Journal of Organometallic Chemistry 696 (2011) 3162-3168

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Reactions of benzyldiphenylphosphine with Pd(II) sources on silica gel

Valeria A. Stepanova, Layne M. Egan¹, Lothar Stahl, Irina P. Smoliakova*

Department of Chemistry, 151 Cornell Street, University of North Dakota, Grand Forks, ND 58202-9024, USA

ARTICLE INFO

Article history: Received 27 April 2011 Received in revised form 17 June 2011 Accepted 22 June 2011

Keywords: Cyclopalladation Pd(II) complexes of phosphines Phosphapalladacycles C–H bond activation on silica gel

ABSTRACT

Depending on the conditions used, reactions of benzyldiphenylphosphine (HL¹) with Na₂PdCl₄ on silica gel or with Pd(OAc)₂ on the same absorbent followed by treatment with LiCl provide one or more of the four compounds: the cyclopalladated binuclear complex $[(\mu$ -Cl)PdL¹]₂ (1), cis and trans isomers of the coordination complex PdCl₂(HL¹)₂ (3), the binuclear coordination complex $[(\mu$ -Cl)PdCl(HL¹)₂ (4), and compound PdCl₂(HL¹)₃ (5). The 56% yield of complex 1 achieved using the reaction with Na₂PdCl₄ and NaOAc on SiO₂ is higher than that reported for the direct cyclopalladation of PBnPh₂ with Pd(OAc)₂ in AcOH. X-ray diffraction studies of the cyclopalladated dimer 1 and the coordination complex *cis*-3 are reported.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Due to growing environmental concerns, chemical synthesis using either no solvents or their reduced amount is an attractive and important trend [1]. Recently, mechanochemical approach has been recognized as a valuable method to perform reactions, including preparation of metal complexes, without solvents [2,3]. Microwaveassisted transformations using neat reactants are another way to lower consumption of chemicals [4]. One more approach is to perform reactions on silica gel and similar sorbents [5].

Recently, we reported a general method for cyclopalladation of *N*-containing preligands on SiO₂ with the use of solvents on the purification step only [6]. This method allowed preparation of the corresponding *C*,*N*-palladacycles in the yields comparable or even exceeding those reported for reactions performed under conventional conditions using solvents. Previously, Tune and Werner reported the conversion of $(\eta^5-C_5H_5)PdIP(O-ortho-Tol)_3$ to the cyclopalladated derivative $(\eta^5-C_5H_5)PdIP(OC_6H_3-ortho-Me)(O-ortho-Tol)_2]$ during chromatography on SiO₂ [7]. To the best of our knowledge, there have been no other studies related to the use of *P*-containing preligands in C–H bond activation on this or similar absorbents.

Pursuing our interest in chemistry of cyclopalladated and Pd(II) coordination complexes, we examined reactions of commercially available benzyldiphenylphosphine, PBnPh₂ (HL¹), with Pd(OAc)₂ and Na₂PdCl₄ on SiO₂. Tertiary monodentate phosphines are

capable of reacting with Pd(II) sources to give a variety of compounds. In particular, PBnPh₂ can form at least five Pd(II) complexes, **1–5**; four of them, **1–4**, have been reported. Two of the known compounds, **1** [8–12] and **2** [12], contain a five-membered palladacycle with a C–Pd bond, while complexes **3** [13–19] and **4** [9,20] have only dative P–Pd bonds (Chart 1). In general, preparation and use of cyclopalladated [21,22] and Pd(II) coordination complexes of phosphines have been subjects of considerable interest for a few decades. The main application of these complexes is in catalysis [23], although they have been also used as precursors for synthesis of valuable organic compounds [24] and other Pd complexes [25,26]. Therefore, the importance of phosphine-derived Pd(II) complexes as well as a growing demand for green approaches in synthesis have warranted our study of reactions of PBnPh₂ with Pd(II) sources on SiO₂.

2. Results and discussions

2.1. Reactions of PBnPh₂ with Pd(OAc)₂ and Na₂PdCl₄

Two Pd(II) sources, Pd(OAc)₂ and Na₂PdCl₄, were tested in reactions with PBnPh₂ on SiO₂ (Scheme 1 and Table 1). Because the target product was the cyclopalladated complex **1**, a 1:1 ratio of Pd per ligand was used in all experiments unless indicated otherwise. Two sizes of SiO₂ were used, 100–230 and 230–400 mesh. In some cases, the weak base NaOAc was added to promote cyclopalladation. In the experiments with Pd(OAc)₂, reactions on SiO₂ were followed by treatment with LiCl. Depending on the reaction conditions used, four different compounds were formed. One of the

^{*} Corresponding author.

E-mail address: ismoliakova@chem.und.edu (I.P. Smoliakova).

¹ Undergraduate researcher.

⁰⁰²²⁻³²⁸X/\$ – see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2011.06.026

Chart 1. Pd(II) complexes with PBnPh₂ as a ligand or preligand.

complexes was the target cyclopalladated dimer **1**. The remaining three complexes, **3–5**, were coordination complexes with different ratios of Pd and PBnPh₂.

Reactions of PBnPh₂ with Pd(OAc)₂ at 50 °C selectively provided the dinuclear coordination complex $[(\mu-Cl)PdCl(HL^1)]_2$, **4**, with yields up to 90% (entries 1 and 2). Attempts at performing similar experiments at higher temperatures resulted in the formation of Pd black. It is known that weak bases, particularly NaOAc, promote cyclopalladation [27]. Addition of NaOAc to the PBnPh₂–Pd(OAc)₂ reaction mixture, as well as increasing the temperature to 85 °C, resulted in the formation of the dinuclear cyclopalladated complex $[(\mu-Cl)PdL^1]_2$, **1**, in 14% yield (entry 3).

 Na_2PdCl_4 is known to be a less effective palladating agent than $Pd(OAc)_2$ and is commonly used in a combination with NaOAc [28]. Reactions of PBnPh₂ with Na_2PdCl_4 without a base at 40–85 °C provided, at best, only trace amounts of the cyclopalladated complex **1** (entries 4–8). The major product of these reactions was the coordination complex $PdCl_2(HL^1)_2$, **3**. Addition of NaOAc and increasing the temperature while shortening the reaction time allowed for improvement in the yield of the cyclopalladated complex up to 56% (entries 10–13).

