Article

Synthesis of [5'-13C]Ribonucleosides and 2'-Deoxy[5'-13C]ribonucleosides

Etsuko Kawashima,* Kaoru Umabe, and Takeshi Sekine

Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo, 192-0392 Japan

kawasima@ps.toyaku.ac.jp

Received November 14, 2001

The present efficient synthesis of [5'-13C]ribonucleosides and 2'-deoxy[5'-13C]ribonucleosides is characterized by the synthesis of the D- $[5^{-13}C]$ ribose derivative as an intermediate via the Wittig reaction of 4-aldehydo-D-erythrose dialkyl acetals with Ph₃P¹³CH₃I-BuLi to introduce the ¹³C label at the 5-position of a pentose. This was followed by the highly diastereoselective osmium dihydroxylation for the preparation of 2,3-di-O-benzyl-D-[5-13C]ribose dialkyl acetal and the cyclization from D-[5-¹³C]ribose dialkyl acetal derivatives to the alkyl D-[5-¹³C]ribofuranoside derivative by the use of LiBF₄. The obtained D- $[5^{-13}C]$ ribose derivative was converted into $[5'^{-13}C]$ ribonucleosides and subsequently into the corresponding 2'-deoxynucleosides.

Introduction

The conformational diversity of the sugar-phosphate backbone and/or the sugar moieties in nucleic acids is considered to be important in the elucidation of nucleic acid-protein or -medicine recognition processes. An efficient synthetic method for 2'-deoxy[5'-2H]ribonucleosides $(5'S'/5'R) = ca. 2:1)^1$ has been developed, with the expectation that this would enable us to assign unambiguously both the H5' and H5" signals of an oligodeoxvribonucleotide and to determine its sugar-phosphodiester backbone conformation spectroscopically by NMR. NOESY and DQF-COSY NMR analyses of the decamer d(G*C*A*T*T*A*A*T*G*C*) bearing these deuteriumlabeled nucleotides were performed. The complete stereospecific assignments and the simplified spin systems enabled us to determine the 15 ${}^{3}J$ coupling constants between H4' and H5'/H5" and to assign unambiguously 135 NOESY cross-peaks originating from H4'/H5'/H5" resonances.² In addition, the duplex d(C*G*C*G*A*-A*T*T*C*G*C*G*)2 constructed from these labeled components proved their utility in 2D ¹H-³¹P HSQC.³

From another point of view, the site-specific labeling of the 5' position of nucleosides with ¹³C could facilitate conformational studies of an oligonucleotide chain, in terms of heteronuclear multidimensional NMR spectroscopy.

The chemical syntheses of [5'-13C]adenosine and D-[5-¹³C]ribose have been reported by Matwiyoff et al.⁴ and

(3) Ono, A.; Makita, T.; Tate, S.; Kawashima, E.; Ishido, Y.;
Kainosho, M. *Magn. Reson. Chem.* **1996**, *34*, s40-s46.
(4) Walker, T. E.; Hogenkemp, H. P. C.; Needham, T. E.; Matwiyoff, N. A. *Biochemistry* **1974**, *13*, 2650–2655.

Serianni et al.,⁵ respectively. Matwiyoff et al.⁴ prepared [5'-¹³C]adenosine by the coupling reaction of an adenine derivative with a D-[5-¹³C]ribose derivative, which was synthesized by way of L-[1-13C]ribonic acid obtained by the reaction of L-erythrose with K¹³CN, followed by hydrolysis under acidic conditions. Serianni et al.,⁵ on the other hand, synthesized D-[5-13C]ribose from D-[6-13C]glucose, which was obtained by the reaction of 1,2-Oisopropylidene- α -D-*xylo*-pentdialdo-1,4-furanoside with K¹³CN. These synthetic methods, however, inevitably involved multiple steps after the introduction of the ¹³C label to attain the final product and were therefore judged impractical. Thus, more efficient processes were needed to prepare [5'-13C]nucleosides. We have published a letter⁶ and a short communication⁷ regarding the efficient synthesis of 2'-deoxy[5'-13C]ribonucleosides. The detailed results thus obtained are described herein.

Results and Discussion

I. Synthesis of 1-O-Acetyl-2,3,5,-tri-O-benzoyl-D-[5-¹³C]ribofuranose from D-Ribose. The first step for the synthesis of [5'-13C]nucleosides was the synthesis of 1-O-Ac-2,3,5-tri-O-benzoyl-D-[5-¹³C]ribofuranose (12) from D-ribose (1) via D-[5-¹³C]ribose dialkyl acetal derivatives (7)

Synthesizing the Substrate To Introduce the Carbon-13 Label at the 5 Position of D-Ribose (Scheme 1). The chemical conversion of D-ribose (1) into 4-aldehydo-2,3-di-O-benzyl-D-erythrose dibenzyl acetal (5-Bn) and the corresponding dimethyl acetal (5-Me),

^{(1) (}a) Kawashima, E.; Toyama, K.; Ohshima, K.; Kainosho, M.; (1) (a) Kawasimma, E.; 10yama, K.; Ohshima, K.; Kainosho, M.;
Kyogoku, Y.; Ishido, Y. Chirality 1997, 9(5/6), 435-442. (b) Kawashima, E., Toyama, K., Ohshima, K., Kainosho, M.; Kyogoku, Y.;
Ishido, Y. Tetrahedron Lett. 1995, 36, 6699-6700.
(2) Kojima, C.; Kawashima, E.; Toyama, K.; Ohshima, K.; Ishido, Y.; Kainosho, M.; Kyogoku, Y. J. Biomol. NMR 1998, 11, 103-109.
(3) Ono, A.; Makita, T.; Tata, S.; Kawashima, E.; Jebido, Y.;

⁽⁵⁾ Serianni, A. S.; Bondo, P. B. J. Biomol. Struct. Dyn. 1994, 11, 1133 - 1148

⁽⁶⁾ Sekine, T.; Kawashima, E.; Ishido, Y. Tetrahedron Lett. 1996, 37 7757-7760

⁽⁷⁾ Kawashima, E.; Sekine, T.; Umabe, K.; Naito, Y.; Kamaike, K.; Kojima, C.; Mizukoshi, T.; Suzuki, E.; Ishido, Y. Nucleosides Nucleotides 1999, 18, 1597-1598.

SCHEME 1. Synthesis of the Substrate for Introducing the ¹³C Label at the 5 Position of D-Ribose^a

^{*a*} Reagent and conditions: (a) methyl ribosylation, 5-*O*-dimethoxytritylation, 2,3-di-*O*-benzylation, dedimethoxytritylation at the 5 position; (b) EtSH, concd HCl, 0 °C by the method of Stahley et al.,⁸ (c) ROH (benzyl and methyl alcohol), HgO, HgCl₂, CaSO₄, 70 °C by the method of Serfontein et al.;⁹ (d) **4-Bn**: NaIO₄, 5 mM H₂SO₄ in EtOH/H₂O (9/1), rt; **4-Me**: NaIO₄ in EtOH/H₂O (9/1), rt.

SCHEME 2. Introduction of the ¹³C-Label at the C5 by the Wittig Reaction

which are the substrates to introduce the carbon-13 label at the 5 position of D-ribose by the Wittig reaction using a [¹³C]methyltriphenylphosphonium iodide (Ph₃P¹³CH₃I), was efficiently performed by the sequence reactions shown in Scheme 1. Compound **1** was successfully converted into **5-Bn** in 69% and **5-Me** in 75% overall yields in nine steps, respectively.

