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ABSTRACT: An efficient method for the construction of sulfonylmethyl 1H-indenes via Cu(I)-mediated 

sulfonyl radical-enabled 5-exo-trig cyclization of alkenyl aldehydes has been developed for the first time. 

Mechanistic studies indicated that a radical addition-cyclization-elimination (RACE) process might be 

involved. The reaction features relatively broad substrate scope, good annulation efficiency and various 

functional group tolerance. 

INTRODUCTION 

Indene derivatives are important cyclic compounds that serve as building blocks for natural products
1
 and 

pharmaceutical compounds
2
 possessing interesting biological activities, as well as many functional 

materials
3
 (Figure 1). They can also be used as valuable ligands for indenyl metal complexes, which are 

widely utilized in various catalytic reactions
4
. Due to their importance and usefulness, various synthetic 

approaches have been developed to construct indene derivatives including intramolecular
5
 and 

intermolecular
6
 cyclization reactions. In spite of this progress, there is still a need to develop new methods 

that can expand the structural scope with wide functionality and use inexpensive catalysts through simple 

synthetic manipulations. 
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Figure 1. Selected examples of important indenes and sulfones 

Meanwhile, sulfonyl-containing compounds are of great importance in functional transformation of many 

pharmaceuticals, agrochemicals and materials
7
, especially for aryl alkyl sulfones

8
 (Figure 1), however, 

available methods to easily accessing alkyl sulfone are limited.
9
  

Recently, Zhu and coworkers
10

 developed a tandem radical addition-cyclization-oxidation (RACO) 

reaction process to realize acylalkylation of inactivated alkenes. In this strategy, formation of a nucleophilic 

carbon radical favors the intramolecular addition to aldehydes, and subsequent oxidation facilitated a series 

of substituted indanones (Scheme 1a). 

Scheme 1. Radical initiated cascade reaction of alkenyl aldehydes. 

 

By taking advantage of the powerful radical chemistry
11

 and in view of the success in using a sulfonyl 

radical to attack C-C unsaturated bonds to achieve sulfones,
12,13

 we envisioned that using a sulfonyl radical 

other than the alkyl carbon radicals in Zhu’s work would convert the same alkenyl substrates to 

acylsulfonylated products I (sulfonylmethyl indenones, Scheme 1b) through a similar RACO cascade 

process. Surprisingly, treatment of sulfonyl hydrazide, the sulfonyl radical precursor,
12c

 with 

2-allylbenzaldehyde under CuBr/DTBP catalyst/oxidant system
14

 did not generate the desired I, instead, an 

eliminated product II (sulfonylmethyl indene) was obtained as the major product. Herein, we reported 

optimization of the reaction condition, exploration of the substrate scope and limitation as well the 

discussion of the possible reaction mechanism (RACE cascade reaction). 
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RESULTS AND DISCUSSION 

Initially, we commenced the reaction with 2-allyl benzaldehyde (1a) and p-toluenesulfonyl hydrazide (2a) 

as model substrates (Table 1). To our delight, product 3a was obtained in 30% yield with CuI as the catalyst, 

di-tert-butyl peroxide (DTBP) as the oxidant and acetonitrile as the solvent (entry 1). Then effects of copper 

salts were investigated, which elected CuBr as the most efficient catalyst, giving 3a in 51% yield (entries 

2-7). Next, an array of different oxidants, such as tert-butyl hydroperoxide (TBHP), tert-butyl 

peroxybenzoate (TBPB) and dicumyl peroxide (DCP), were examined and the results were no better than the 

case of DTBP (entries 2, 8-10). In addition, employment of other solvents such as toluene, DMSO, DMF and 

1,4-dioxane provided inferior results (entries 11-14). Further, increasing the loading of CuBr to 50 mol% 

slightly promoted the yield (entry 17). From these results, the optimum reaction condition was determined as 

those in entry 17. 

Table 1. Optimization of Reaction Conditions
a
 

 

entry Catalyst (mol%) oxidant solvent yield[%]b 

1 CuI (20)  DTBP  MeCN  30  

2 CuBr (20)  DTBP  MeCN  51  

3 CuCl (20)  DTBP  MeCN  17  

4 CuOAc (20)  DTBP  MeCN  6  

5 Cu(MeCN)4PF6 (20)  DTBP  MeCN  11  

6 CuSO4 (20)  DTBP  MeCN  13  

7 Cu(OAc)2 (20)  DTBP  MeCN  Trace  

8 CuBr (20)  TBHPc  MeCN  30  

9 CuBr (20)  TBPB  MeCN  39  

10 CuBr (20)  DCP  MeCN  25  

11 CuBr (20)  DTBP  PhMe  20  

12 CuBr (20)  DTBP  DMSO  21  

13 CuBr (20)  DTBP  DMF  13  

14 CuBr (20)  DTBP  1,4-dioxane  17  

15 CuBr (30)  DTBP  MeCN  50  

16 CuBr (40)  DTBP  MeCN  48  

17 CuBr (50)  DTBP  MeCN  56 (57d,e)  

18 CuBr (60)  DTBP  MeCN  52  

a
Reactions were carried out by using 1a (0.10 mmol), 2a (0.20 mmol), Catalyst, Oxidant (0.30 mmol), 

solvent (0.5 ml), 100 
o
C, N2, 2h. 

b
The yield was determined by 

1
H NMR using CH2Br2 as the internal 

standard. 
c
TBHP (5.5 M in nonane). 

d
Isolated yield. 

e
1.0 mmol scale. DTBP: Di-tert-butyl peroxide. TBHP: 

tert-Butyl hydroperoxide. TBPB: tert-Butyl peroxybenzoate. DCP: Dicumyl peroxide. 