Table 1 Reactions of PBnPh₂ with Pd(OAc)₂ and Na₂PdCl₄ on silica gel.^a Two sizes of SiO₂ were used in the study, 100-230 and 230-400 mesh (particles with the diameter of 63-149 and $37-63 \mu$ m, respectively). In the experiments with Pd(OAc)₂ with or without NaOAc, there was no significant SiO₂ size effect on the product yields or the product compositions. However, experiments at $120 \degree$ C with SiO₂ of the larger size, 100-230 mesh, provided a much higher yield of CPC **1** than those with the smaller size (entries 13 and 14).

To prove that cyclopalladation of PBnPh₂ does not occur with Na₂PdCl₄ without SiO₂, two experiments were performed. In the first experiment, a 1:1:1 mixture of PBnPh₂, Na₂PdCl₄ and NaOAc was heated at 85 °C for 5 h (entry 9, *cf.* entry 10). The ³¹P{¹H} NMR spectrum of the mixture showed the presence of the phosphine oxide, *cis*-**3** and *trans*-**3** with no traces of complexes **1**, **4** and **5**. In the other experiment, a 1:1 mixture of PBnPh₂ and Na₂PdCl₄ was heated at 120 °C for 1 h (entry 15). While the use of these conditions on SiO₂ resulted in the formation of the cyclopalladated complex in a good yield (entry 13), the reaction without the absorbent provided only complex **3** in 9% yield.

In all experiments, acetone was used at rt to remove complexes from SiO₂. To prove that acetone does not affect the outcome of the reactions, a 1:1:1 mixture of **1**, Na₂PdCl₄ and NaOAc was mixed with SiO₂ at rt followed by addition of acetone. After filtration, the acetone solution was analyzed for the presence of complexes **1** and **2–5**. The ³¹P{¹H} NMR spectrum contained signals of *cis*- and *trans*-**3**, the unreacted ligand and the corresponding oxide. No signals of the cyclopalladated complex **1** and compounds **4** and **5** were observed. After purification, complex **3** was isolated in 19% yield. Mixing ligand **1** with Na₂PdCl₄ in a 1:1 ratio on silica gel followed

Entry	Pd(II) source	Base	SiO ₂ size, mesh	<i>T</i> , °C	Time, h	Yield of 1, %	Yield of 3 , %	Yield of 4 , %	Yield of 5 , %
1	Pd(OAc) ₂		230-400 ^c	50	72			90	
2	$Pd(OAc)_2$		100-230 ^c	50	168			69	
3	$Pd(OAc)_2$	NaOAc	100-230	85	168	14		6	
4	Na ₂ PdCl ₄		100-230 ^c	20	1		83		
5	Na ₂ PdCl ₄		230-400	40	1		77	12	
6	Na ₂ PdCl ₄		100-230	40	1		87	8	
7	Na ₂ PdCl ₄		230-400	85	5		60		20
8	Na ₂ PdCl ₄		100-230	85	5	3 ^b	68	11 ^b	
9	Na ₂ PdCl ₄		None	85	5		9		
10	Na ₂ PdCl ₄	NaOAc	230-400	40	72	13		31	51
11	Na ₂ PdCl ₄	NaOAc	100-230	85	18	17			39
12	Na ₂ PdCl ₄	NaOAc	100-230	85	168	21		13	42
13	Na ₂ PdCl ₄	NaOAc	100-230	120	1	56			42
14	Na ₂ PdCl ₄	NaOAc	230-400	120	1	9		34	25
15	Na ₂ PdCl ₄	NaOAc	None	120	1		12		

^a Yields are given for isolated compounds unless indicated otherwise; 750 mg of SiO₂ per 1 mmol of PBnPh₂ was used unless indicated otherwise.

^b The values were estimated using ¹H NMR spectra.

^c 375 mg of SiO₂ per 1 mmol of PBnPh₂ were used.

by addition of acetone also resulted in the formation of complex **3** only (11% yield after purification). Application of Pd(OAc)₂ instead of Na₂PdCl₄ in a similar experiment followed by addition of LiCl provided a complex mixture with no signals of complexes **1** and **3–5**.

Thermal stability of the complexes was also studied. Compound **1** was stable on the 100–230 and 230–400 mesh SiO₂ at 120 °C for at least 5 h. Complex **3** did not change its structure at 85 °C for at least 5 h. Compound **4** was stable at 50 °C for at least 24 h.

2.2. Cyclopalladated complex (PdClL¹)₂, **1**

Previously, complex **1** and its μ -OAc and μ -Br analogs were synthesized by three different methods. Hiraki et al. obtained 1 in 19% yield by cyclopalladation of PBnPh2 by Pd(OAc)2 in MeOH under reflux for 3 h [8]. Abicht and Issleib prepared compound 1 by reacting the spiro complex 2 with PdCl₂•2Et₂S in 92% [12]. The same authors converted complex **2** to the μ -Br analog of **1** in 86% using HgBr₂ [12]. Ryabov et al. reported preparation of **1** in 21% yield using the transmetalation reaction between PBnPh₂ and the cyclopalladated complex $[(\mu-Cl)PdL^2]_2$ (HL² = N,N-dimethylbenzylamine) in CHCl₃-AcOH at rt [11]. Applying different conditions (PhMe–CF₃CO₂H, reflux) to the same reaction, Pfeffer's group increased the yield of the crude complex **1** to 90% [10]. In our hands, this procedure provided 52% of 1 after dry-flash chromatography using hexane and CH₂Cl₂ as eluents. In the present study, the best yield of 56% was obtained when a mixture of the phosphine, Na₂PdCl₄ and NaOAc on 100-230 mesh silica gel was stirred for 1 h at 120 °C.