Introduction of the ¹³**C Label at the 5-Position of a D-Ribofuranose Derivative (Scheme 2).** The introduction of the carbon-13 label proceeded by the Wittig reaction,¹⁰ using a Ph₃P¹³CH₃I–butyllithium (BuLi) system to give 2,3-di-*O*-dibenzyl-4,5-didehydro-4,5-dideoxy-D-[5-¹³C]ribofuranose dibenzyl acetal (**6-Bn**) and dimethyl acetal (**6-Me**) in excellent yields of 93% and 94%, respectively (Scheme 2).

The ¹H NMR chart of **6-Bn** is shown in Figure 1, along with that of the corresponding nonlabeled sample, which demonstrates its reasonable structure by comparing that of the corresponding nonlabeled sample with respect to the H5 signal region. Only the C5 signal was recognized in the C-13 NMR chart of **6-Bn** in Figure 2. A comparison of these spectra shows the introduction of the ¹³C label at the 5-position of **6-Bn** achieved in the present work.

Highly Diastereoselective Dihydroxylation Reaction with OsO₄ for the Preparation of the D- $[5-^{13}C]$ -

TABLE 1.	OsO ₄ Dih	ydroxylation	Reaction	of 6'-Bn
(Nonlabele	d)			

procedure	reagents	7'-Bn (nonlabeled) yield (%)	4 <i>R</i> /4 <i>S</i>
stoichiometric	OsO ₄ (1.2 mol equiv) pyridine	97	92:8
catalytic	OsO4 (0.05 mol equiv) 4-methylmorpholine N-oxide	97	93:7

Ribose Derivative (Schemes 3 and 4). In the next step, we investigated the diastereoselective dihydroxylation of 6. The asymmetric dihydroxylation (AD) reaction¹¹ of **6** with osmium tetraoxide (OsO_4), as well as the introduction of the carbon-13 label by the Wittig reaction, was also one of the important key steps in this synthetic route. By the use of nonlabeled 2,3-di-O-benzyl-4,5didehydro-4,5-dideoxy-D-ribose dibenzyl acetal (6'-Bn), the reaction conditions were examined through two routes of stoichiometric^{12a} (osmium tetraoxide 1.2 mol equiv in pyridine) and catalytic^{12b} (osmium tetraoxide 0.05 mol equiv and 4-methylmorpholine N-oxide) procedures. Both of the reactions gave a mixture of 2,3-di-Obenzyl-D-ribose dibenzyl acetal (7'-Bn) (3,4-anti; 4R) and L-lyxo (3,4-syn; 4S) isomer, with the ratios of 92:8 and 93:7 in 97% yield, respectively (Table 1). The confirmation of structures and the proportions of these products were determined by comparison with **4-Bn** and by ¹H NMR spectroscopy after their conversion into the 4,5-di-Obenzoyl derivatives 8 (Scheme 3 and Table 1).

The efficiency under these conditions led us to use the catalytic procedure for the reaction of **6** to give a mixture of the 2,3-di-*O*-benzyl-D-[5-¹³C]ribose dibenzyl acetal (**7-Bn**) and the L-*lyxo* isomer from **6-Bn** [quenching by sodium hydrogen sulfite (NaHSO₃)] and a mixture of the corresponding dimethyl acetal (**7-Me**) and the L-*lyxo* isomer from **6-Me** [quenching by an aqueous solution of saturated sodium disulfite (Na₂S₂O₅)¹³], in 99% (93:7) and

^{(8) (}a) Kennea, G. W.; Robba, H. J.; Todd, A. R. *J. Chem. Soc.* **1949**, 1613–1620. (b) Wolfrom, M. I.; Newlin, M. R.; Stahly, E. E. *J. Am. Chem. Soc.* **1931**, *53*, 4379–4383.

⁽⁹⁾ Jordaan, J. H.; Serfontein, W. J. J. Org. Chem. **1963**, 1395–1397.

⁽¹⁰⁾ Matsuda, A.; Takenuki, K.; Tanaka, M.; Sasaki, T.; Ueda, T. J. Med. Chem. **1991**, *34*, 812–819.

⁽¹¹⁾ Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547.

^{(12) (}a) Cha, J. K.; Christ, W. J.; Kishi, Y. *Tetrahedron Lett.* **1983**, *24*, 3943–3946. (b) Cha, J. K.; Christ, W. J.; Kishi, Y. *Tetrahedron* **1984**, *40*, 2247–2255.

⁽¹³⁾ Wai, J. S. M.; Marko, I.; Svendsen, J. S.; Finn, M. G.; Jacobsen, E. N.; Sharpless, K. B. *J. Am. Chem. Soc.* **1989**, *111*, 1123–1125.

FIGURE 1. ¹H NMR spectra of 2,3-di-*O*-benzyl-4,5-didehydro-4,5-dideoxy-D- $[5^{-13}C]$ ribose dibenzyl acetal **(6-Bn)** (panel a) and the corresponding nonlabeled D-ribose dibenzyl acetal **6'-Bn** (panel b). The spectra of a clearly show the *J* network through the H-5 and H-5' protons and the 5-¹³C.

FIGURE 2. ¹³C NMR spectra of 2,3-di-*O*-benzyl-4,5-didehydro-4,5-dideoxy-D-[5-¹³C]ribose dibenzyl acetal (**6-Bn**) (panel a) and the corresponding nonlabeled D-ribose dibenzyl acetal **6'-Bn** (panel b).

96% (92:8) total yield, respectively. The mixtures were subjected to column chromatography again to give **7-Bn** and **7-Me** in 90% and 86% yield, respectively (Scheme 4).

In this manner, the (4R)-D- $[5^{-13}C]$ ribose derivatives **7-Bn** and **7-Me** were successfully prepared as the main products, which had 3,4-*anti* relationships between the original and the newly formed stereogenic center. Although these results agree with the theories proposed by Stork¹⁴ and Houk¹⁵ regarding the AD reaction of allylic alcohol, these excellent results in the presence of only pyridine or 4-methylmorpholine *N*-oxide, without a biscinchona alkaloid ligand such as $(DHQD)_2PHAL$,¹⁶ greatly exceeded their predictions. It was presumed that the 3,4-*anti* product (4*R*) was predominantly produced by the large steric hindrance arising at one side of the double bond from the "inside alkoxy effect".¹⁷

Synthesis of 1-*O*-Acetyl-2,3,5-tri-*O*-benzoyl-D-[5-¹³C]ribose as the Glycosyl Donor (Scheme 5). Next, the chemical derivatization of (4R)-7 to the glycosyl donor 1-*O*-acetyl-2,3,5-tri-*O*-benzoyl-D-[5-¹³C]ribofuranose (12) was carried out. The benzyl acetal 7-Bn was subjected

⁽¹⁴⁾ Stork, G.; Kahn, M. Tetrahedron Lett. 1983, 24, 3951–3954.
(15) Haller, J.; Strassner, T.; Houk, K. N.; J. Am. Chem. Soc. 1997, 119, 8031–8034

⁽¹⁶⁾ Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc. **1994**, *116*, 12109–12110; **1995**, *117*, 10805–10816.

