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ABSTRACT
Treatment of substituted 1,3,5-trithianes with S2Cl2 and Na2S under
mild conditions provides 3,5-disubstituted 1,2,4-trithiolanes, as mix-
ture of diastereoisomers.
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1. Introduction

A large number of sulfurated moieties are present in many organic compounds, which
possess a variety of different properties. Together with their wide use in organic synthesis,
sulfurated molecules find application in different fields, as pharmaceutical [1–5], agro-
chemical [6,7], food [8–10], materials and polymer chemistry [11,12]. Despite the high
variety of linear and cyclic sulfurated structures, the methods for their synthesis are often
limited by the availability of sulfur reagents and by the harsh conditions. Additionally,
various reaction steps and the use of expensive, or hardly to access, reagents are often
required.

During our investigation on the synthesis of chalcogen-containing derivatives [13–19]
we became interested in the study of new convenient methods to prepare polysulfurated
heterocycles. Five membered systems, such as 1,2,4-trithiolanes, as well as six and seven
membered derivatives, namely tetrathianes and trithiepanes, represent interesting com-
pounds both for their organoleptic properties and for their use as precursors of other
polysulfurated compounds. In particular, as has been very recently reported by Mloston
and coworkers [20], trithiolanes and their oxides take part in a variety of organic and
organometallic transformations. Furthermore, several trithiolanes are present in nature,
and are responsible of the typical flavorings and fragrances of various foods andplants, such
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as garlic, onion, mushrooms, meat [21]. Some of them, as 1- and 4-oxo-1,2,4-trithiolanes,
isolated together with other cyclic polysulfides from the marine alga Chondria californica,
also exhibited antibiotic activity [22].

Trithiolanes, therefore, represent an interesting class of compounds and the develop-
ment of alternative and convenient methods for their preparation is highly desirable. To
the best of our knowledge, a rather limited number of synthetic protocols are reported,
through a multistep reaction by chlorination of disulfides, followed by treatment with
sodium sulfide, where the final cyclization to 1,2,4-trithiolanes has low yields, also because
of the formation of polysulfides [23]. Treatment of ketones or aldehydes with hydrogen sul-
fide led to bis(1-mercaptoalkyl)sulfides, which can be oxidized to 3,5-disubstituted-1,2,4-
trithiolanes [24,25]. Reaction of aldehydes with (NH4)2S [26,27] or treatment with H2S in
the presence of ammonia [28], or α,ω-diamines [29] allowed the isolation of substituted
1,3,5-dithiazines as precursors of trithiolanes after suitable elaboration. Thioketones aswell
behaved as convenient reagents to prepare substituted trithiolanes in the presence of oxi-
dizing agents [30,31]. In particular, [3+ 2] cycloadditions of aryl, heteraryl and cycloalkyl
thioketones with organic azides represent an efficient way to provide sterically crowded
unsymmetrical and symmetrical disubstituted-spiro- or dispiro-1,2,4-trithiolanes, likely
via a thiocarbonyl-S-sulfide intermediate [32–34]. However, these methods frequently
lead to the target heterocycles in complex mixtures, with a variety of sulfurated com-
pounds and often in rather low yields. In fact, some synthetic procedures provide 1,2,4-
trithiolanes asminor products together with other thiaheterocycles, as tetrathianes [26,27],
penthathiepanes [26–29], thiadiazepines [29], or in some cases trithiolanes are formed as
side products in the preparation of pentathianes [31]. On the other hand, slightly bet-
ter yields were observed when 3,3,5,5-tetrasubstituted trithiolanes were prepared through
thionation of carbonyl derivatives [24,25,30,32].

In this context, we became interested in developing an alternative synthetic approach
to 1,2,4-trithiolanes. During the course of our studies on the thionation of car-
bonyl compounds [35–37] we found that a direct conversion of aldehydes, ketones
and acylsilanes to the corresponding thiocarbonyl derivatives was accomplished with
bis(trimethylsilyl)sulfide (HMDST) under Lewis acid catalytic conditions. However, for
their well-known tendency to oligomerize, thioaldehydes were in situ trapped with 1,3-
dienes to afford the Diels–Alder cycloadducts. On the other hand, when the reaction
was carried out without any trapping agent, the corresponding trimers, namely 2,4,6-
trisubstituted 1,3,5-trithianes, were isolated in high yields. We then envisaged that these
six-membered thia-heterocycles could be regarded as potential starting compounds to pre-
pare trithiolanes. We report in this communication an alternative synthetic approach to
this class of pentatomic sulfurated molecules under mild conditions.