Surprisingly, no structure confirmation has been reported for the cyclopalladated complex except for the IR frequency of the C=O bond of the acetone adduct 1·1/2Me₂C=O [8]. In the present study, the structure of complex 1 was supported by ¹H, ¹³C{¹H} and ³¹P {¹H} NMR spectra. The ³¹P{¹H} NMR spectrum of the compound contained two partly overlapping singlets in ca. 2:3 ratio that suggests the presence of two isomers, syn and anti. This type of the isomerism is well known for μ -Cl dimeric cyclopalladated complexes [29]. The X-ray study of complex 1 unambiguously confirmed its anti geometry in the solid form (see below).

2.3. Coordination complexes cis-PdCl₂(HL¹)₂, cis-3, and trans-PdCl₂(HL)₂, trans-**3**

The coordination complex **3** is usually synthesized by reacting PBnPh₂ with PdCl₂(NCPh)₂ or PdCl₂(NCMe)₂ in CH₂Cl₂ or another solvent [13,14,17]. In solution this complex exists as a mixture of two geometrical isomers, which undergo reversible thermal isomerization [17].

In our experiments on SiO₂, complex **3** was formed in many reactions in spite of using a 1:1 ratio of Pd per ligand. The obtained ¹H, ¹³C{¹H} and ³¹P{¹H} NMR data were in good agreement with the previously reported data [16,17,19,30]. ³¹P{¹H} NMR spectra of the isolated samples in CDCl₃ contained either one signal assigned to the thermodynamically more stable [15,31] cis form or two signals belonging to *cis*-**3** and *trans*-**3**. Similar data have been reported for other Pd(II) coordination complexes with phosphorus-containing ligands [32–35].

2.4. Dinuclear coordination complex $[(\mu-Cl)PdCl(HL^1)]_2$, **4**

Dinuclear coordination complexes of phosphorus-containing ligands are rather common [36–44] and are usually synthesized by reacting a Pd(II) source with an appropriate ligand in a 1:1 ratio, i.e. using the same stoichiometry of the reagents as in cyclopalladation. In the case of bulky phosphines, the formation of dinuclear coordination complexes is more favored than their

mononuclear analogs. It is noteworthy that ligand's steric bulk is also known to be an important factor promoting cyclopalladation [45]. Interestingly, very bulky phosphines are also capable of reacting with PdCl₂ to yield trinuclear coordination complexes, [(HL)ClPd(μ -Cl)₂Pd(μ -Cl)₂PdCl(HL)], instead of dinuclear coordination or cyclopalladated complexes [46].

In our study, compound **4** was isolated in the highest yield of 90% in the experiment with $Pd(OAc)_2$ after treatment of the reaction mixture with LiCl (entry 1). The complex provided one signal in the ³¹P{¹H} NMR spectrum, suggesting the presence of only one isomer. The conformation of the structure of complex **4** was obtained by X-ray analysis. The results matched the recently published data for the crystal structure of *trans*-[(μ -Cl)PdCl(HL¹)]₂ [20].

2.5. Coordination complex $PdCl_2(HL^1)_3$, 5

Complexes of this type are relatively rare and unknown for PBnPh₂. For some phosphines, formation of complexes PdCl₂(HL)₃ was observed using ³¹P{¹H} NMR spectroscopy by adding 1 equiv. of phosphine HL to a solution of PdCl₂(HL)₂ [48,49]. The reported spectrum of PdCl₂(PMe₃)₃ at -90 °C appeared as an AB₂ spin system, δ – 6.6 and – 5.3 ppm (CD₂Cl₂, relative to 62.5% H₃PO₄) [48], while the spectrum of PdCl₂(PPhMe₂)₃ at -60 °C was described as a sharp doublet and a sharp triplet in a 2:1 ratio at δ 48.6 and 45.2 ppm (CDCl₃, 85% H₃PO₄). Another reported pentacoordinate complex, PdCl₂(PBnMe₂)₃, was obtained as white crystals by refluxing a 1:2 ratio of Li₂PdCl₄ and PBnMe₂ in MeOH and converted to [PdCl(PBnMe₂)₃]BF₄ after treatment with NaBF₄ [50].

The elemental analysis of compound **5** suggested that its composition is $PdCl_2(HL^1)_3$. In order to get more experimental data to support the proposed structure of complex **5**, ${}^{31}P{}^{1}H$ NMR spectra of this compounds were taken at rt as well as at lower temperatures. The ${}^{31}P{}^{1}H$ NMR signal of **5** observed at -88 °C had a shoulder suggesting non-equivalency of the phosphine ligands in the compound. As it was reported for Pd(PPhMe₂)₃Cl₂ [40], the chemical shift of complex **5** is between those of *cis*- and *trans*-**3** (Fig. 1).

Attempts to grow crystals of complex **5** failed due to its decomposition that provided the coordination complex **3** and $BnPh_2P = O$. The structure of the latter was confirmed by X-ray crystallographic data.

2.6. X-ray structural analysis of complexes 1 and cis-3

The cyclopalladated structure of complex **1** was unambiguously confirmed by the X-ray diffraction study (Fig. 2). The molecular

Fig. 1. ³¹P{¹H} NMR spectra of: (a) a mixture of *cis*- and *trans*-**3** in CDCl₃ at rt, (b) complex **5** in CDCl₃ at rt, and (c) complex **5** at $-88 \degree$ C in d₆-acetone.

Fig. 2. The molecular structure of complex 1.

structure of dimer 1 revealed its anti configuration with two P atoms trans to each other. The same geometry was found in structures of other chloro-bridged dimers with five-membered phosphapalladacycles, particularly those with the $(sp^2)C-Pd$ bond, I-IV (Chart 2) [24,51-53]. The structure of complex 1 is a CH₂Cl₂ solvate and consists of two halves, which have minimal differences in the parameters. Both palladium centers are in distorted square-planar geometry with the dihedral angle of 3.9° between the $\{P(1)-Pd(1)-C(1)\}$ and $\{C(1)-Pd(1)-Cl(1A)\}$ planes. For comparison, the value of this angle in complexes (*R*,*R*)-**I**, (*S*,*S*)-**I**, II and III is 9.8, 9.7, 23.7, 2.6°, respectively. The $\{Pd_2Cl_2\}$ ring in the structure of dimer **1** was completely flat: the value of the $\{Pd(1)-$ Cl(1)–Cl(1A)–Pd(1A)} dihedral angle is 180.0°. In contrast, complexes (R,R)-I and (S,S)-I with the PPh₂ moiety exhibited a very significant bent of the {Pd₂Cl₂} fragment, 52.8 and 51.1°, respectively. Compound IV with the PBu^t₂ group had a less significant bent of 28.8°, while reported halogen-bridged (sp³)C,P-cyclopalladated complexes exhibited the practically flat {Pd₂Hal₂} fragment [54,55] even in the structure with two mesityl substituents at the donor P atom [56].