^{(17) (}a) Houk, K. N.; Moses, S. R.; Wu, Y.-D.; Rondan, N. G.; Jäger,
V.; Schohe, R.; Fronczek, F. R. J. Am. Chem. Soc. 1984, 106, 3880–3882. (b) Vedejs, E.; McClure, C. K. J. Am. Chem. Soc. 1986, 108, 1094–1096.

JOC Article

SCHEME 3. Highly Diastereoselective Dihydroxylation of Nonlabeled 6'-Bn with OsO4 and Amine

to hydrogenation to give D-[5-¹³C]ribose, methyl glycosylation to give methyl D-[5-¹³C]ribofuranose, and benzoylation to give methyl 2,3,5-tri-*O*-benzoyl-D-[5-¹³C]ribofuranoside (**11**), which was then subjected to acetolysis. Thus, the glycosylating agent **12** was obtained in an excellent yield of 98% as a 1:4 mixture of α - and β -anomers from **11**. On the other hand, **7-Me** was treated with lithium tetrafluoroborate (LiBF₄) according to the method of Harvey et al.,¹⁸ with the expectation of yielding 2,3-di-*O*-benzyl-D-ribose. Contrary to our expectation, this reaction gave methyl 2,3-di-*O*-benzyl-D-[5-¹³C]ribofuranoside (**10**) in 98% yield. This treatment is very useful for the conversion of a dialkyl acetal derivative into an alkyl D-ribofuranoside derivative. The resulting **10** was hydrogenated for debenzylation and then was converted into **12** via **11** by the usual method (Scheme 5).

II. Synthesis of 2'-Deoxy[5'-¹³C]ribonucleoside Derivatives. Second, the resulting 12 was finally subjected to a coupling reaction with a persilylated nucleobase (persilylated N^6 -benzoyladenine, N^2 -acetyl- O^6 -diphenylcarbamoylguanine, N^4 -benzoylcytosine, thymine, and uracil) with Vorbrüggen's approach¹⁹ to give the [5'-¹³C]ribonucleoside derivatives (13) (99 atom % ¹³C) in good yields (80%, 79%, 96%, 98%, and 78%, respectively) (Table 2, Scheme 6). These [5'-¹³C]ribonucleosides are interesting from the viewpoint of RNA science, of course, but were further converted into the corresponding 2'deoxy derivatives for DNA analyses as well.

⁽¹⁸⁾ Lipshutz, B. H.; Harvey, D. F. Synth. Commun. **1982**, *12*, 267–277.

⁽¹⁹⁾ Vorbrügen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, 114, 1234–1255.

SCHEME 6. Chemical Conversion of a D-[5-¹³C]Ribose Derivative into the Corresponding 2'-Deoxy[5'-¹³C]nucleoside Derivatives

TABLE 2. Coupling of 12 with Persilylated Nucleobase^a

В	13 yield (%)
A ^{Bz}	80
AcG^{DPC}	79
CBz	96
Т	98
U	78

^{*a*} Abbreviation: $A^{Bz} = N^{g}$ -Benzoyladenin-9-yl, ${}_{Ac}G^{DPC} = N^{g}$ -Acetyl- O^{g} -diphenylcarbamoylguanin-9-yl, $C^{Bz} = N^{g}$ -Benzoylcy-tosin-1-yl, T = Thymin-1-yl, U = Uracil-1-yl.

Compounds **13** were successfully transformed into the corresponding 2'-deoxy[5'-¹³C]ribonucleoside derivatives **17** in the established manner, i.e., debenzoylation, protection of both the 3'- and 5'-hydroxyl groups with a 1,1,3,3-tetraisopropyldisiloxane-1,3-diyl (TIPDS) group,²⁰ introduction of a phenoxythiocarbonyl group at the 2' position,²¹ the reduction with tributyltin hydride,²¹ fol-

 TABLE 3. Yields (%) of Compounds 14, 15, 16, and 17 on

 Conversion into 2'-Deoxy[5'.13C]ribonucleosides^a

	•			
В	14	15	16	17
A ^{Bz}	74	84	92	98
AcGDPC	45	86	97	90
CBz	78	86	76	96
Т	72	92	98	98

 a Abbreviation: $A^{Bz}=\mathcal{N}^6$ -benzoyladenin-9-yl, $_{Ac}G^{DPC}=\mathcal{N}^2$ -Acetyl- \mathcal{O}^6 -diphenylcarbamoylguanin-9-yl, $C^{Bz}=\mathcal{N}^2$ -Benzoylcytosin-1-yl, T = Thymin-1-yl.

lowed by the deprotection of TIPDS with tetraethylammonium fluoride (Scheme 6); the yields of the reactions for each 2'-deoxyribonucleoside (**17**) are summarized in Table 3.

The proton and carbon-13 NMR spectra of 3',5'-O-TIPDS- $[5'-^{13}C]$ thymidine are demonstrated in Figure 3a and b, respectively. The spectra of the other nucleosides **17** were obtained in the same way.

FIGURE 3. ¹H NMR (panel a) and carbon-13 NMR (panel b) spectra of 3',5'-O-TIPDS- $[5'_{-13}C]$ thymidine (**16T**). These spectra clearly show the introduction of the ¹³C label at the 5'-position of **16T** achieved in the present work.

Conclusion

The present synthesis of D-[5-¹³C]ribofuranose derivatives is characterized by the introduction of the carbon-13 label at the 5 position of D-ribose, through the Wittig reaction using PhP¹³CH₃I, the subsequent highly diastereoselective dihydroxylation using osmium tetraoxide, and the cyclization from D-[5-¹³C]ribose dimethyl acetal derivatives to the methyl D-[5-¹³C]ribofuranoside derivative by the use of LiBF₄. The efficiency of the present approach from 1 to 12 is characterized by a 58% overall yield of 12 from Ph₃P¹³CH₃I, i.e., after the introduction of the ¹³C label by the Witting reaction, in contrast with the 4% overall yield of 12 from [¹³C]KCN reported by Matwiyoff et al.⁴ and the 25% overall yield of 9 from [¹³C]-KCN reported by Serianni et al.⁵ after introduction of the ¹³C label.

Experimental Section

General Procedures. Melting points were uncorrected. ¹H and ¹³C NMR spectra were recorded at 400 and 300 MHz and at 100 and 75 MHz, respectively. Chemical shifts were recorded in the δ scale relative to an internal reference of $CDCl_3$ (7.26 ppm for 1H NMR and 77.0 ppm for ^{13}C NMR spectra), unless otherwise noted. Dimethyl sulfoxide- d_6 (DMSO- \hat{d}_{6} (2.50 ppm for ¹H spectra) was occasionally used as an internal reference. The signal peaks of the ¹³C NMR spectra were assigned by the DEPT experiment. Mass spectra (MS), high-resolution mass spectra (HRMS), and elemental analyses were recorded at The Tokyo University of Pharmacy and Life Science Chemical Instrumentation Center. TLC was performed on aluminum plates precoated with Merck silica gel 60 F_{254} , and spots were detected with a UV lamp (253.7 nm). Column chromatography was performed on silica gel (Wakogel C-300, purchased from Wako Pure Chemicals Co., Ltd.) and Kieselgel 60 (Merck Co., Ltd.). Solvents were reagent grade and in many cases were dried before use.

