem.* **1995**, *60*, 1454. (b) Scheerder, J.; Vreekamp, R. H.; Engbersen, J. F. J.; Verboom, W.; van Duynhoven, J. P. M.; Reinhoudt, D. N. *J. Org. Chem.* **1996**, *61*, 3476.
- (23) (a) For many years we have used mixtures of Me₃SiCl and Et₃N to trap enolates to prepare silyl enol ethers: Hudrlik, P. F. *Ph.D. Thesis*; Columbia University: New York/NY, **1968**, 70. (b) See also: Hudrlik, P. F. *Organosilicon Compounds in Organic Synthesis*, In *New Applications of Organometallic Reagents in Organic Synthesis*; Seyferth, D., Ed.; Elsevier: Amsterdam, **1976**, 127–159.
- (24) As expected, the excess *t*-BuLi appeared to have decomposed by the time of workup. For information on the stability of various alkyllithiums in common solvents, see: Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon: Amsterdam, 2002, 5–7.
- (25) The cone assignments were confirmed by the appearance of ArCH₂Ar in the ¹H NMR spectra^{13,26a} (one pair of doublets at $\delta = 4.0$ –4.5 and 2.8–3.6; J = 13–14 Hz), and the position of the ArCH₂Ar ($\delta = 31$ –32) in the ¹³C NMR spectra.²⁶
- (26) (a) Ungaro, R. In *Calixarenes in Action*; Mandolini, L.;
 Ungaro, R., Eds.; Imperial College Press: London, 2000, 1–10. (b) Jaime, C.; de Mendoza, J.; Prados, P.; Nieto, P. M.; Sánchez, C. J. Org. Chem. 1991, 56, 3372.
- (27) (a) Timko, J. M.; Moore, S. S.; Walba, D. M.; Hiberty, P. C.; Cram, D. J. *J. Am. Chem. Soc.* **1977**, *99*, 4207. (b) Ayling, A. J.; Broderick, S.; Clare, J. P.; Davis, A. P.; Pérez-Payán, M. N.; Lahtinen, M.; Nissinen, M. J.; Rissanen, K. *Chem. Eur. J.* **2002**, *8*, 2197.
- (28) (a) Kelly, T. R.; Kim, M. H. J. Am. Chem. Soc. 1994, 116, 7072. (b) Dicker, I. B.; Cohen, G. M.; Farnham, W. B.; Hertler, W. R.; Laganis, E. D.; Sogah, D. Y. Macromolecules 1990, 23, 4034.
- (29) (a) The apparent pK_a (first proton) of **1** in THF was found to be 4.11, while that of the tetrakis(*tert*-butyl) analogue of **25**

to be 12.2: Araki, K.; Iwamoto, K.; Shinkai, S.; Matsuda, T. *Bull. Chem. Soc. Jpn.* **1990**, *63*, 3480. (b) See also: Cunningham, I. D.; Woolfall, M. *J. Org. Chem.* **2005**, *70*, 9248.

- (30) (a) Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Chem. Soc., Chem. Commun. 1979, 1005. (b) Brouwer, E. B.; Enright, G. D.; Ratcliffe, C. I.; Ripmeester, J. A. Supramol. Chem. 1996, 7, 79; Chem. Abstr. 1997, 126, 317157. (c) Arduini, A.; Caciuffo, R.; Geremia, S.; Ferrero, C.; Ugozzoli, F.; Zontone, F. Supramol. Chem. 1998, 10, 125; Chem. Abstr. 1999, 130, 146515. (d) Brouwer, E. B.; Ripmeester, J. A. Adv. Supramol. Chem. 1999, 5, 121. (e) Enright, G. D.; Brouwer, E. B.; Udachin, K. A.; Ratcliffe, C. I.; Ripmeester, J. A. Acta Cryst. 2002, B58, 1032. (f) Atwood, J. L.; Barbour, L. J.; Jerga, A.; Schottel, B. L. Science 2002, 298, 1000.
- (31) (a) Gutsche, C. D. *Calixarenes Revisited*, In *Monographs in Supramolecular Chemistry*; Stoddart, J. F., Ed.; The Royal Society of Chemistry: London, **1998**, 169. (b) Brouwer, E. B.; Ripmeester, J. A. *Adv. Supramol. Chem.* **1999**, *5*, 128.
- (32) Gardiner, M. G.; Koutsantonis, G. A.; Lawrence, S. M.; Nichols, P. J.; Raston, C. L. Chem. Commun. 1996, 2035.
- (33) For examples, see: refs 30d, 32, and: (a) Olmstead, M. M.; Sigel, G.; Hope, H.; Xu, X.; Power, P. P. J. Am. Chem. Soc. 1985, 107, 8087. (b) Bott, S. G.; Coleman, A. W.; Atwood, J. L. J. Am. Chem. Soc. 1986, 108, 1709. (c) Giannini, L.; Caselli, A.; Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C.; Re, N.; Sgamellotti, A. J. Am. Chem. Soc. 1997, 119, 9709. (d) Zanotti-Gerosa, A.; Solari, E.; Giannini, L.; Floriani, C.; Re, N.; Chiesi-Villa, A.; Rizzoli, C. Inorg. Chim. Acta 1998, 270, 298. (e) Guillemot, G.; Solari, E.; Floriani, C.; Rizzoli, C. Organometallics 2001, 20, 607.
- (34) Andreetti, G. D.; Pochini, A.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1983, 1773.
- (35) Ohtsuchi, M.; Suzuki, K.; Armah, A. E.; Yamagata, Y.; Fujii, S.; Tomita, K.; Asfari, Z.; Vicens, J. Acta Crystallogr. 1993, C49, 639.
- (36) Crystallographic data (excluding structure factors) for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 658532. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.UK).
- (37) (a) Sakurai, H.; Ebata, K.; Kabuto, C.; Sekiguchi, A. J. Am. Chem. Soc. 1990, 112, 1799. (b) Yamakawa, T.; Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Shudo, K. J. Med. Chem. 1990, 33, 1430. (c) Rim, C.; Son, D. Y. Org. Lett. 2003, 5, 3443. (d) Beckmann, J.; Duthie, A.; Reeske, G.; Schürmann, M. Organometallics 2004, 23, 4630.
- (38) (a) Kim, C.; Jung, I. J. Organomet. Chem. 2000, 599, 208.
 (b) Meijboom, R.; Hutton, A. T.; Moss, J. R. Organometallics 2003, 22, 1811. (c) Itami, Y.; Marciniec, B.; Majchrzak, M.; Kubicki, M. Organometallics 2003, 22, 1835. (d) See also: Rim, C.; Son, D. Y. Macromolecules 2003, 36, 5580.
- (39) Moores, A.; Defieber, C.; Mézailles, N.; Maigrot, N.; Ricard, L.; Le Floch, P. New J. Chem. 2003, 27, 994.