2. Results and discussion

Following the retrosynthetic approach, trithiolanes might be prepared from the parent
1,1’-bis(mercapto)-dialkyl sulfides, which could be accessible from α,α’-(dichloro)dialkyl
sulfides after chlorination of the appropriate dialkyl sulfides (Scheme 1).

Several drawbacks are nevertheless linked to the use of the most common chlorinated
reagents. In fact, the reaction of dialkylsulfides with N-chlorosuccinimide (NCS) leads
primarily to mono-chloro sulfides (RCH(Cl)SCH2R), instead of the desired α,α’-dichloro
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Scheme 1. Retrosynthetic approach to 1,2,4-trithiolanes.
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d ca. 30% of sulfurated side productsb

e ca. 10% of sulfurated side products
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3 CH2Cl2 rt 120 < 5b

Scheme 2. Optimization of the chlorination reaction to synthesize dichlorosulfide 3a.

sulfides [38,39]. Indeed, dichloro sulfides were prepared through multistep reactions from
α-chloro vinylsulfides/HCl [40], or by reaction of ethanalwithH2S/HCl [41]. Time agowas
likewise reported the synthesis of α-dihalogeno sulfides upon treatment of 1,3,5-trithianes
with bromine [42]. In this connection, searching for a convenient synthetic route to trithi-
olanes, our attention was focused to the behavior of 1,3,5-trithianes, prepared following
our reported procedure [35–37] from aldehydes and HMDST under catalytic conditions
(CoCl2.6H2O or TfOTMS), in the presence of S2Cl2, which is commonly used as powerful
sulfurating agent in the synthesis of heterocycles, and only rarely as chlorinating reagent
[43,44]. In order to search for chlorination conditions, a first screening was performed
investigating the reaction of trithiane 1a (R = Me) with S2Cl2 2 under different conditions
(Scheme 2).

We found that when the reaction was carried out in THF or CH2Cl2, at room tem-
perature or by heating, the desired α,α’-dichloro sulfide 3a was not formed, or it was
observed in traces amount (Scheme 2, entries 1–4). When trithiane 1awas heated in water
with S2Cl2, polysulfurated compounds were obtained as predominant products, however
3a was obtained, albeit in low yield (Scheme 2, entry 5). Prompted by this result, 1a was
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Scheme 4. Synthesis of 3,5-disubstituted 1,2,4-trithiolanes 5a–d. a5a was isolated in 22% yield per-
forming the reaction at r.t. or in the presence of TBAB.

reactedwith 2 at lower temperature, leading to traces of the desiredα,α’-dichlorosulfide 3a,
whereas trithiane and polysulfides were still present as main products (Scheme 2, entry 6).
An interesting result was indeed achieved performing the reaction at room temperature in
neat S2Cl2: a better yield of 3awas achieved, even if polysulfurated products were observed
together with unreacted trithiane (Scheme 2, entry 7). Finally, when 1a was heated in neat
sulfur monochloride, we were pleased to observe the formation of the dichloro deriva-
tive 3a as major compound, along with a reduced amount of polysulfides (Scheme 2,
entry 8).

Other substituted trithianes 1b–d were reacted under these conditions, providing α,α’-
dichlorosulfides 3b–d bearing aliphatic and aromatic groups (Scheme 3).

Subsequently, 3a was reacted in DMF at ambient temperature with hydrate sodium sul-
fide (Scheme 4), which is used in the reaction with halides to form symmetrical disulfides
[45], and indeed the trithiolane 5a was isolated, even if in moderate yield (22%), together
with other sulfurated products, amongst which the 1,2,3,5-tetrathiane 6a was the major
compound. Under these conditions the parent 1,1’-bis(mercapto)-dialkyl sulfide interme-
diate 4 was not isolated, being quickly oxidized to provide a direct access to 5a from 3a.
In order to increase the yield of 5a the reaction was carried out in the presence of TBAB
(tetrabutylammonium bromide) as phase transfer catalyst, but no considerable increase in
yield was observed. On the contrary, when the reaction was performed at lower tempera-
ture (−10°C) the trithiolane 5awas achieved in higher yield (67%) as equimolarmixture of
stereoisomers, and tetrathiane 6a was observed as minor compound (<5%) (Scheme 4).
The reaction was also efficient with differently substituted trithianes, leading to variously
3,5-disubstituted 1,2,4-trithiolanes 5b–d under mild conditions (Scheme 4).