With the optimized reaction conditions in hand, we evaluated its versatility and limitation in the 

Cu(I)-mediated sulfonyl radical-enabled 5-exo-trig cyclization of various alkenyl aldehydes. As illustrated in 

Scheme 2, all the reactions went through smoothly and the sulfonated products 3 were obtained in moderate 
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yields. The ortho-substituted aldehydes 1b and 1c were converted into the corresponding products 3b and 3c 

in 53% and 34% yield, respectively, implying that the electronic property rather than steric hindrance of the 

substituent near the aldehyde group has more impact on the reaction. Substrates 1d-k bearing the 

electron-donating groups such as MeO-, BnO-, and Me-, or electron-withdrawing groups such as F-, and Cl-, 

showed good compatibility, and the corresponding products 3d−k were obtained in 30−57% yields. In 

general, substrates having electron-donating substituents went through at higher reactivity, indicating that the 

electronic effect of the aldehyde group in substrates has a significant correlation with the reaction efficiency. 

Scheme 2. Substrates Scope for Synthesis of 3
a,b

 

 

a
Reactions were carried out by using 1 (0.1 mmol), 2 (0.2 mmol), CuBr (0.05 mmol, 50 mol %), DTBP (0.6 

mmol), MeCN (0.5 mL), 100 °C, N2, 2 h. 
b
Isolated yield.  

In the meantime, sulfonyl hydrazides bearing different substituents were examined as well. 

Benzenesulfonhydrazide and derivatives with MeO-, 
i
Pr-, and 

t
Bu- substituents at the para-position went 

through the reaction smoothly and gave desired products 3l-3o in 32-46% yields. Halide substituents, such as 

Cl and Br, tolerated the standard reaction conditions, thus providing possible access for further functional 
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transformations (3p-q). However, the yield dropped to 28 % in the case of sulfonyl hydrazide bearing a 

bulky biphenyl group (3r).
15

 Sulfonyl hydrazides with substituents such as Me- or Br-, at the meta-position 

also reacted smoothly with substrate 1a and provided corresponding products 3s-t in moderate yields. In 

addition, naphthalene-1-sulfonohydrazide also showed good reactivity, giving product 3u in 51% yield. 

More appealingly, the scope of this reaction was not restricted to alkenyl aldehydes as the substrates. 

Indeed, 1-(2-allylphenyl)ethan-1-one 4 was found also suitable for this cascade reaction (Scheme 3), thus 

providing disubstituted indenes 5a-d, although the yields were relatively lower (31-38%). 

Scheme 3. Substrates Scope for Synthesis 5
a,b

 

 

a
Reactions were carried out by using 4 (0.1 mmol), 2 (0.2 mmol), CuBr (0.05 mmol, 50 mol %), DTBP (0.6 

mmol), MeCN (0.5 mL), 100 °C, N2, 2 h. 
b
Isolated yield.  

To gain some insights into the reaction mechanism, a series of control experiments were performed 

(Scheme 4). First, radical scavenger experiments were implemented. We found that radical scavengers, such 

as 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 1,4-benzoquinone (BQ), significantly suppressed the 

reaction progress, confirming that the proposed radical process is indeed involved (Scheme 4a). During 

optimization of reaction conditions, we found that the reaction failed to proceed without either DTBP or 

CuBr, and the major byproduct sulfonohydrazone 6 could be isolated in 64-67% yield (Scheme 4b). This 

result suggested that the copper salt and the oxidant DTBP are indispensable for the reaction; otherwise, the 

reaction process would stop at the formation of sulfonohydrazone 6. To provide further support for the 

reaction pathway, we stopped the reaction at an early stage and found 1a could be completely transformed to 

6 (Scheme 4c). Subsequent treatment of 6 with 2a under standard conditions gave the desired product 3a in 

42% yield (Scheme 4d), suggesting that the reaction might involve the in situ formation of sulfonohydrazone 

6. Sulfonohydrazone 6 was found to proceed alone the cascade reaction very sluggishly under the standard 

conditions without addition of 2a, leading to 3a in 10% yield (Scheme 4e), indicating the Ts radical to attack 

the terminal vinyl carbon was primarily from another equivalent of 2a, not from the intermediate 6.   