Chart 2. Cyclopalladated chloro-bridged dimeric complexes derived from tertiary phosphines with known molecular structures.

The length of the Pd–P bond found in **1**, 2.1953(5) Å, is within the range of 2.186–2.217 Å reported for the complexes (*R*,*R*)-**I**, (*S*,*S*)-**I**, **II** and **III** with the PPh₂ moiety and shorter than in related complexes with the Pd–PBu^t₂ fragment [53,55]. The Pd–C bond length of 2.009(2) Å in **1** is slightly shorter than those reported for their PPh₂ analogs **I–III**, 2.019–2.052 Å, but a little bit longer than in **IV**, 1.981 and 1.989 Å. Two Pd–Cl bonds in each half of the structure are slightly different, 2.4267(5) and 2.4393(5) Å. These values are typical for other chloro-bridged phosphapalladacycles [24,51–53]. The length difference for the Pd–Cl bonds in **1**, 0.0126 Å, is greater than that observed in **I–III**, 0.001–0.005 Å; however, the difference is smaller than that in **IV**, 0.020 Å and significantly smaller than in palladacycles with the $(sp^3)C$ donor atom, in which the Pd–Cl bond trans to the P atom is significantly shorter, up to 0.088 Å [56]. These observations suggest similar trans influence of the $(sp^2)C$ atom and the heteroatom in the PPh₂ fragment in complexes **1** and **I–IV** and a greater trans influence of the $(sp^3)C$ donor atom compared to its sp²-hybridized counterpart [22].

The extent of the palladacycle's puckering in complex **1** was estimated by calculating the average intrachelate torsion angle. The obtained value of 17.2° is less than that found in (S,S)-**I**, (R,R)-**I** and **II**, 27.0, 27.2 and 31.4° [24,51], but typical for other palladacycles derived from arylphosphines [53].

The X-ray study of complex **3** revealed its cis geometry in the solid state (Fig. 3). The structure is a CHCl₃ solvate. The X-ray diffraction study of complex **4** was also performed and revealed its trans geometry in the solid state. Because the molecular structure of *trans*-{(μ -Cl)PdCl(HL¹)}₂ is known [20], our data for complex **4** will be used here only for comparison with other Pd(II) complexes of PBnPh₂ (Table 2).

The majority of available X-ray studies of the coordination complexes $PdCl_2(HL)_2$, where HL is a tertiary phosphine or a similar *P*-donor ligand, report their trans geometry in the solid state [37–42,46,57–59]. X-ray studies of the *cis*-PdCl₂(HL)₂ complexes with *P*-donor ligands are more rare and include derivatives of PMe₂Ph [60], PMe₂(2-Py) [61], PPh(2-Py)₂ [62], PPh₂(OEt) [63], P(OPh)₃ [64] and a *P*-monodentate phosphoramidite [65].

The structure of *cis*-**3** showed a distorted square-planar environment of the Pd atom. The P–Pd–P angle was more obtuse than Cl–Pd–Cl by 10.76°. Such a difference is typical for *cis*-PdCl₂(HL)₂ complexes with P-donor ligands [60–62,64]; the only exception is *cis*-PdCl₂[PPh₂(OEt)]₂, in which the Cl–Pd–Cl angle was greater than P–Pd–P by 1.29° [63]. Parameters of two PBnPh₂ ligands as well as two Pd–Cl bond lengths in *cis*-**3** were slightly different, e.g. one Pd–P bond was shorter that the other by 0.0047 Å For comparison, each of two structures, *cis*-PdCl₂[PPh₂(OEt)]₂ and *cis*-PdCl₂(PMe₂Ph)₂, displayed identical Pd–P and Pd–Cl bonds, while the difference in two Pd–P bonds in *cis*-PdCl₂[PPh₂(2-py)]₂ was 0.0100 Å [60,62,63]. The Pd–P and Pd–Cl bond lengths in *cis*-**3** are within the range reported for other *cis*-PdCl₂(HL)₂ complexes [60–64].

It is known that both types of coordination complexes, $PdCl_2(HL)_2$ and $[(\mu-Cl)PdCl(HL)]_2$, can, in some cases, be converted to the corresponding cyclopalladated complexes [52,66–68]. Coordination of the Pd atom to the heteroatom of HL is recognized as in initial step of metallation. As one can expect, after palladation, the Pd–P bond in **1** became significantly shorter than in the coordination complexes: by 0.0746 Å compared to **3**, and by 0.0265 Å

Fig. 3. Molecular structure of cis-3. The CHCl₃ solvate molecule was omitted for clarity.

Complex	Bond Length, Å		Angle, $^{\circ}$	Angle, °			
	Pd-P	Pd-µ-Cl	Pd–C	P-CH ₂	P–Pd–C	Cl-Pd-Cl	P-Pd-Cl
trans-1	2.1953(3)	$2.4393(5)^{a}$ $2.009(2)$	1.832(2)	82.04(6)	97.75(6) ^d	178.283(18)	
cis- 3	2.2652(9)	2.3509(9)		1.864(4)		89.15(3)	86.96(3)
	2.2699(9)	2.3252(9)		1.844(4)			85.47(3)
trans- 4		2.4122(5) ^a		1.8325(17)		85.538(16) ^d	176.349(15) ^a
		2.3153(4) ^b				91.371(17)	95.630(16) ^b
		2.2734(4) ^c				176.452(15)	87.350(17) ^c

 Table 2
 Selected geometric parameters for complexes trans-1, cis-3 and trans-4.