4-*Aldehydo*-2,3-di-*O*-benzyl-D-erythrose Dibenzyl Acetal (5-Bn). Compound 5-Bn was prepared by oxidation using a solution of NaIO₄ (450 mg, 2.1 mmol) in 5.0 mM aqueous H₂SO₄ (4.0 mL) at rt from **4-Bn** (1.06 g, 2.0 mmol) in 99% (980 mg) yield. ¹H NMR (CDCl₃): δ 9.56 (1H, d, $J_{3,4} = 0.8$ Hz, H4), 7.2–7.4 (20H, m, Ph-H), 4.98 (1H, d, $J_{1,2} = 6.6$ Hz, H1), 4.5–4.8 (8H, m, Bn-CH × 8), 4.14 (1H, dd, $J_{2,3} = 2.1$ Hz, $J_{3,4} = 0.8$ Hz, H3), 3.98 (1H, dd, $J_{1,2} = 6.6$ Hz, $J_{2,3} = 2.1$ Hz, H2). ¹³C NMR (CDCl₃): δ 201.29, 137.79, 137.72, 137.35, 137.16, 128.38, 128.32, 127.91, 127.87, 127.71, 127.67, 127.63, 101.17, 83.07, 81.72, 73.21, 73.06, 70.40, 69.60. Anal. Calcd for C₃₃H₃₆O₆•0.3 H₂O: C, 76.57; H, 6.94. Found: C, 73.84; H, 6.80.

4-*Aldehydo*-2,3-di-*O*-benzyl-D-erythrose Dimethyl Acetal (5-Me). Compound 5-Me was prepared by oxidation using 9.3 mL of an aqueous solution of NaIO₄ (1.05 g, 4.9 mmol) at rt from **4**-Me (1.75 g, 4.7 mmol) in 95% (1.52 g) yield. ¹H NMR (CDCl₃): δ 9.55 (1H, d, $J_{3,4} = 0.8$ Hz, H4), 4.76 (1H, d, Bn-H), 4.69 (1H, d, J = 12.1 Hz, Bn-H), 4.67 (1H, d, J = 11.8 Hz, Bn-CH), 4.62 (1H, d, J = 11.6 Hz, Bn-H), 4.58 (1H, d, $J_{1,2} =$ 6.8 Hz, H1), 4.06 (1H, d, $J_{3,2} = 2.1$ Hz, H3), 3.81(1H, dd, $J_{2,3} =$ 2.1 Hz, $J_{2,1} = 6.8$ Hz, H2), 3.40 & 3.41 (6H, s, OCH₃). ¹³C NMR (CDCl₃): δ 201.29, 137.79, 137.72, 137.35, 127.16, 128.38, 128.32, 127.91, 127.87, 127.71, 127.67, 127.63, 101.17, 83.07, 81.72, 73.21, 73.06, 70.40, 69.60. Anal. Calcd for C₂₀H₂₄O₅·0.7 H₂O: C, 67.62; H, 7.15. Found: C, 67.67; H, 6.86. **2,3-Di**-*O*-benzyl-4,5-didehydro-4,5-dideoxy-D-[5⁻¹³C]ri-

bose Dibenzyl Acetal (6-Bn). BuLi (1.6 M) in hexane (1.35

mL) was added to methyl-13C-triphenylphosphonium iodide (1.0 g, 2.5 mmol) in THF (10 mL) under an argon atmosphere at 0 °C, and the mixture was stirred for 20 min. A solution of 5-Bn (980 mg, 2.0 mmol) in THF (10 mL) was added dropwise to the resulting solution, and the whole was stirred for 3 h at 0 °C. The reaction was quenched by addition of 1.0 M aqueous ammonium chloride (30 mL), which was extracted with Et₂O (50 mL \times 3). The Et₂O layer was washed with brine (50 mL), dried (MgSO₄), and concentrated to dryness. The residue was subjected to silica gel column chromatography, with hexane-AcOEt as eluent, to give 6-Bn (908 mg, 93%). ¹H NMR (CDCl₃): δ 7.2–7.4 (20H, m, Ph-H), 5.96 (1H, ddd, $J_{3,4} = 8.0$ Hz, $J_{4,5} = 17.4$ Hz, $J_{4,5'} = 10.4$ Hz, H4), 5.29 (1H, ddd, $J_{4,5'} = 10.4$ Hz, $J_{5,5'} = 1.9$ Hz, $J_{5',C5} = 158.4$ Hz, H5'), 5.17 (1H, ddd, $J_{4,5} = 17.4$ Hz, $J_{5,5'} = 1.9$ Hz, $J_{5,C5} = 155.2$ Hz, H5), 4.87 (1H, d, J = 11.5 Hz, Bn-CH), 4.78 (1H, d, J = 11.5 Hz, Bn-CH), 4.70 (1H, d, *J*_{1,2} = 6.4 Hz, H1), 4.58–4.68 (4H, m, Bn-CH x 4), 4.49 (1H, d, J = 11.7 Hz, Bn-CH), 4.32 (1H, d, J = 12.0 Hz, Bn-CH), 4.10 (1H, dd, $J_{2,3} = 3.3$ Hz, $J_{3,4} = 8.0$ Hz, $J_{3,C5} = 4.3$ Hz, H3), 3.98 (1H, dd, $J_{1,2} = 6.4$ Hz, $J_{2,3} = 3.3$ Hz, H2). ¹³C NMR (CDCl₃): δ 138.80, 138.68, 138.21, 137.72, 134.99 (d, J_{4.5} = 68.8 Hz), 128.36, 128.32, 128.26, 128.08, 127.93, 127.83, 127.66, 127.54, 127.38, 127.34, 119.30, 101.61, 81.69, 81.24, 74.41, 70.16, 69.51, 69.03. Anal. Calcd for C3213CH36O6. 0.1H2O: C, 79.85; H, 6.95. Found: C, 79.75; H, 7.03.

2,3-Di-*O***-benzyl-4,5-didehydro-4,5-dideoxy-D-[5**⁻¹³**C**]**ri-bose Dimethyl Acetal (6-Me).** Compound **5-Me** (654 mg, 1.9 mmol) was treated in a manner similar to that for **5-Bn** to give **6-Me** in 94% (612 mg) yield. ¹H NMR (CDCl₃): δ 7.39–7.25 (10H, m, Ph-H), 5,97 (1H, ddd, $J_{3,4}$ = 7.8 Hz, $J_{4,5}$ = 10.1 Hz, $J_{4,5'}$ = 17.6 Hz, H4), 5.34 (1H, ddd, $J_{4,5}$ = 10.5 Hz, $J_{5,5'}$ = 2.0 Hz, J _{5.5C} = 158.1 Hz, H5), 5.30 (1H, ddd, $J_{4,5'}$ = 18.2 Hz, $J_{5,5'}$ = 2.1 Hz, $J_{5,5C}$ = 154.9 Hz, H5), 4.82 (1H, d, J = 11.6 Hz, Bn-CH), 4.76 (1H, d, J = 11.6 Hz, Bn-CH), 4.63 (1H, d, J = 11.9 Hz, Bn-CH), 4.31 (1H, d, $J_{1,2}$ = 6.1 Hz, H1), 4.03 (1H, dd, $J_{2,3}$ = 8.2 Hz, $J_{3,4}$ = 8.2 Hz, H3), 3.71 (1H, dd, $J_{1,2}$ = 6.1 Hz, N, S (OCH₃). ¹³C NMR (CDCl₃): δ 138.74, 138.57, 134.98 (d, $J_{4,5}$ = 47.8 Hz), 127.92, 127.22, 118.90, 104.73, 81.15, 80.94, 74.18, 73.90, 70.09, 55.15, 54.64. HRMS (M + H)⁺: calcd for C₂₀¹³CH₂₆O₄ 343.1824, found 343.1810.