Scheme 4. Mechanistic Studies 
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Based on the experiments above and the literature reports,
10,13f,14

 a proposed mechanism for the current 

Cu(I)-mediated sulfonyl radical-enabled cyclization of alkenyl aldehydes is proposed. As shown in Scheme 

5, the first step involves formation of sulfonohydrazone 6 from 2-allyl benzaldehyde 1 and sulfonyl 

hydrazide 2. In the meantime, sulfonyl radical is formed in situ from the oxidative decomposition of sulfonyl 

hydrazide 2 mediated by copper salt and DTBP
14

, which then attacks the terminal vinyl carbon of substrate 1 

to give the nucleophilic alkyl radical Int-1. Subsequent intramolecular 5-exo-trig cyclization and 

H-abstraction give the intermediate Int-3, which is then converted to the radical species Int-4 by releasing 

the sulfonyl radical and N2.
13f

 Finally, indene 3 is formed from the intermediate Int-4 through a copper 

(II)-mediated single electron transfer oxidation to generate a carbocation species, which then undergoes 

elimination process via β-H-abstraction by 
t
BuO

-
.
16

 It should be mentioned that the overall moderate yield of 

the reaction is likely due to the high reactivity of the alkenyl aldehyde substrates and the incomplete 

conversion of the sulfonohydrazone intermediates. 

Scheme 5. Proposed Reaction Mechanism 
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In conclusion, we have reported a novel and efficient approach to prepare 2-sulfonylmethyl 1H-indene 

derivatives via Cu(I)-mediated sulfonyl radical-enabled 5-exo-trig cyclization strategy. The transformation 

possesses a relatively broad substrate scope with good functional group compatibility, thus leading to 

vinylsulfonylation of inactivated alkenes to yield various sulfonylmethyl indenes. Mechanism study 

indicates that the reaction may occur through a tandem cascade process involving radical 

addition-cyclization-elimination process (RACE). 

 

EXPERIMENTAL SECTION 

General Information. All reactions were performed in flame-dried glassware using sealed tubes or 

Schleck tubes. Liquids and solutions were transferred with syringes. All solvents and chemical reagents were 

obtained from commercial sources and used without further purification. 
1
H and 

13
C NMR spectra were 

recorded with tetramethylsilane as an internal reference. Low- and high-resolution mass spectra were 

recorded on EI-TOF (electrospray ionization/time-of-flight). Flash column chromatography on silica gel 

(200−300 mesh) was used for the routine purification of reaction products. The column output was 

monitored by TLC on silica gel (100−200 mesh) precoated on glass plates (15 × 50 mm), and spots were 

visualized by UV light at 254 nM. General procedure for the preparation of starting materials 1 and 4 was 

according to the literature procedures.
10,17

 Starting materials arylsulfonyl hydrazides were prepared 

according to the literature procedures.
18

 

General Procedure for Synthesis of Sulfonylmethyl 1H-Indenes. Example for the Synthesis of 3a. To 

an oven-dried 10 mL sealed tube was added substrate 1a (14.6 mg, 0.10 mmol), 

4-methylbenzenesulfonohydrazide 2a (37.2 mg, 0.20 mmol), CuBr (7.2 mg, 0.050 mmol), DTBP (55 µL, 

0.30 mmol) and acetonitrile (0.5 mL) under a nitrogen atmosphere. The mixture was stirred for 2 h at 100 

o
C. The mixture was then cooled to room temperature, diluted with DCM, filtered through a celite pad, and 

concentrated in vacuo. The residue was purified by preparative thin-layer chromatography (eluent: PE/DCM 

= 2/3), to afford the desired product 3a. 

2-(Tosylmethyl)-1H-indene (3a). White solid, yield: 57 % (16.2 mg); mp 173-174 
o
C. 

1
H NMR (300 
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MHz, CDCl3) δ 7.68 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 7.0 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.25 – 7.16 (m, 2H), 

6.58 (s, 1H), 4.25 (s, 2H), 3.51 (s, 2H), 2.43 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 144.7, 144.0, 143.7, 

135.4, 135.2, 134.3, 129.7, 128.4, 126.4, 125.3, 123.7, 121.2, 59.0, 41.5, 21.6; Ms (EI): m/z = 284 [M]
+
; 

HRMS (EI): m/z [M]
+
 Calcd for C17H16O2S, 284.0866; Found, 284.0874. 

4-Methoxy-2-(tosylmethyl)-1H-indene (3b). White solid, yield: 53 % (16.8 mg); mp 90-91 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.68 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 7.20 – 7.13 (m, 1H), 7.04 (d, J = 7.5 

Hz, 1H), 6.78 – 6.72 (m, 2H), 4.23 (s, 2H), 3.82 (s, 3H), 3.53 (s, 2H), 2.42 (s, 3H); 
13

C NMR (126 MHz, 

CDCl3) δ 153.1, 146.0, 144.7, 135.5, 132.5, 132.2, 131.6, 129.7, 128.3, 126.7, 116.6, 108.4, 59.1, 55.4, 41.8, 

21.6; Ms (EI): m/z = 314 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C18H18O3S, 314.0971; Found, 314.0970. 