A better result was achieved when performing a one-pot reaction, to avoid any manip-
ulation of the dichlorosulfide intermediate 3a. After the formation of 3a as previously
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Scheme 5. Direct synthesis of 3,5-dialkyl 1,2,4-trithiolane 5a–c from 1a–c.

described, the mixture was cooled and diluted with DMF. After that, sodium sulfide was in
situ added. Under these conditions the desired trithiolane 5a was isolated as almost pure
compound in 73% yield (cis:trans 55:45) (Scheme 5).

Likewise, the reaction can be extended to synthesize trithiolanes 5b,c under similar
conditions, as a 1:1 mixture of stereoisomers (Scheme 5).

Further studies on the application of this synthetic approach to differently substituted
1,3,5-trithianes, and to the selenated analogues (1,3,5-triselenanes), are currently under
investigation in our laboratories, in order to study their characteristics and properties as
well as a possible reaction mechanism.

3. Conclusion

We have found an alternative and simple method to prepare 3,5-disubstituted 1,2,4-
trithiolanes undermild conditions by reaction of 1,3,5-trithianeswith sulfurmonochloride
and sodium sulfide. Trithiolanes can also be prepared in one-pot reaction, by adding
sodium sulfide to the reaction medium, without the isolation of the dichloro sulfide
intermediate.

4. Experimental

4.1. General

All reagents and solvents were purchased from various commercial sources and used
without further purification. Preparative TLC was performed by using silica gel plates
(60 F-254). NMR spectra were recorded in CDCl3 on a Varian Gemini 200 spectrome-
ter operating at 200MHz for 1H and 50MHz for 13C. Chemical shifts (δ) are reported
in parts per million (ppm) measured relative to the solvent peak (7.26 ppm for 1H,
77.0 ppm for 13C). Data are reported as follows: chemical shift, multiplicity (s = singlet,
d = doublet, t = triplet, q = quartet, m = multiplet, b = broad), integration and cou-
pling constants. Mass spectra were recorded using ionization potential (EI, 70 eV) and
electrospray ionization (ESI).

4.2. General procedure A

4.2.1. Synthesis of 2,4,6-trisubstituted 1,3,5-trithianes 1 [32,33]
A solution of aldehyde (1mmol) and bis(trimethylsilyl)sulfide (2mmol) in CH3CN (1mL)
was treated under inert atmosphere with a solution of CoCl2.6H2O (0.2mmol) in 1.5mL
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of CH3CN (or with TfOTMS, 0.2mmol), and stirred at room temperature for 4 h. The
reactionmixture was quenched with water (1mL) and extracted with diethyl ether (2mL).
The organic layer is separated, washed with water and brine, dried over Na2SO4 and fil-
tered. Evaporation of the solvent afforded the crude product, which was purified on silica
gel (petroleum ether/diethyl ether), leading to a mixture of two stereoisomers.

2,4,6-Trimethyl-1,3,5-trithiane 1a: Yield 73% (petroleum ether/diethyl ether 9:1). Major
isomer (>95:5): 1H NMR (200MHz, CDCl3): δ (ppm) 4.11 (q, 3H, J = 7.4Hz), 1.59 (d,
9H, J = 7.4Hz). 13C NMR (50MHz, CDCl3): δ (ppm) 40.1, 20.4. MS (m/z %): 180 (M+,
41), 120 (27), 116 (31), 60 (100), 59 (44), 55 (48).