^a Data for the μ -Cl–Pd trans to the Pd–P bond.

^b Data for the μ -Cl–Pd cis to the Pd–P bond.

^c Data for the Cl-Pd cis to the Pd-P bond.

^d Data for the μ -Cl–Pd– μ -Cl angle.

compared to **4**. The Ph_2P-CH_2 bond in **1** was compressed as well: by 0.032 and 0.012 Å compared to two corresponding bonds in *cis*-**3** and by 0.009 Å compared to **4**. The {Pd(1)-Cl(1)-Cl(1A)-Pd(1A)} dihedral angle in **4** was the same as in complex **1**, 180.0°

3. Conclusions

Depending on the conditions used, reactions of $BnPh_2P$ with Pd(II) sources on silica gel provide one or more of the following compounds: the cyclopalladated binuclear complex 1 and three different types of coordination complexes **3–5**. The formation of the cyclopalladated complex 1 is the first example of the solvent-free phosphine C–H bond activation on silica gel. This method is expected to be useful for cyclopalladation of other *P*-containing preligands.

4. Experimental

4.1. General methods and materials

All reactions were carried out in a glove box using the atmosphere of N₂. Purifications by preparative thin-layer chromatography (TLC) were carried out using 200×250 mm glass plates with an unfixed layer of Natland or Merck silica gel 60 (230 mesh). Analytical TLC was performed on Whatman silica gel 60 (F254) 250 mm precoated plates. Compounds were visualized on TLC plates using UV light (254 nm) and/or iodine stain. ¹H (500 MHz), ¹³C{¹H} (126 MHz) and ³¹P{¹H} (202 MHz) as well as DEPT, COSY and HMQC spectra were recorded on a Bruker AVANCE 500 NMR spectrometer. Chemical shifts, δ , are reported in ppm with SiMe₄ as an internal standard (¹H and ¹³C) or P(OEt)₃ as an external standard (³¹P). Spinspin coupling constants, J, are given in Hz. Spectra of all complexes were recorded in CDCl₃. Hexane, toluene and CH₂Cl₂ were distilled over CaH₂. Acetone was distilled over KMnO₄. PBnPh₂ and Na₂PdCl₄ were purchased from Sigma-Aldrich Co. and used without purification. Pd(OAc)₂ was also purchased from Sigma-Aldrich Co.; prior to use, the compound was dissolved in hot benzene, the solution was filtered and then the solvent was removed under reduced pressure.

Di- μ -chlorobis-{2-[(diphenylphosphino)methyl]phenyl-*C*,*P*} dipalladium(II) (1). *Method 1 (preparation in solvent)* [11]. In a glove box, PBnPh₂ (0.2300 g, 0.8324 mmol) was placed into an Ar-filled 50-mL Schlenk flask, then di-(μ -chloro)bis-{[2-(*N*,*N*-dimethyla-mino)methyl]phenyl-*C*,*N*}dipalladium(II) (0.2138 g, 0.3872 mmol) was added followed by abs. toluene (6 mL). In several minutes, CF₃COOH (0.07 mL) was added to the flask through the septum. The reaction mixture was refluxed for 2 h under the Ar atmosphere. After cooling the mixture to rt, toluene was removed using a rotavapor. Purification of the residue using dry-flash

chromatography with the hexane-CH₂Cl₂ eluent system afforded cyclopalladated complex 1 (0.201 g, 52% yield) as a very light yellow solid. *Method 2 (preparation on SiO₂)*. In a glove box, PBnPh₂ (0.0340 g, 0.123 mmol) was placed into a small flask. Then Na₂PdCl₄ (0.0276 g, 0.123 mmol), SiO₂ (100-230 mesh, 0.0923 g; 0.750 g of SiO₂ per 1.00 mmol of the preligand) and NaOAc (0.0100 g, 0.123 mmol) were added to the flask and the mixture was vigorously stirred using a spatula for 1 min. The flask was topped with cotton and placed in a preheated (120 °C) sand bath to stir. After 1 h, the reaction mixture was transferred into a glass filter and the crude dimer was washed from SiO₂ with acetone $(5 \times 10 \text{ mL})$. The solution was placed on a rotavapor to remove acetone. The solid residue was dissolved in a minimal volume of CH₂Cl₂ and purified using preparative TLC (silica gel, CH₂Cl₂). Two compounds were isolated: complex 1 as a light yellow solid in 56% yield and complex 4 as an off-white powder in 42% yield. Crystals of 1 suitable for X-ray analysis were obtained using crystallization from CH₂Cl₂ at -5 °C. *R*_f 0.69 (CH₂Cl₂), m.p. 197–201 °C (decomp.; lit. data [8,12]: 198 and 248 °C). ¹H NMR: 3.81 (d, 2H, ${}^{2}J_{HH} = 15$, CH₂), 6.90 (br. s, 2H, H(4,5) of C₆H₄Pd), 7.01 (d, 1H, ${}^{3}J_{HH} = 7.9$, H(6) of C₆H₄Pd), 7.26 (d, ${}^{3}J_{HH} =$ 7.9, 1H, H(3) of C₆H₄Pd); 7.35 (m, 5H, pand *m*-H of PPh₂), 7.56 (br. s, 1H, *p*-H of PPh), 7.64 and 7.74 (br. s, 4H, *o*-H of PPh₂); ³¹P{¹H} NMR: 41.40 and 41.43 in 2:3 ratio (lit. data [12]: δ 55.95 ppm in CDCl₃/d₆-DMSO relative to 85% H₃PO₄). The ¹³C{¹H} NMR data were not obtained due to a poor solubility of the complex. Anal. Calcd for C₃₈H₃₂Cl₂P₂Pd₂•CHCl₃: C, 49.11; H, 3.49%. Found: C, 48.82; H, 3.48%.