Nonlabeled 4,5-Di-O-benzoyl-2,3-di-O-dibenzyl-D-ribose Dibenzyl Acetal (8). Stoichiometric Method. To 6'-Bn (nonlabeled) (247 mg, 0.5 mmol) under an argon atmosphere (1.0 mL) in a mixture of pyridine (1.0 mL)-THF (4.0 mL) was added 1.0 M OsO_4 in $t\mbox{-}\mbox{BuOH}$ (0.6 mL) at rt and the mixture stirred for 1.5 h. The solution of NaHSO₃ (230 mg, 2.35 mmol) in H₂O (3.8 mL)-pyridine (2.5 mL) was added and the resulting mixture stirred for 2 h. To the reaction mixture was added saturated aqueous NaHCO₃ (30 mL) followed by extraction with $CHCl_3$ (50 mL \times 3). The extract was washed with brine (50 mL) and dried (MgSO₄) (7'-Bn). After the organic layer was evaporated to dryness, the residue was coevaporated with pyridine twice under an argon atmosphere. The residue was dissolved in CH₂Cl₂ (5.0 mL), benzoyl chloride (0.13 mL, 1.1 mmol) and 4-(dimethylamino)pyridine (DMAP) (274 mg, 2.25 mmol) were added, and the mixture was stirred for 1 h at rt. The reaction was quenched with MeOH (1.0 mL), 5% citric acid in H₂O (30 mL) was added, and the mixture was extracted with Et_2O (40 mL \times 3). The extract was washed with saturated NaHCO3 solution in H2O (40 mL) and brine (40 mL) and then dried (MgSO₄). After filtration, the solution was evaporated, and the residue was subjected to silica gel column chromatography employing hexane-AcOEt to give 8 (nonlabeled) (357 mg, 97%), 4R/4S = 92:8. ¹H NMR (CDCl₃): δ 7.2– 8.0 (30H, m, Ph-H), 5.88 (1H, m, H4), 5.02 (0.08H, d, $J_{1,2} =$ 5.5 Hz, H1(4S)), 4.92 (0.92H, d, $J_{1,2} = 6.0$ Hz, H1(4R)), 4.4– 4.9 (10H, m, H5, H5', Bn-CH x 8), 4.18 (0.92H, J_{2,3} = 3.4 Hz, $J_{3,4} = 5.3$ Hz, H3(4*R*)), 4.2 (0.08H, $J_{2,3} = 4.1$ Hz, $J_{3,4} = 4.8$ Hz, H3 (4*S*)), 3.93 (1H, dd, $J_{1,2} = 6.0$ Hz, $J_{2,3} = 3.4$ Hz, H2).

Catalytic Method. To solution of **6'-Bn** (nonlabeled) (247 mg, 0.5 mmol) in H_2O -acetone (1:8) (9 mL) were added

⁽²⁰⁾ Markiewicw, W. T. J. Chem. Res., Synop. 1979, 24-25.

^{(21) (}a) Zou, R.; Robins, M. J. *Can. J. Chem.* **1987**, *65*, 1436–1437.
(b) Robins, M. J.; Wilson, J. S.; Hansske, F. J. Am. Chem. Soc. **1983**, *105*, 4059–4065.

^{(22) 50% (}w/w) in CHCl₃ was produced from Kobayashi Kagaku.

4-methylmorpholine N-oxide 2-hydroxide (488 mg, 3.6 mmol) and 1.0 M OsO₄ in *t*-BuOH (86 µL, 0.005 mol equiv) at rt. After being stirred for 24 h, the mixture was quenched with saturated aqueous NaHSO₃ (5.0 mL) and stirred for 30 min. Water (40 mL) was added to the reaction mixture, which was then partitioned between CHCl₃ (50 mL \times 3) and H₂O. The CHCl₃ layer was washed with brine (50 mL) and dried (MgSO₄) (7'-Bn). After the organic layer was evaporated to dryness, the residue was treated similarly to the stoichiometric method to give benzoyl derivative 8 (nonlabeled) (356 mg, 97%) 4R/4S =93:7: ¹H NMR (CDCl₃): δ 7.2-8.0 (30H, m, Ph-H), 5.88 (1H, m, H4), 5.02 (0.07H, d, $J_{1,2} = 5.5$ Hz, H1(4S)), 4.92 (0.93H, d, $J_{1,2} = 6.0$ Hz, H1(4*R*)), 4.4–4.9 (10H, m, H5, H5', Bn-CH × 8), 4.18 (0.93H, $J_{2,3} = 3.4$ Hz, $J_{3,4} = 5.3$ Hz, H3(4R)), 4.16 $(0.07H, J_{2,3} = 4.1 \text{ Hz}, J_{3,4} = 4.8 \text{ Hz}, \text{ H3}(4S)), 3.93 (1H, dd, J_{1,2})$ = 6.0 Hz, $J_{2,3} = 3.4$ Hz, H2).

2,3-Di-O-benzyl-D-[5-13C]ribose Dibenzyl Acetal (7-Bn). Compound 6-Bn (852 mg, 1.7 mmol) in H₂O-acetone (1:8) (27 mL) was treated similarly to the catalytic method. After the CHCl₃ layer was evaporated to dryness, the residue was subjected to silica gel column chromatography employing hexane-AcOEt to give a mixture of D-ribose derivative 7-Bn and the corresponding l-lyxo isomer (899 mg, 99% 93:7). The mixture was subjected to silica gel column chromatography employing hexane-AcOEt again to give D-ribose derivative **7-Bn** (817 mg, 90%). ¹H NMR (CDCl₃): δ 7.2–7.4 (20H, m, Ph-H), 4.90 (1H, d, $J_{1,2} = 5.7$ Hz, H1), 4.81 (1H, d, J = 11.5Hz, Bn-CH), 4.76 (1H, d, J = 11.5 Hz, Bn-CH), 4.72 (1H, d, J = 11.6 Hz, Bn-CH), 4.70 (1H, d, J = 11.7 Hz, Bn-CH), 4.65 (1H, d, J = 11.7 Hz, Bn-CH), 4.58 (1H, d, J = 11.5 Hz, Bn-CH), 4.57 (1H, d, J = 11.6 Hz, Bn-CH), 4.48 (1H, d, J = 11.5 Hz, Bn-CH), 3.4-4.0 (5H, m, H2, H3, H4, H5, H5'), 3.12 (1H, t, J = 4.4 Hz, 4-OH), 2.08 (1H, m, 5-OH). ¹³C NMR (CDCl₃): δ 137.96, 137.77, 137.16, 128.52, 128.47, 128.42, 128.07, 128.00, 127.90, 127.82, 101.72, 80.71, 79.30, 74.38, 72.92, 71.24 (d, $J_{4,5} = 40.1$ Hz), 70.55, 70.22, 63.94. Anal. Calcd for C₃₂¹³CH₃₆O₆: C, 74.97; H, 6.86. Found: C, 74.67; H, 6.95.