2,4,6-Triethyl-1,3,5-trithiane 1b: Yield 75% (petroleum ether/diethyl ether 9:1). Major
isomer (>95:5): 1H NMR (200MHz, CDCl3): δ (ppm) 4.07 (t, 3H, J = 6.9Hz), 1.96–1.85
(m, 6H), 1.06 (t, 9H, J = 7.2Hz). 13C NMR (50MHz, CDCl3): δ (ppm) 43.1, 27.4, 10.6.
MS (m/z %): 222 (M+, 15), 106 (21), 74 (100).

2,4,6-Triisopropyl-1,3,5-trithiane 1c: Yield 65%. Major isomer (>95:5): 1H NMR
(200MHz, CDCl3): δ (ppm) 4.38 (d, 3H, J = 6.8Hz), 2.31–2.19 (m, 3H), 1.17 (bd, 18H,
J = 7.3Hz). 13C NMR (50MHz, CDCl3): δ (ppm) 51.2, 29.8, 18.6. MS (m/z %): 264 (M+,
15), 144 (21), 88 (100), 87 (92).

2,4,6-Triphenyl-1,3,5-trithiane 1d: Yield 77%. Major isomer (>95:5): 1H NMR
(200MHz, CDCl3): δ (ppm) 7.69–7.15 (m, 15H), 5.46 (s, 3H). 13CNMR (50MHz, CDCl3):
δ (ppm) 137.9, 128.0, 127.5, 126.2, 46.1. MS (m/z %): 366 (M+, 34), 212 (22), 180 (44), 122
(78), 121 (100).

4.3. General procedure B

4.3.1. Synthesis of α,α’-dichloro sulfides 3
Trithiane 1 (1mmol) was slowly added under nitrogen with sulfur monochloride
(1.1mmol) and heated at 100°C for 60min. After cooling, the solution was filtered and
evaporated under reduced pressure to afford sulfides 3, which were used without further
purification.

Bis(1-chloroethyl)sulfane 3a: Yield 65%. 1H NMR (200MHz, CDCl3): δ (ppm) 5.46 (q,
2H, J = 6.6Hz), 1.86 (d, 6H, J = 6.6Hz). 13C NMR (50MHz, CDCl3): δ (ppm) 56.4, 22.3.
MS (m/z %): 162 (M++4, 1.4), 160 (M++2, 8.9), 158 (M+,14), 125 (23), 123 (65), 95 (10),
65 (14), 63 (49), 61 (100), 60 (48), 59 (40).

Bis(1-chloropropyl)sulfane 3b: Yield 53%. 1H NMR (200MHz, CDCl3): δ (ppm) 5.18 (t,
2H, J = 6.9Hz), 2.25–2.01 (m, 4H), 1.04 (t, 6H, J = 7.0Hz). 13C NMR (50MHz, CDCl3):
δ (ppm) 59.6, 30.3, 9.8. MS (m/z %): 190 (M++4, 1.6), 188 (M++2, 9.2), 186 (M+,18), 171
(20), 153 (25), 151 (65), 109 (16), 77 (52), 75 (96), 74 (100).

Bis(1-chloro-2-methylpropyl)sulfane 3c: Yield 49%. 1H NMR (200MHz, CDCl3): δ

(ppm) 4.98 (d, 2H, J = 7.1Hz), 2.53–2.24 (m, 2H), 1.11 (bd, 12H, J = 7.3Hz). 13C NMR
(50MHz, CDCl3): δ (ppm) 60.4, 33.9, 16.3, 16.2. MS (m/z %): 218 (M++4, 0.9), 216
(M++2, 10), 214 (M+, 14), 199 (26), 181 (23), 179 (59), 123 (13), 91 (58), 89 (83), 88
(100).
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Bis(chloro(phenyl)methyl)sulfane 3d: Yield 48%. 1H NMR (200MHz, CDCl3): δ (ppm)
7.29–7.10 (m, 10H), 5.83 (s, 2H). 13C NMR (50MHz, CDCl3): δ (ppm) 141.0, 132.5, 131.9,
128.0, 61.6. MS (m/z %): 286 (M++4, 4.6), 284 (M++2, 10), 282 (M+, 45), 249 (26), 247
(72), 205 (48), 157 (26), 125 (60), 122 (100).