Dichlorobis(benzyldiphenylphosphine)palladium(II) (3). In a glove box, PBnPh₂ (0.0490 g, 0.1773 mmol) was placed in a small flask. Then Na₂PdCl₄ (0.0522 g, 0.177 mmol) and SiO₂ (100-230 mesh, 0.692 g; 0.375 g per 1.00 mmol of the preligand) were added and vigorously mixed using a spatula for 1 min. The flask was topped with cotton and stirred at rt for 1 h. Next, the reaction mixture was transferred into a glass filter and the crude product was washed from SiO₂ with acetone (5 \times 10 mL). The solvent was removed using a rotavapor, the dry residue was dissolved in a minimal volume of CH₂Cl₂ and the product was purified using preparative TLC (silica gel, CH₂Cl₂). A mixture of cis- and trans-3 was isolated as a bright yellow solid in 83% yield (0.0534 g). Sample crystallization from a CDCl₃ solution at rt afforded X-ray suitable crystals of cis-3. Rf 0.8 (cis-3) and 0.3 (trans-3, CH₂Cl₂), m.p. 200–201 °C (lit. data [15,30]: 205–207 and 182–193 °C). ¹H NMR (a mixture of *cis*-* and *trans*-**3**): 3.95 and 4.12* (t and d, 2H, ${}^{2}J_{HP} = 4$ and ${}^{2}J_{HP} = 12$, CH₂), 6.98–7.16 (m, 5H, PBn), 7.32 (m, 4H, *m*-H of PPh), 7.42 (m, 2H, *p*-H of PPh), 7.50 (m, 4H, *o*-H of PPh); ³¹P{¹H} NMR (a mixture of cis-* and trans-3): 15.64* and 5.27 (lit. data for *cis*-**3**: 29.6 [19], 30.27 [17] and 30.29 [30]; for *trans*-**3**: 20.06 [16,17] and 20.03 [30]; all lit. data are for CDCl₃ solutions relative to 85% H₃PO₄); ${}^{13}C{}^{1}H$ NMR (a mixture of *cis*-* and *trans*-3): 32.2 (t, ${}^{1}J_{CP} = 12$, CH₂) and 39.3* (d, ${}^{1}J_{CP} = 12$, CH₂), 126.6–134.1 (PBn and PPh signals). Anal. Calcd for C₃₈H₃₄Cl₂P₂Pd•CDCl₃: C, 55.09; H, 4.27%. Found: C, 54.92; H, 4.16%.

Dichlorodi-µ-chlorobis(benzyldiphenylphosphine)dipalladium(II) (4). Method 1 (preparation in solvent). In a glove box, PBnPh₂ (0.0310 g, 0.112 mmol) was placed into an Ar-filled 10 mL Schlenk flask. Then Na₂PdCl₄ (0.0330 g. 0.112 mmol) was added to the flask along with abs. toluene (15 mL). The suspension was stirred for 2 days at rt under the Ar atmosphere. The solvent was removed and the crude product was purified using dry-flash chromatography with acetone and CH₂Cl₂ used as eluents. Complex 4 was obtained as a bright red solid in 44% yield. Method 2. In a glove box, PBnPh₂ (0.032 g, 0.12 mmol) was weighed in a small flask. Next, Pd(OAc)₂ (0.0263 g, 0.116 mmol) and SiO₂ (0.0434 g; 375 mg per 1.00 mmol of the preligand; 100-230 mesh SiO₂) were added and the components were vigorously mixed using a spatula for approximately 1 min. The flask was topped with cotton and placed on a sand bath preheated to 50 °C and left to stir for 72 h. The reaction mixture was transferred into a glass filter and the crude product was washed from SiO₂ using acetone (5×10 mL). Then LiCl (0.0196 g, 0.462 mmol) was added and the mixture was stirred overnight. After solvent removal on a rotavapor, the crude product was dissolved in CH₂Cl₂ (30 mL) and the solution formed was filtered. Crystallization from a CH₂Cl₂ solution at rt afforded Xray suitable red crystals of complex 4 in 90% yield (23.4 mg). Rf 0.45 (CH₂Cl₂); m.p. 230–233 °C (decomp.; lit. data [9,47]: 242–243 °C); ¹H NMR: 3.83 (d, 2H, ${}^{2}J_{HH} = 13.0$, CH₂), 6.83 (d, 2H, ${}^{3}J_{HH} = 7.2$, o-H of PBn), 7.02 (m, 2H, m-H of PBn), 7.11 (m, 1H, p-H of PBn), 7.30 (m, 4H, *m*-H of PPh), 7.44 (m, 2H, *p*-H of Ph), 7.50 (m, 4H, *o*-H of PPh); ³¹P{¹H} NMR: 17.11 (lit. data [9,47]: 31.79 and 31.71 ppm, CDCl₃-d₆-DMSO relative to 85% H₃PO₄); ¹³C{¹H} data were not obtained due to a poor solubility of the complex. Anal. Calcd for C₃₈H₃₄Cl₄P₂Pd₂: C, 50.31; H, 3.78%. Found: C, 49.82; H, 3.69%.

Dichlorotris(benzyldiphenylphosphine)palladium(II) (5). For the procedure, see the Experimental Section for complex 1. R_f 0.14 (CH₂Cl₂); m.p. 135–137 °C (decomp.). ¹H NMR: 3.65 (d, 2H, ²J_{HH} = 14, CH₂), 7.09 (m, 2H, *o*-H of PBn), 7.17 (m, 3H, *m*- and *p*-H of PBn), 7.44 (m, 4H, *m*-H of PPh), 7.50 (m, 2H, *p*-H of Ph), 7.69 (m, 4H, *o*-H of PPh); ³¹P{¹H} NMR: 15.06 (br. s); ¹³C{¹H} NMR: 38.3 (d, ¹J_{CP} = 67, CH₂), 127.3 (d, ⁴J_{CP} = 2.5, *m*-C of PBn), 128.8 (d, ⁵J_{CP} = 2.3, *p*-C of PBn), 129.0 (d, ³J_{CP} = 12, *o*-C of PBn), 130.6 (d, ³J_{CP} = 5, *m*-C of PPh), 131.4 (d, ²J_{CP} = 8, *ipso*-C of PBn), 131.6 (d, ²J_{CP} = 10, *o*-C of PPh), 132.2 (br. d, ¹J_{CP} = 99, *ipso*-C of PPh), 132.3 (d, ⁴J_{CP} = 2.5, *p*-C of PPh). Anal. Calcd for C₅₇H₅₁Cl₂P₃Pd: C, 68.03; H, 5.11%. Found: C, 67.65; H, 5.42%.