4-Fluoro-2-(tosylmethyl)-1H-indene (3c). White solid, yield: 34 % (10.3 mg); mp 135-136 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.69 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.23 – 7.13 (m, 2H), 6.94 (t, J = 8.7 

Hz, 1H), 6.66 (s, 1H), 4.24 (s, 2H), 3.61 (s, 2H), 2.44 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 156.1 (d, J = 

249.4 Hz), 147.0 (d, J = 5.5 Hz), 144.9, 135.3, 134.5, 130.8 (d, J = 16.3 Hz), 129.8, 129.7, 128.3, 126.9 (d, J 

= 6.7 Hz), 119.6 (d, J = 3.2 Hz), 113.0 (d, J = 19.6 Hz), 58.9, 41.9, 21.6; Ms (EI): m/z = 302 [M]
+
; HRMS 

(EI): m/z [M]
+
 Calcd for C17H15FO2S, 302.0771; Found, 302.0769. 

5-Methoxy-2-(tosylmethyl)-1H-indene (3d). White solid, yield: 51 % (16.0 mg); mp 144-145 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.67 (d, J = 8.3 Hz, 2H), 7.32 – 7.25 (m, 3H), 6.84 (d, J = 2.3 Hz, 1H), 6.76 (dd, J = 

8.2, 2.4 Hz, 1H), 6.53 (s, 1H), 4.23 (s, 2H), 3.80 (s, 3H), 3.43 (s, 2H), 2.43 (s, 3H); 
13

C NMR (126 MHz, 

CDCl3) δ 158.8, 145.0, 144.7, 136.1, 135.7, 135.4, 135.1, 129.7, 128.4, 124.1, 111.4, 106.7, 59.0, 55.4, 40.8, 

21.6; Ms (EI): m/z = 314 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C18H18O3S, 314.0971; Found, 314.0969. 

5-(Benzyloxy)-2-(tosylmethyl)-1H-indene (3e). White solid, yield: 47 % (18.2 mg); mp 143-144 
o
C. 

1
H 

NMR (300 MHz, CDCl3) δ 7.67 (d, J = 8.3 Hz, 2H), 7.46 – 7.31 (m, 5H), 7.31 – 7.26 (m, 3H), 6.91 (d, J = 

2.2 Hz, 1H), 6.83 (dd, J = 8.2, 2.4 Hz, 1H), 6.52 (s, 1H), 5.06 (s, 2H), 4.22 (s, 2H), 3.43 (s, 2H), 2.43 (s, 3H); 

13
C NMR (126 MHz, CDCl3) δ 158.1, 145.0, 144.7, 137.2, 136.4, 135.7, 135.4, 135.1, 129.7, 128.5, 128.4, 

127.9, 127.4, 124.1, 112.3, 107.8, 70.3, 59.0, 40.8, 21.6; Ms (EI): m/z = 390 [M]
+
; HRMS (EI): m/z [M]

+
 

Calcd for C24H22O3S, 390.1284; Found, 390.1294. 

5-Fluoro-2-(tosylmethyl)-1H-indene (3f). White solid, yield: 30 % (9.0 mg); mp 175-176 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.68 (d, J = 8.2 Hz, 2H), 7.36 – 7.27 (m, 3H), 7.00 – 6.83 (m, 2H), 6.53 (s, 1H), 4.23 (s, 

2H), 3.49 (s, 2H), 2.44 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 162.2 (d, J = 242.7 Hz), 145.3 (d, J = 9.3 Hz), 

144.9, 139.2 (d, J = 2.1 Hz), 136.8, 135.4, 134.5 (d, J = 3.1 Hz), 129.8, 128.4, 124.4 (d, J = 9.1 Hz), 112.1 (d, 

J = 23.1 Hz), 108.2 (d, J = 23.2 Hz), 58.9, 40.9, 21.6; Ms (EI): m/z = 302 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd 

for C17H15FO2S, 302.0771; Found, 302.0767. 

5-Chloro-2-(tosylmethyl)-1H-indene (3g). White solid, yield: 32 % (10.2 mg); mp 192-193 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.67 (d, J = 8.1 Hz, 2H), 7.35 – 7.29 (m, 3H), 7.26 (s, 1H), 7.17 (d, J = 8.0 Hz, 1H), 

6.50 (s, 1H), 4.23 (s, 2H), 3.51 (s, 2H), 2.44 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 145.3, 144.9, 142.1, 

136.5, 135.3, 134.2, 132.4, 129.8, 128.4, 125.3, 124.6, 121.4, 58.9, 41.1, 21.6; Ms (EI): m/z = 318 [M]
+
; 

HRMS (EI): m/z [M]
+
 Calcd for C17H15ClO2S, 318.0476; Found, 318.0470. 

6-Methyl-2-(tosylmethyl)-1H-indene (3h). White solid, yield: 52 % (15.6 mg); mp 151-152 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.67 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.24 (s, 1H), 7.17 (d, J = 7.7 Hz, 1H), 

7.06 (d, J = 7.7 Hz, 1H), 6.52 (s, 1H), 4.23 (s, 2H), 3.47 (s, 2H), 2.43 (s, 3H), 2.38 (s, 3H); 
13

C NMR (126 

MHz, CDCl3) δ 144.7, 144.3, 141.1, 135.4, 135.1, 135.0, 133.2, 129.6, 128.4, 127.2, 124.6, 120.8, 59.0, 41.2, 

21.6, 21.5; Ms (EI): m/z = 298 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C18H18O2S, 298.1022; Found, 

298.1023. 