2,3-Di-O-benzyl-D-[5-13C]ribose Dimethyl Acetal (7-Me). A solution of 6-Me (64.5 mg, 0.19 mmol) in H₂O-acetone (1:9) (2 mL) was treated similarly to the catalytic method. The reaction was quenched with a sodium disulfite (Na₂S₂O₅)(57 mg, 0.29 mmol) and stirred for 1 h. Water (20 mL) was added to the reaction mixture, which was then partitioned between Et₂O (50 mL \times 3). The Et₂O layer was washed with brine (50 mL) and dried (MgSO₄). After filtration, the solution was evaporated and the residue was subjected to silica gel column chromatography, using hexane-AcOEt as eluent, to give 7-Me and the corresponding L-lyxo isomer (69 mg, 96%, 92:8). The mixture was subjected to silica gel column chromatography employing hexane-AcOEt again to give D-ribose derivative 7-Me (62 mg, 86%). ¹H NMR (CDCl₃): δ 7.38–7.28 (10H, m, Ph-H), 4.80 (1H, d, J = 11.6 Hz, Bn-H), 4.74 (1H, d, J = 11.6Hz, Bn-H), 4.67 (1H, d, J = 11.4 Hz, Bn-CH), 4.54 (1H, d, J = 11.4 Hz, Bn-CH), 4.50 (1H, d, $J_{1,2} = 5.7$ Hz, H1), 3.92-3.50(1H, m, H2, H3, H4, H5, H5'), 3.47 (6H, s, OCH₃), 3.19 (1H, J = 2.8 Hz, 4-OH), 2.19 (1H, b, 5-OH). ¹³C NMR (CDCl₃): δ 138.00, 128.24, 127.86, 124.85, 108.75, 105.20, 79.86, 79.46, 74.09, 72.96, 71.31(d, $J_{4,5} = 40.1$ Hz), 70.92, 63.86, 63.72. Anal. calcd for C2013CH28O6 0.2H2O: C, 66.45; H, 7.51. Found: C, 66.52; H, 7.49.

Methyl 2,3-Di-*O***-benzyl-**D-**[5**-¹³**C**]**ribofuranoside (10).** To **7-Me** (1.18 g, 3.13 mmol) in 2% H₂O-CH₃CN (30 mL) was added LiBF₄ (382 mg, 4.07 mmol) at rt. After being stirred for 20 h, the reaction mixture was quenched with the saturated NaHCO₃ solution in H₂O (20 mL) and then partitioned between CHCl₃ (50 mL × 3). The CHCl₃ layer was washed with brine (50 mL) and dried (MgSO₄). After filtration, the solution was evaporated, and the residue was subjected to silica gel column chromatography, using hexane-AcOEt as eluent, to give **10** (1.06 g, 98%). (β -Anomer). ¹H NMR (CDCl₃): δ 7.3-7.4 (10H, m, Ph-H), 4.89 (1H, s, H1), 4.67 (1H, d, *J* = 12.0 Hz, Bn-CH), 4.63 (1H, d, *J* = 12.0 Hz, Bn-CH), 4.58 (1H, d, J = 11.7 Hz, Bn-CH), 4.50 (1H, d, J = 11.7 Hz, Bn-CH), 4.28 (1H, m, H4), 4.13 (1H, dd, $J_{2,3} = 4.5$ Hz, $J_{3,4} = 7.0$ Hz, $J_{3,5C} = 4.5$ Hz, H3), 3.87 (1H, d, $J_{2,3} = 4.7$ Hz, H2), 3.80 (1H, m, $J_{5',5-OH} = 3.0$ Hz, $J_{4,5'} = 3.0$ Hz, $J_{5',5} = 12.0$ Hz, $J_{5',5C} = 143.8$ Hz, H5'), 3.59 (1H, m, $J_{5,5OH} = 3.6$ Hz, $J_{4,5} = 3.6$ Hz, $J_{5',5} = 12.1$ Hz, $J_{5,5C} = 142.5$ Hz, H5), 3.37 (3H, s, OCH₃), 1.95 (1H, b, 5-OH). ¹³C NMR (CDCl₃): δ 137.69, 130.26 (128.71, 127.71, 106.98, 82.19 ($J_{5,4} = 29.6$ Hz), 80.32, 77.32, 72.52, 72.34, 62.68, 61.72, 55.43. Anal. Calcd for C₁₉¹³CH₂₄O₅: C, 69.83; H, 7.00. Found: C, 69.75; H, 6.97.

Methyl 2,3,5-Tri-O-benzoyl-D-[5-13C]ribofuranoside (11). Method A: From 7-Bn. To 7-Bn (899 mg, 1.7 mmol) in MeOH (17 mL) was added 10% Pd-C (170 mg) at rt and the mixture stirred under hydrogen gas for 36 h. After the filtrate was evaporated, the residue was solved in dry MeOH (10 mL), concd H₂SO₄ (0.05 mL) was added at 0 °C, and the mixture was stirred for 24 h. The reaction solution was neutralized with Dowex 1-X2 (OH⁻), the filtrate was evaporated, and the residue was coevaporated with dry pyridine (5 mL) three times. Benzoyl chloride (0.69 mL, 6.0 mmol) in pyridine (20 mL) was added under an argon atmosphere. After being stirred for 32 h, the reaction was quenched with MeOH (1.0 mL), 5% citric acid in H₂O (40 mL) was added, and the mixture was extracted with Et₂O (40 mL \times 3). The extract was washed with a saturated aqueous NaHCO₃ (40 mL) and brine (40 mL) and then dried (MgSO₄). After filtration, the solution was evaporated, and the residue was subjected to silica gel column chromatography employing hexane-AcOEt to give 11 (748 mg, 92%).

(α -Anomer). ¹H NMR (CDCl₃): δ 7.28–8.10 (15H, m, Ph-H), 5.72 (1H, ddd, $J_{2,3} = 7.1$ Hz, $J_{3,4} = 3.5$ Hz, $J_{3,C5} = 3.8$ Hz, H3), 5.39 (1H, d, $J_{1,2} = 4.4$ Hz, H1), 5.33 (1H, dd, $J_{1,2} = 4.4$ Hz, $J_{2,3} = 7.1$ Hz, H2), 4.74 (1H, ddd, $J_{4,5'} = 3.4$ Hz, $J_{5,5'} =$ 12.0 Hz, $J_{5',C5} = 149.7$ Hz, H5'), 4.65 (1H, m, H4), 4.61 (1H, ddd, $J_{4,5} = 4.0$ Hz, $J_{5,5'} = 12.0$ Hz, $J_{5,C5} = 148.5$ Hz, H5), 3.49 (3H, s, 1-OCH₃). ¹³C NMR (CDCl₃): δ 166.15, 165.93, 165.46, 133.34, 133.22, 129.90, 129.80, 129.68, 129.58, 129.47, 129.15, 128.49, 128.43, 128.28, 101.90, 79.39(d, $J_{4,5} = 43.9$ Hz), 71.76, 70.76, 64.03, 55.72. Anal. Calcd for C₂₆¹³CH₂₄O₈: C, 67.92; H, 5.07. Found: C, 67.89; H, 5.11. (β -Anomer). ¹H NMR (CDCl₃): δ 7.3–8.1 (15H, m, Ph-H), 5.87 (1H, ddd, $J_{2,3} = 4.9$ Hz, $J_{3,4} =$ 7.0 Hz, $J_{3,C5} = 4.5$ Hz, H3), 5.68 (1H, d, $J_{2,3} = 4.9$ Hz, H2), 5.16 (1H, s, H1), 4.3-5.0 (3H, m, H4, H5, H5'), 3.42 (3H, s, 1-OCH₃). ¹³C NMR (CDCl₃): δ 166.14, 165.31, 165.19, 133.40, 133.30, 133.05, 129.72, 129.67, 129.18, 128.90, 128.41, 128.29, 128.20, 106.34, 78.94 (d, $J_{4.5} = 43.7$ Hz), 75.39, 72.38, 64.71, 55.29. Anal. Calcd for $C_{26}^{13}CH_{24}O_8$: C, 67.92; H, 5.07. Found: C, 67.89; H, 5.11.