Crystallographic data for complexes 1, *cis-3, trans-4* and **BnPh₂P = 0** have been deposited with the Cambridge Crystallographic Data Centre as Supplementary Publications Nos. CCDC-814667, 814666, 814664 and 814665, respectively. Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax: +44(1223)-336-033; e-mail: deposit@ccdc.cam.ac.uk).

4.2. X-ray procedure

Suitable single crystals were coated with Paratone N oil, affixed to Mitegen or Litholoop crystal holders and centered on the diffractometer in a stream of cold nitrogen. Reflection intensities were collected with a Bruker Apex diffractometer, equipped with an Oxford Cryosystems 700 Series Cryostream cooler, operating at 173 K. Data were measured with ω scans of 0.3° per frame for 20 s until a complete hemisphere of data had been collected. Cell parameters were retrieved using SMART software and reduced with *SAINT-plus*, which corrects for Lorentz and polarization effects and crystal decay. Empirical absorption corrections were applied with *SADABS*. The structures were solved by direct methods and refined by full-matrix least-squares methods on F^2 with *SHELXL*-97 incorporated into in *SHELXTL*, version 6.14.

Acknowledgment

The authors acknowledge financial support from ND EPSCoR through NSF grant No. EPS-0447679. The Doctoral Dissertation Assistantship to V.A.S. was provided by ND EPSCoR through NSF grant No. EPS-0184442.

References

- K. Tanaka, in: Solvent-Free Organic Reactions, second ed. Wiley, Weinheim, 2009.
- [2] O. Dolotko, J.W. Wiench, K.W. Dennis, V.K. Pecharsky, V.P. Balema, New J. Chem. 34 (2010) 25–28.
- [3] A.L. Garay, A. Pichon, S.L. James, Chem. Soc. Rev. 36 (2007) 846-855.
- 4] A. Loupy, C.R. Chim. 7 (2004) 103–112.
- [5] A.K. Banerjee, M.S. Laya Mimo, W.J. Vera Vegas, Russ. Chem. Rev. 70 (2001) 971–990.
- [6] I.P. Smoliakova, J.L. Wood, V.A. Stepanova, R.Y. Mawo, J. Organomet. Chem. 695 (2010) 360–364.
- [7] D.J. Tune, H. Werner, Helv. Chim. Acta 58 (1975) 2240–2247.
- [8] K. Hiraki, Y. Fuchita, T. Uchiyama, Inorg. Chim. Acta 69 (1983) 187-190.
- [9] H.-P. Abicht, Z. Chem 24 (1984) 387-389.
- [10] P. Lohner, M. Pfeffer, A. De Cian, J. Fischer, Comptes Rendus de l'Academie des Sciences, Serie IIc: Chimie 1 (1998) 615–620.
- [11] A.D. Ryabov, A.V. Eliseev, E.S. Sergeenko, A.V. Usatov, L.I. Zakharkin, V.N. Kalinin, Polyhedron 8 (1989) 1485–1496.
- [12] H.-P. Abicht, K. Issleib, Z. Anorg, Allg. Chem. 500 (1983) 31-39.
- [13] H. Bruner, J.C. Bailar Jr., Inorg. Chem. 12 (1973) 1465–1470.
- [14] J.H. Nelson, D.A. Redfield, Inorg. Nucl. Chem. Lett. 9 (1973) 807-813.
- [15] A.W. Verstuyft, J.H. Nelson, Synth. React. Inorg. Met.-Org. Chem. 5 (1975)
- 69–79.
- [16] A.W. Verstuyft, J.H. Nelson, L.W. Cary, Inorg. Nucl. Chem. Lett. 12 (1976) 53–58.
 [17] A.W. Verstuyft, D.A. Redfield, L.W. Cary, J.H. Nelson, Inorg. Chem. 16 (1977)
- 2776–2786
- [18] T. Bartik, T. Himmler, J. Organomet. Chem. 293 (1985) 343-351.
- [19] R.B. Bedford, S.L. Hazelwood, P.N. Horton, M.B. Hursthouse, Dalton Trans. 21 (2003) 4164-4174.
- [20] R. Meijboom, A. Muller, A. Roodt, Acta Crystallogr., Sect. E: Struct. Rep. Online E62 (2006) m897–m899.
- [21] V.V. Dunina, O.N. Gorunova, Russ. Chem. Rev. 73 (2004) 309-350.
- [22] V.V. Dunina, O.N. Gorunova, Russ. Chem. Rev. 74 (2005) 871–913.
- [23] W.A. Herrmann, V.P.W. Böhm, C.-P. Reisinger, J. Organomet. Chem. 576 (1999) 23–41.
- [24] Y. Ding, M. Chiang, S.A. Pullarkat, Y. Li, P.-H. Leung, Organometallics 28 (2009) 4358-4370.
- [25] N.P. Kushwah, V.K. Jain, A. Wadawale, O.B. Zhidkova, Z.A. Starikova, V.I. Bregadze, J. Organomet. Chem. 694 (2009) 4146–4151.
- [26] E. Schuhmann, W. Beck, Z. Naturforsch., B: Chem. Sci. 63 (2008) 124-128.
- [27] I.P. Smoliakova, K.J. Keuseman, D.C. Haagenson, D.M. Wellmann, P.B. Colligan, N.A. Kataeva, A.V. Churakov, L.G. Kuz'mina, V.V. Dunina, J. Organomet. Chem. 603 (2000) 86–97.
- [28] V.V. Dunina, O.A. Zalevskaya, V.M. Potapov, Russ. Chem. Rev. 57 (1988) 250-269.
- [29] O.N. Gorunova, K.J. Keuseman, B.M. Goebel, N.A. Kataeva, A.V. Churakov, L.G. Kuz'mina, V.V. Dunina, I.P. Smoliakova, J. Organomet. Chem. 689 (2004) 2382–2394.
- [30] H.P. Abicht, K. Issleib, J. Organomet. Chem. 185 (1980) 265-275.
- [31] D.A. Redfield, J.H. Nelson, Inorg. Chem. 12 (1973) 15-19.
- [32] S.O. Grim, R.L. Keiter, Inorg. Chim. Acta (1970) 56-60.
- [33] N. Ahmad, E.W. Ainscough, T.A. James, S.D. Robinson, J. Chem. Soc., Dalt. Trans. (1973) 1148–1150.
- [34] J.A. Rahn, M.S. Holt, M. O'Neil-Johnson, J.H. Nelson, Inorg. Chem. 27 (1988) 1316–1320.
- [35] S.J. Coles, P. Faulds, M.B. Hursthouse, D.G. Kelly, G.C. Ranger, A.J. Toner, N.M. Walker, J. Organomet. Chem. 586 (1999) 234–240.
- [36] F.G. Mann, D. Purdie, J. Chem. Soc. (1936) 873-877.
- [37] S. Vuoti, J. Autio, M. Laitila, M. Haukka, J. Pursiainen, Eur. J. Inorg. Chem. (2008) 397–407.
- [38] S. Vuoti, M. Haukka, J. Pursiainen, J. Organomet. Chem. 692 (2007) 5044–5052.
- [39] K.A. Salmeia, R.H. Al-Far, H.A. Hodali, Polyhedron 26 (2007) 4173-4178.
- [40] Z. Rohlik, P. Holzhauser, J. Kotek, J. Rudovsky, I. Nemec, P. Hermann, I. Lukes, J. Organomet. Chem. 691 (2006) 2409–2423.
- [41] P. Stepnicka, I. Cisarova, R. Gyepes, Eur. J. Inorg. Chem. (2006) 926-938.
- [42] D. Blazina, S.B. Duckett, P.J. Dyson, R. Scopelliti, J.W. Steed, P. Suman, Inorg. Chim. Acta 354 (2003) 4–10.