4.4. General procedure C

4.4.1. Synthesis of 3,5-disubstituted 1,2,4-trithiolanes 5
(a) A solution of dichloro sulfide (1mmol) in DMF (1.5mL) was cooled at −10°C

and then slowly treated with hydrate sodium sulfide (2mmol). The reaction was
stirred overnight. After extraction with hexane, the mixture was washed with water
(3× 1mL) and dried over Na2SO4. Evaporation of the solvent afforded the trithiolane
(mixture of cis/trans stereoisomers ∼1:1), which was purified on TLC (petroleum
ether). The stereochemistry of trithiolanes (cis/trans) was assigned by comparison
with literature reported data [23].

(b) One-pot synthesis: Sulfur monochloride (1.1mmol) was slowly added to trithiane 1
(1mmol) and stirred for 60min at 100°C. The dark yellow oil was cooled to room
temperature and diluted with DMF (2mL). Sodium sulfide (2mmol) was then added
portionwise at−10°C with stirring (10 h). After addition of dichlorometane, the mix-
ture was washedwithwater (3× 1mL) and dried overNa2SO4. Filtration, evaporation
of the solvent and purification on silica gel afforded the product 5 as cis/trans isomers
(ca. 1:1).

3,5-Dimethyl-1,2,4-trithiolane 5a [23]: Yield 67%. Diastereoisomer cis: 1H NMR
(200MHz, CDCl3): δ (ppm) 5.04 (q, 2H, J = 6.6Hz), 1.65 (d, 6H, J = 6.6Hz). 13C NMR
(50MHz, CDCl3): δ (ppm) 55.7, 21.4. Diastereoisomer trans: 1HNMR (200MHz, CDCl3):
δ (ppm) 4.86 (q, 2H, J = 6.6Hz), 1.77 (d, 6H, J = 6.6Hz). 13C NMR (50MHz, CDCl3): δ
(ppm) 56.9, 22.3. MS (m/z %): 154 (9), 152 (M+, 76), 92 (58), 88 (48), 64 (61), 60 (55), 59
(100).

3,5-Diethyl-1,2,4-trithiolane 5b [23]: Yield 54%. Diastereoisomer cis: 1H NMR
(200MHz, CDCl3): δ (ppm) 4.71 (t, 2H, J = 6.9Hz), 1.98–2.17 (m, 4H), 1.19 (t, 6H,
J = 7.2Hz). 13C NMR (50MHz, CDCl3): δ (ppm) 63.5, 30.3, 11.2. Diastereoisomer trans:
1H NMR (200MHz, CDCl3): δ (ppm) 4.65 (t, 2H, J = 6.9Hz), 1.98–2.17 (m, 4H), 1.27 (d,
6H, J = 7.1Hz). MS (m/z %): 182 (11), 180 (M+, 65), 116 (29), 74 (100), 73 (57).

3,5-Diisopropyl-1,2,4-trithiolane 5c [23]: Yield 60%. Diastereoisomer cis: 1H NMR
(200MHz, CDCl3): δ (ppm) 4.66 (d, 2H, J = 7.3Hz), 2.12–2.34 (m, 2H), 1.21 (bd, 6H,
J = 6.6Hz), 1.18 (bd, 6H, J = 6.9Hz). 13C NMR (50MHz, CDCl3): δ (ppm) 65.7, 29.6,
18.5, 18.2. Diastereoisomer trans: 1H NMR (200MHz, CDCl3): δ (ppm) 4.57 (d, 2H,
J = 7.5Hz), 2.12–2.34 (m, 2H), 1.09–1.17 (m, 6H). MS (m/z %): 208 (M+, 42), 193 (10),
88 (97), 87 (22), 55 (100).

3,5-Diphenyl-1,2,4-trithiolane 5d [46]: Yield 53%. Diastereoisomer A: 1H NMR
(200MHz, CDCl3): δ (ppm) 6.19 (s, 2H), 7.35–7.56 (m, 10H). 13CNMR (50MHz, CDCl3):
δ (ppm) 139.2, 129.1, 128.8, 126.9, 67.3. Diastereoisomer B: 1H NMR (200MHz, CDCl3):
δ (ppm) 6.15 (s, 2H), 7.35–7.56 (m, 10H). MS (m/z %): 276 (M+, 100), 212 (55), 152 (52),
91 (22), 122 (78), 121 (84).
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