Method B: From 10. To **10** (1.34 g, 3.87 mmol) in dry MeOH (40 mL) was added 10% Pd–C (160 mg) at rt and the mixture stirred under hydrogen gas for 44 h. After the filtrate was evaporated, the residue was coevaporated with dry pyridine (5 mL) three times, and to it was added benzoyl chloride (1.53 mL, 12.8 mmol) in pyridine (20 mL) under an argon atmosphere. After being stirred for 25 h, the reaction was quenched with MeOH (1.0 mL), and the reaction mixture was extracted with Et₂O (50 mL × 3). The extract was washed with saturated aqueous NaHCO₃ (40 mL) and brine (40 mL) and then dried (MgSO₄). After filtration, the solution was evaporated, and the residue was subjected to silica gel column chromatography employing hexane–AcOEt to give **11** (1.8 g, 92%).

1-O-Acetyl-2,3,5-tri-O-benzoyl-D-[5-¹³**C]ribose (12).** To the solution of **11** (747 mg, 1.6 mmol) and acetic anhydride (1.0 mL) in acetic acid (4.3 mL) was added concd H_2SO_4 (0.23 mL) at 0 °C and the mixture stirred for 3 h. Ice–H₂O (30 mL) was added to the reaction mixture, which was extracted with Et₂O (50 mL × 3) and washed with H₂O (50 mL), a saturated aqueous NaHCO₃ (50 mL × 2), and brine (50 mL), and then the Et₂O layer was dried (MgSO₄). After filtration, the extract was evaporated, and the residue was subjected to silica gel column chromatography, using hexane–AcOEt as eluent, to

give **12** (775 mg, 98%). The resulting solid was crystallized from CHCl₃-hexane to give the β -anomer of **12**. Moreover, the filtrate was concentrated to dryness and again was crystallized from hexane for anomerization to give the crystal β -anomer of **12**. mp: 130–131 °C. (β -Anomer). ¹H NMR (CDCl₃): δ 7.3–8.1 (15H, m, Ph-H), 6.43 (1H, s, H1), 5.91 (1H, ddd, $J_{2,3} = 4.9$ Hz, $J_{3,4} = 7.1$ Hz, $J_{3,C5} = 4.5$ Hz, H3), 5.79 (1H, d, $J_{2,3} = 4.9$ Hz, H2), 4.79 (1H, m, H4), 4.77 (1H, ddd, $J_{4,5'} = 3.8$ Hz, $J_{5,5'} = 12.1$ Hz, $J_{5,C5} = 149.7$ Hz, H5'), 4.51 (1H, ddd, $J_{4,5} = 4.6$ Hz, $J_{5,5'} = 12.1$ Hz, $J_{5,C5} = 148.2$ Hz, H5), 2.01(3H, s, COCH₃). ¹³C NMR (CDCl₃): δ 169.07, 165.98, 165.36, 165.02, 133.67, 135.56, 133.26, 129.84, 129.76, 129.58, 128.82, 128.66, 128.54, 128.41, 98.40, 79.66 (d, $J_{4,5} = 43.7$ Hz), 74.99, 71.37, 63.72, 20.89. Anal. Calcd for C₂₇¹³CH₂₄O₉: C, 66.53; H, 4.79. Found: C, 66.36; H, 4.81.

Procedure for Coupling Reaction of Compound 12 with a Persilylated Nucleobase. The coupling reaction of compound 12 with a persilylated nucleobase (persilylated N⁶benzoyladenine, N²-acetyl-O⁶-diphenylcarbamoylguanine, N⁴benzoylcytosine, thymine, and uracil) was performed according to the method of Vorbrügen¹⁹ by use of trimethylsilyl trifluoromethanesulfonate (TMSOTf) as Lewis acid to give 13A^{Bz}, 13_{Ac}G^{DPC}, 13C^{Bz}, 13U, and 13T.

N,60^{2°}, O^{3°}, O^{5°}-Tetrabenzoyl[5′-¹³C]adenosine (13A^{Bz}). Compound 13A^{Bz} (544 mg, 80%) was prepared from persilylated N° -benzoyladenine (1.30 mmol) and the β -anomer of **12** (505) mg, 1.0 mmol). ¹H NMR (CDCl₃): δ 8.93 (1H, bs, 6-NH), 8.71 (1H, s, H8), 8.17 (1H, s, H2), 7.3-8.1 (20H, m, Ph-H), 6.50 (1H, d, $J_{1',2'} = 5.3$ Hz, H1'), 6.43 (1H, dd, $J_{1',2''} = J_{2',3'} = 5.3$ Hz, H2'), 6.27 (1H, m, H3'), 4.93 (1H, ddd, J_{4',5"} = 3.2 Hz, J_{5',5"} = 12.3 Hz, $J_{5'',C5'} = 145.0$ Hz, H5"), 4.85 (1H, m, H4'), 4.71(1H, ddd, $J_{4',5'}$ = 4.3 Hz, $J_{5',5''}$ = 12.3 Hz, $J_{5',C5'}$ = 149.2 Hz, H5'). ¹³C NMR (CDCl₃): δ 166.12, 165.32, 165.13, 164.41, 153.05, 151.69, 149.71, 141.57, 133.83, 133.76, 133.48, 132.81, 129.83, 129.74, 129.29, 128.88, 128.70, 128.62, 128.57, 128.53, 128.34, 127.82, 123.53, 87.01, 80.95 (d, $J_{4',5'} = 43.0$ Hz), 73.91, 71.50, 63.53. HRMS $(M + H)^+$: calcd for $C_{37}^{13}CH_{29}N_5O_8$ 685.2128, found 68.2101. Anal. Calcd for $C_{37}{}^{13}CH_{29}N_5O_8 \cdot 0.5H_2O$: C, 65.79; H, 4.32; N, 10.10. Found: C, 65.84; H, 4.25; N, 10.15.