- [43] J.O. Yu, E. Lam, J.L. Sereda, N.C. Rampersad, A.J. Lough, C.S. Browning, D.H. Farrar, Organometallics 24 (2005) 37–47.
- [44] P. Zoufala, R. Gyepes, P. Stepnicka, J. Organomet. Chem. 689 (2004) 3556-3566.
- [45] V.V. Dunina, L.G. Kuz'mina, M.Y. Kazakova, O.N. Gorunova, Y.K. Grishin, E.I. Kazakova, Eur. J. Inorg. Chem. (1999) 1029–1039.
- [46] Y. Ohzu, K. Goto, H. Sato, T. Kawashima, J. Organomet. Chem. 690 (2005) 4175-4183.
- [47] H.P. Abicht, K. Issleib, J. Organomet. Chem. 289 (1985) 201-213.
- [48] R. Favez, R. Roulet, Inorg. Chem. 20 (1981) 1598–1601.
- [49] I.J.B. Lin, M.D.S. Liaw, J. Chin. Chem. Soc. 40 (1993) 451-454.
- [50] R.L. Bennett, M.I. Bruce, F.G.A. Stone, J. Organomet. Chem. 38 (1972) 325–334.
 [51] J.K.-P. Ng, Y. Li, G.-K. Tan, L.-L. Koh, J.J. Vittal, P.-H. Leung, Inorg. Chem. 44
- (2005) 9874–9886. [52] J.K.-P. Ng, G.-K. Tan, J.J. Vittal, P.-H. Leung, Inorg. Chem. 42 (2003) 7674–7682.
- [53] V.V. Dunina, O.N. Gorunova, M.V. Livantsov, Y.K. Grishin, LG. Kuz'mina, N.A. Kataeva, A.V. Churakov, Tetrahed. Asymm. 11 (2000) 3967–3984.
- [54] A.L. Rheingold, W.C. Fultz, Organometallics 3 (1984) 1414–1417.
- [55] W.J. Youngs, J. Mahood, B.L. Simms, P.N. Sweepston, J.A. Ibers, Organometallics 2 (1983) 917–921.

- [56] E.C. Alyea, G. Ferguson, J. Malito, B.L. Ruhl, Organometallics 8 (1989) 1188–1191.
- [57] X. Morise, P. Braunstein, R. Welter, Inorg. Chem. 42 (2003) 7752–7765.
- [58] N.M. Vinogradova, I.L. Odinets, K.A. Lyssenko, M.P. Pasechnik, P.V. Petrovskii, T.A. Mastryukova, Mendeleev Commun. (2001) 219–221.
- [59] A.N. Reznikov, M.N. Krivchun, V.K. Bel'skii, N.K. Skvortsov, Russ. J. Gen. Chem. 70 (2000) 1032–1036.
- [60] L.L. Martin, R.A. Jacobson, Inorg. Chem. 10 (1971) 1795-1798.
- [61] T. Suzuki, M. Kita, K. Kashiwabara, J. Fujita, Bull. Chem. Soc. Jpn. 63 (1990) 3434–3442.
- [62] G.R. Newkome, D.W. Evans, F.R. Fronczek, Inorg. Chem. 26 (1987) 3500-3506.
- [63] A.M. Trzeciak, H. Bartosz-Bechowski, Z. Ciunik, K. Niesyty, J.J. Ziołkowski, Can. J. Chem. 70 (2001) 752–759.
- [64] S.J. Sabounchei, A. Naghipour, J.F. Bickley, Acta Cryst. C56 (2000) e280-e283.
 [65] I.S. Mikhel, G. Bernardinelli, A. Alexakis, Inorg. Chim. Acta 359 (2006)
- 1826–1836. [66] R.Y. Mawo, D.M. Johnson, J.L. Wood, I.P. Smoliakova, J. Organomet. Chem. 693 (2008) 33–45
- [67] A.K. Yatsimirskii, Russ. J. Inorg. Chem. 24 (1979) 1505–1508.
- [68] J. Vicente, I. Saura-Llamas, J. Cuadrado, Organometallics 22 (2003) 5513–5517.