6-Fluoro-2-(tosylmethyl)-1H-indene (3i). White solid, yield: 41 % (12.4 mg); mp 174-175 
o
C. 

1
H NMR 
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(300 MHz, CDCl3) δ 7.68 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.20 (dd, J = 8.3, 5.1 Hz, 1H), 7.12 

(d, J = 8.7 Hz, 1H), 6.99 – 6.90 (m, 1H), 6.55 (s, 1H), 4.21 (s, 2H), 3.50 (s, 2H), 2.43 (s, 3H); 
13

C NMR (126 

MHz, CDCl3) δ 161.6 (d, J = 244.4 Hz), 146.0 (d, J = 8.8 Hz), 144.8, 139.7 (d, J = 2.0 Hz), 135.5, 134.4, 

133.9 (d, J = 3.9 Hz), 129.7, 128.3, 121.8 (d, J = 8.8 Hz), 113.5 (d, J = 23.1 Hz), 111.4 (d, J = 23.4 Hz), 58.8, 

41.6 (d, J = 2.0 Hz), 21.6; Ms (EI): m/z = 302 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C17H15FO2S, 302.0771; 

Found, 302.0772. 

6-Chloro-2-(tosylmethyl)-1H-indene (3j). White solid, yield: 31 % (10.0 mg); mp 193-194 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.68 (d, J = 8.3 Hz, 2H), 7.39 (s, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.23 – 7.17 (m, 2H), 

6.56 (s, 1H), 4.22 (s, 2H), 3.50 (s, 2H), 2.44 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 145.5, 144.9, 142.2, 

135.4, 134.8, 134.4, 131.5, 129.8, 128.3, 126.7, 124.1, 121.9, 58.8, 41.4, 21.6; Ms (EI): m/z = 318 [M]
+
; 

HRMS (EI): m/z [M]
+
 Calcd for C17H15ClO2S, 318.0476; Found, 318.0480. 

6-(Tosylmethyl)-5H-indeno[5,6-d][1,3]dioxole (3k). White solid, yield: 57 % (18.8 mg); mp 177-178 
o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.68 (t, J = 6.7 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 6.91 (s, 1H), 6.76 (s, 1H), 

6.46 (s, 1H), 5.95 (s, 2H), 4.19 (s, 2H), 3.41 (s, 2H), 2.43 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 146.6, 

146.3, 144.7, 138.0, 137.4, 135.5, 134.8, 132.8, 129.6, 128.4, 105.1, 102.0, 100.9, 59.0, 41.3, 21.6; Ms (EI): 

m/z = 328 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C18H16O4S, 328.0764; Found, 328.0774. 

2-((Phenylsulfonyl)methyl)-1H-indene (3l). White solid, yield: 46 % (13.2 mg); mp 137-138 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.85 – 7.77 (m, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.42 (d, J = 6.8 

Hz, 1H), 7.31 – 7.27 (m, 1H), 7.25 – 7.17 (m, 2H), 6.56 (s, 1H), 4.27 (s, 2H), 3.52 (s, 2H); 
13

C NMR (126 

MHz, CDCl3) δ 144.0, 143.7, 138.3, 135.3, 134.1, 133.8, 129.1, 128.4, 126.5, 125.4, 123.7, 121.3, 58.9, 41.5; 

Ms (EI): m/z = 270 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C16H14O2S, 270.0709; Found, 270.0703. 

2-(((4-Methoxyphenyl)sulfonyl)methyl)-1H-indene (3m). White solid, yield: 32 % (10.0 mg); mp 123-124 

o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.74 – 7.67 (m, 2H), 7.42 (d, J = 7.7 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.26 – 

7.15 (m, 2H), 6.98 – 6.91 (m, 2H), 6.57 (s, 1H), 4.24 (s, 2H), 3.86 (s, 3H), 3.51 (s, 2H); 
13

C NMR (126 MHz, 

CDCl3) δ 163.8, 144.0, 143.7, 135.1, 134.6, 130.6, 129.9, 126.4, 125.3, 123.7, 121.2, 114.2, 59.1, 55.6, 41.5; 

Ms (EI): m/z = 300 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C17H16O3S, 300.0815; Found, 300.0818. 

2-(((4-Isopropylphenyl)sulfonyl)methyl)-1H-indene (3n). White solid, yield: 42 % (13.8 mg); mp 110-111 

o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 6.9 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 

7.31 – 7.27 (m, 1H), 7.25 – 7.16 (m, 2H), 6.60 (s, 1H), 4.25 (s, 2H), 3.51 (s, 2H), 2.98 (hept, J = 6.9 Hz, 1H), 

1.26 (d, J = 6.9 Hz, 6H); 
13

C NMR (126 MHz, CDCl3) δ 155.5, 144.0, 143.8, 135.8, 135.2, 134.3, 128.5, 

127.2, 126.4, 125.3, 123.7, 121.2, 59.0, 41.5, 34.2, 23.6; Ms (EI): m/z = 312 [M]
+
; HRMS (EI): m/z [M]

+
 

Calcd for C19H20O2S, 312.1179; Found, 312.1176. 

2-(((4-(tert-Butyl)phenyl)sulfonyl)methyl)-1H-indene (3o). White solid, yield: 44 % (14.8 mg); mp 

156-157 
o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.73 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 7.0 

Hz, 1H), 7.31 – 7.27 (m, 1H), 7.26 – 7.16 (m, 2H), 6.61 (s, 1H), 4.25 (s, 2H), 3.51 (s, 2H), 1.33 (s, 9H); 
13

C 

NMR (126 MHz, CDCl3) δ 157.7, 144.0, 143.8, 135.5, 135.2, 134.3, 128.2, 126.4, 126.1, 125.3, 123.6, 121.2, 

59.0, 41.5, 35.2, 31.0; Ms (EI): m/z = 326 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C20H22O2S, 326.1335; 

Found, 326.1332. 

2-(((4-Chlorophenyl)sulfonyl)methyl)-1H-indene (3p). White solid, yield: 45 % (14.2 mg); mp 131-132 

o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.73 (d, J = 7.1 Hz, 2H), 7.51 – 7.41 (m, 3H), 7.32 – 7.28 (m, 1H), 7.26 – 

7.17 (m, 2H), 6.57 (s, 1H), 4.26 (s, 2H), 3.54 (s, 2H); 
13

C NMR (126 MHz, CDCl3) δ 143.9, 143.5, 140.6, 

136.7, 135.6, 133.8, 129.9, 129.4, 126.5, 125.5, 123.7, 121.4, 59.0, 41.5; Ms (EI): m/z = 304 [M]
+
; HRMS 

(EI): m/z [M]
+
 Calcd for C16H13ClO2S, 304.0319; Found, 304.0323. 

2-(((4-Bromophenyl)sulfonyl)methyl)-1H-indene (3q). White solid, yield: 48 % (17.3 mg); mp 139-140 
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o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.65 (s, 4H), 7.44 (d, J = 6.9 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.27 – 7.18 (m, 

2H), 6.58 (s, 1H), 4.26 (s, 2H), 3.54 (s, 2H); 
13

C NMR (126 MHz, CDCl3) δ 143.9, 143.5, 137.3, 135.6, 

133.7, 132.4, 129.9, 129.2, 126.5, 125.5, 123.7, 121.4, 58.9, 41.5; Ms (EI): m/z = 348 [M]
+
; HRMS (EI): m/z 

[M]
+
 Calcd for C16H13BrO2S, 347.9814; Found, 347.9811. 

2-(([1,1'-Biphenyl]-4-ylsulfonyl)methyl)-1H-indene (3r). White solid, yield: 28 % (10 mg); mp 219-220 

o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.91 – 7.83 (m, 2H), 7.75 – 7.68 (m, 2H), 7.64 – 7.58 (m, 2H), 7.53 – 7.41 

(m, 4H), 7.32 – 7.18 (m, 3H), 6.63 (s, 1H), 4.31 (s, 2H), 3.56 (s, 2H); 
13

C NMR (126 MHz, CDCl3) δ 146.7, 

144.0, 143.7, 139.0, 136.9, 135.4, 134.2, 129.1, 128.9, 128.7, 127.6, 127.4, 126.5, 125.4, 123.7, 121.3, 59.0, 

41.5; Ms (EI): m/z = 346 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C22H18O2S, 346.1022; Found, 346.1026. 

2-((m-Tolylsulfonyl)methyl)-1H-indene (3s). White solid, yield: 43 % (12.9 mg); mp 121-122 
o
C. 

1
H 

NMR (300 MHz, CDCl3) δ 7.66 – 7.55 (m, 2H), 7.45 – 7.34 (m, 3H), 7.31 – 7.27 (m, 1H), 7.26 – 7.15 (m, 

2H), 6.60 (s, 1H), 4.25 (s, 2H), 3.51 (s, 2H), 2.38 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 144.0, 143.7, 139.4, 

138.2, 135.3, 134.5, 134.1, 128.9, 128.6, 126.4, 125.5, 125.3, 123.6, 121.2, 58.9, 41.5, 21.2; Ms (EI): m/z = 

284 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C17H16O2S, 284.0866; Found, 284.0863. 

2-(((3-Bromophenyl)sulfonyl)methyl)-1H-indene (3t). White solid, yield: 40 % (14.7 mg); mp 154-155 
o
C. 

1
H NMR (300 MHz, CDCl3) δ 8.00 (s, 1H), 7.79 – 7.74 (m, 1H), 7.71 (dd, J = 7.9, 0.6 Hz, 1H), 7.44 (d, J = 

6.9 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.33 – 7.28 (m, 1H), 7.27 – 7.19 (m, 2H), 6.62 (s, 1H), 4.27 (s, 2H), 

3.55 (s, 2H); 
13

C NMR (126 MHz, CDCl3) δ 143.9, 143.5, 140.2, 136.9, 135.8, 133.5, 131.2, 130.5, 127.1, 

126.5, 125.5, 123.7, 123.2, 121.4, 58.9, 41.5; Ms (EI): m/z = 348 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for 

C16H13BrO2S, 347.9814; Found, 347.9805. 

1-(((1H-inden-2-yl)methyl)sulfonyl)naphthalene (3u). White solid, yield: 51 % (17 mg); mp 148-149 
o
C. 

1
H NMR (300 MHz, CDCl3) δ 8.81 (d, J = 8.6 Hz, 1H), 8.15 (dd, J = 7.4, 1.2 Hz, 1H), 8.11 (d, J = 8.3 Hz, 

1H), 7.99 (d, J = 8.1 Hz, 1H), 7.72 (ddd, J = 8.5, 7.0, 1.5 Hz, 1H), 7.67 – 7.61 (m, 1H), 7.52 – 7.46 (m, 1H), 

7.37 (d, J = 6.3 Hz, 1H), 7.22 – 7.13 (m, 3H), 6.43 (s, 1H), 4.47 (s, 2H), 3.46 (s, 2H); 
13

C NMR (126 MHz, 

CDCl3) δ 143.9, 143.7, 135.3, 135.2, 134.1, 134.0, 133.5, 131.2, 129.3, 129.0, 128.8, 127.0, 126.4, 125.3, 

124.3, 124.0, 123.6, 121.2, 58.3, 41.5; Ms (EI): m/z = 320 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C20H16O2S, 

320.0866; Found, 320.0862. 

3-Methyl-2-(tosylmethyl)-1H-indene (5a). White solid, yield: 31 % (9.3 mg); mp 133-134 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ 7.64 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 7.3 Hz, 1H), 7.32 – 7.20 (m, 5H), 4.23 (s, 2H), 

3.52 (s, 2H), 2.43 (s, 3H), 1.61 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 145.3, 144.7, 143.2, 141.5, 135.6, 

129.7, 128.4, 127.2, 126.2, 125.5, 123.5, 119.3, 57.0, 41.1, 21.6, 10.0; Ms (EI): m/z = 298 [M]
+
; HRMS (EI): 

m/z [M]
+
 Calcd for C18H18O2S, 298.1022; Found, 298.1008. 

2-(((4-Isopropylphenyl)sulfonyl)methyl)-3-methyl-1H-indene (5b). White solid, yield: 38 % (12.4 mg); 

mp 105-106 
o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.67 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 6.5 Hz, 1H), 7.34 – 7.26 

(m, 3H), 7.25 – 7.19 (m, 2H), 4.22 (s, 2H), 3.52 (s, 2H), 2.97 (hept, J = 6.9 Hz, 1H), 1.58 (t, J = 2.0 Hz, 3H), 

1.25 (d, J = 6.9 Hz, 6H); 
13

C NMR (126 MHz, CDCl3) δ 155.5, 145.3, 143.2, 141.5, 135.7, 128.6, 127.3, 

127.2, 126.2, 125.5, 123.5, 119.3, 57.0, 41.1, 34.2, 23.6, 9.9; Ms (EI): m/z = 326 [M]
+
; HRMS (EI): m/z [M]

+
 

Calcd for C20H22O2S, 326.1335; Found, 326.1327. 

2-(((4-(tert-Butyl)phenyl)sulfonyl)methyl)-3-methyl-1H-indene (5c). White solid, yield: 36 % (12.2 mg); 

mp 142-143 
o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.70 – 7.64 (m, 2H), 7.51 – 7.45 (m, 2H), 7.43 (d, J = 6.6 Hz, 

1H), 7.32 – 7.27 (m, 1H), 7.25 – 7.20 (m, 2H), 4.22 (s, 2H), 3.53 (s, 2H), 1.57 (t, J = 2.1 Hz, 3H), 1.33 (s, 

9H); 
13

C NMR (126 MHz, CDCl3) δ 157.8, 145.3, 143.2, 141.5, 135.4, 128.3, 127.3, 126.2, 126.1, 125.5, 

123.5, 119.3, 57.0, 41.1, 35.2, 31.0, 9.9; Ms (EI): m/z = 340 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for 

C21H24O2S, 340.1492; Found, 340.1496. 
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2-(((4-Chlorophenyl)sulfonyl)methyl)-3-methyl-1H-indene (5d). White solid, yield: 32 % (10.2 mg); mp 

125-126 
o
C. 

1
H NMR (300 MHz, CDCl3) δ 7.72 – 7.67 (m, 2H), 7.49 – 7.42 (m, 3H), 7.34 – 7.28 (m, 1H), 

7.26 – 7.21 (m, 2H), 4.25 (s, 2H), 3.54 (s, 2H), 1.64 (t, J = 2.2 Hz, 3H); 
13

C NMR (126 MHz, CDCl3) δ 

145.1, 143.1, 141.9, 140.6, 137.0, 129.9, 129.4, 126.6, 126.4, 125.7, 123.5, 119.5, 57.0, 41.1, 10.2; Ms (EI): 

m/z = 318 [M]
+
; HRMS (EI): m/z [M]

+
 Calcd for C17H15ClO2S, 318.0476; Found, 318.0480. 

1 mmol-scale synthesis of 3a. To an oven-dried 25 mL sealed tube was added substrate 1a (146.2 mg, 1.0 

mmol), 4-methylbenzenesulfonohydrazide 2a (372.4 mg, 2.0 mmol), CuBr (71.7 mg, 0.50 mmol), DTBP 

(551 µL, 3.0 mmol) and acetonitrile (2.0 mL) under a nitrogen atmosphere. The mixture was stirred for 2 h at 

100 ⁰C. The mixture was then cooled to room temperature, diluted with DCM, filtered through a celite pad, 

and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: PE/EA 

= 5/1), to afford 161.2 mg (57%) of the desired product 3a.  

Radical Trapping Experiments (Scheme 4a). To an oven-dried 10 mL sealed tube was added substrate 

1a (14.6 mg, 0.10 mmol), 4-methylbenzenesulfonohydrazide 2a (37.2 mg, 0.20 mmol), CuBr (7.2 mg, 0.050 

mmol), TEMPO (46.9 mg, 3.0 equiv) or 1,4-benzoquinone (32.4 mg, 3.0 equiv), DTBP (55 µL, 0.30 mmol) 

and acetonitrile (0.5 mL) under a nitrogen atmosphere. The mixture was stirred for 2 h at 100 ⁰C. The 

mixture was then cooled to room temperature, diluted with DCM, filtered through a celite pad, and 

concentrated in vacuo. The yield of product 3a was based on 
1
H NMR analysis of the crude product. 

Control Experiment 1 (Scheme 4b). To an oven-dried 10 mL sealed tube was added o-allylbenzaldehyde 

tosylhydrazone 6 (31.4 mg, 0.10 mmol), 4-methylbenzenesulfonohydrazide 2a (37.2 mg, 0.20 mmol), CuBr 

(7.2 mg, 0.050 mmol) and acetonitrile (0.5 mL) under a nitrogen atmosphere. The mixture was stirred for 2 h 

at 100 
o
C. The mixture was then cooled to room temperature, diluted with DCM, filtered through a celite pad, 

and concentrated in vacuo. The residue was purified by preparative thin-layer chromatography (eluent: 

PE/DCM = 2/3), to afford the o-allylbenzaldehyde tosylhydrazone 6 (21 mg, 67 %). Thus the reactions were 

repeated in the absence of CuBr, affording 20 mg of the o-allylbenzaldehyde tosylhydrazone 6 in 64% yield.  

Control Experiment 2 (Scheme 4c). To an oven-dried 10 mL sealed tube was added 1a (14.6 mg, 0.10 

mmol), 4-methylbenzenesulfonohydrazide 2a (37.2 mg, 0.20 mmol), CuBr (7.2 mg, 0.050 mmol), DTBP (55 

µL, 0.30 mmol) and acetonitrile (0.5 mL) under a nitrogen atmosphere. The mixture was stirred for 5 min at 

100 
o
C. The mixture was then cooled to room temperature, diluted with DCM, filtered through a celite pad, 

and concentrated in vacuo. The residue was purified by preparative thin-layer chromatography (eluent: 

PE/DCM = 2/3), to afford the o-allylbenzaldehyde tosylhydrazone 6 (23.9 mg, 76 %).  

Control Experiment 3 (Scheme 4d). To an oven-dried 10 mL sealed tube was added o-allylbenzaldehyde 

tosylhydrazone 6 (31.4 mg, 0.10 mmol), 4-methylbenzenesulfonohydrazide 2a (37.2 mg, 0.20 mmol), CuBr 

(7.2 mg, 0.050 mmol), DTBP (55 µL, 0.30 mmol) and acetonitrile (0.5 mL) under a nitrogen atmosphere. 

The mixture was stirred for 2 h at 100 
o
C. The mixture was then cooled to room temperature, diluted with 

DCM, filtered through a celite pad, and concentrated in vacuo. The residue was purified by preparative 

thin-layer chromatography (eluent: PE/DCM = 2/3), to afford the desired product 3a (12 mg, 42 %).  

Control Experiment 4 (Scheme 4c). To an oven-dried 10 mL sealed tube was added o-allylbenzaldehyde 

tosylhydrazone 6 (31.4 mg, 0.10 mmol), CuBr (7.2 mg, 0.050 mmol), DTBP (55 µL, 0.30 mmol) and 

acetonitrile (0.5 mL) under a nitrogen atmosphere. The mixture was stirred for 2 h at 100 
o
C. The mixture 

was then cooled to room temperature, diluted with DCM, filtered through a celite pad, and concentrated in 

vacuo. The residue was purified by preparative thin-layer chromatography (eluent: PE/DCM = 2/3), to afford 

the desired product 3a (2.9 mg, 10 %).  
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Supporting Information 

Copies of 1H NMR and 13C NMR spectra for new compounds and X-ray crystallography data for compound 3l. 

This material is available free of charge via the Internet at http://pubs.acs.org. 
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