N²-Acetyl-2',3',5'-tri-O-benzoyl-6-O-diphenylcarbamoyl-[5-13C]guanosine (13AcG^{DPC}). 13AcG^{DPC} (658 mg, 79%) was prepared from persilylated N2-acetyl-6-O-diphenylcarbamoylguanine²⁰ (1.3 mmol) and the β -anomer of **12** (505 mg, 1.0 mmol). ¹H NMR (CDCl₃): δ 8.08 (1H, bs, 2-NH), 8.06 (1H, s, H8), 7.20-8.03 (25H, m, Ph-H), 6.2-6.4 (3H, m, H1', H2', H3'), 4.91 (1H, ddd, $J_{4',5''} = 3.4$ Hz, $J_{5',5''} = 12.3$ Hz, $J_{5'',C5'} = 149.7$ Hz, H5"), 4.85 (1H, m, H4'), 4.71 (1H, ddd, J_{4',5'}= 5.1 Hz, J_{5',5"}= 12.3 Hz, *J*_{5',C5'} = 149.8 Hz, H5'), 2.46 (3H, s, COCH₃). ¹³C NMR $(CDCl_3): \delta$ 169.88, 166.16, 165.20, 165.08, 156.39, 154.30, 152.27, 150.15, 142.35, 141.68, 133.82, 133.66, 133.40, 139.79, 129.60, 129.17, 128.69, 128.54, 128.51, 128.32, 127.07 (br), 121.30, 87.46, 80.56 (d, $J_{4',5'}$ = 43.4 Hz), 74.18, 71.45, 63.62, 25.09. HRMS $(M + H)^+$: calcd for $C_{45}^{13}CH_{36}N_6O_{10}$ 834.2605, found 834.2570. Anal. Calcd for C4513CH36N6O10.0.4H2O: C, 65.70; H, 4.41; N, 9.99. Found: C, 65.55; H, 4.37; N, 10.03.

Tetra-N4, O2, O3, O5, O5, enzoyl[5, -13C]cytidine (13CBz). Compound 13C^{Bz} (315 mg, 96%) (mp 211-212 °C) was prepared from persilvlated N^4 -benzoylcytosine (0.65 mmol) and the β -anomer of 12 (252 mg, 0.5 mmol). ¹H NMR (CDCl₃): δ 8.72 (1H, bs, 4-NH), 7.3-8.2 (22H, m, H5, H6, Ph-H), 6.50 (1H, d, $J_{1',2'} = 4.6$ Hz, H1'), 5.93 (1H, ddd, $J_{2',3'} = 5.6$ Hz, $J_{3',4'} = 3.4$ Hz, $J_{3',C5'} = 5.5$ Hz, H3'), 5.86 (1H, dd, $J_{1',2'} = 4.6$ Hz, $J_{2',3'} =$ 5.6 Hz, H2'), 4.86 (1H, ddd, $J_{4',5''} = 2.8$ Hz, $J_{5',5''} = 12.5$ Hz, $J_{5'',C5'} = 150.3$ Hz, H5''), 4.85 (1H, m, H4'), 4.71 (1H, ddd, $J_{4',5'}$ = 4.0 Hz, $J_{5',5''}$ = 12.5 Hz, $J_{5',C5'}$ = 148.9 Hz, H5'). ¹³C NMR-(CDCl₃): δ 166.03, 165.15, 165.07, 162.59, 154.50, 144.26, 133.51, 133.23, 133.06, 129.85, 129.72, 129.58, 129.17, 128.85, 128.63, 128.55, 128.35, 127.61, 97.43, 89.44, 80.65 (d, $J_{4',5'} =$ 43.2 Hz), 74.72, 70.94, 63.57. HRMS (M + H)⁺: calcd for C₃₆¹³-CH₂₉N₃O₉ 661.2016, found 661.1977. Anal. Calcd for C₃₆¹³-CH₂₉N₃O₉: C, 67.26; H, 4.42; N, 6.36. Found: C, 67.04; H, 4.39; N, 6.61.

2',3',5'-Tri-O-benzoyl[5'-13C]ribosylthymine (13T). Compound 13T (280 mg, 98%) was prepared from 2,4-bis(trimethylsilyloxy)-5-methylpyrimidine in CHCl₃ (50% w/w) (0.3 mL) and the β -anomer of **12** (252 mg, 0.5 mmol). ¹H NMR (CDCl₃): δ 7.3–8.2 (16H, m, H3, Ph-H), 7.16 (1H, d, $J_{5Me,6} = 1.2$ Hz, H6), 6.43 (1H, d, $J_{1',2'} = 6.4$ Hz, H1'), 5.91(1H, m, H3'), 5.75 (1H, dd, $J_{1',2'} = 6.4$ Hz, $J_{2',3'} = 6.2$ Hz, H2'), 4.89 (1H, m, H5"), 4.70 (1H, m, H4'), 4.65 (1H, ddd, $J_{4',5'} = 3.4$ Hz, $J_{5',5''} = 12.3$ Hz, *J*_{5',C5'} = 148.3 Hz, H5'), 1.60 (3H, d, *J*_{5Me,6} = 1.2 Hz, 5-CH₃). ¹³C NMR (CDCl₃): δ 165.98, 165.40, 164.32, 163.07, 150.17, 134.78, 133.79, 133.73, 129.92, 129.83, 129.63, 129.20, 128.87, 128.56, 128.54, 128.34, 112.19, 86.87, 80.61 (d, $J_{4',5'} = 42.8$ Hz), 73.34, 71.42, 63.91, 12.08. HRMS (M + H)+: calcd for C₃₀¹³CH₂₆N₂O₉ 572.1750, found 572.1744. Anal. Calcd for $C_{30}^{13}CH_{26}N_2O_9 \cdot 0.2 H_2O$: C, 64.74; H,4.63; N,4.87. Found: C, 64.60; H, 4.57; N, 5.19.

2',3',5'-Tri-O-benzoyl[5-¹³C]**uridine (13U).** Compound **13U** (87 mg, 78%) was prepared from persilylated uracil (0.26 mmol) and the β -anomer of **12** (101 mg, 0.2 mmol). ¹H NMR (CDCl₃): δ 7.3–8.2 (17H, m, H3, H6, Ph-H), 6.31 (1H, d, $J_{1',2'}$ = 5.6 Hz, H1'), 5.88 (1H, m, H3'), 5.75 (1H, dd, $J_{1',2'}$ = 5.6 Hz, H1'), 5.88 (1H, m, H3'), 5.75 (1H, dd, $J_{1',2'}$ = 5.6 Hz, H2'), 5.61 (1H, d, $J_{5,6}$ = 8.1 Hz, $J_{3,5}$ = 2.3 Hz, H5), 4.84 (1H, ddd, $J_{4',5''}$ = 3.0 Hz, $J_{5',5''}$ = 12.4 Hz, $J_{5',C5'}$ = 150.5 Hz, H5''), 4.72 (1H, m, H4'), 4.67 (1H, ddd, $J_{4',5'}$ = 3.9 Hz, $J_{5',5''}$ = 12.4 Hz, $J_{5',C5'}$ = 149.0 Hz, H5'). ¹³C NMR (CDCl₃): δ 166.02, 165.31, 165.26, 162.78, 150.08, 139.58, 133.78, 133.72, 133.62, 129.88, 129.80, 129.61, 129.19, 128.73, 128.51, 128.32, 103.39, 88.08, 80.48 (d, $J_{4',5'}$ = 43.1 Hz), 73.71, 71.11, 63.71. Anal. Calcd for C₂₉¹³CH₂₄N₂O₉·0.2H₂O: C, 64.21; H, 4.38; N, 4.99. Found: C, 64.17; H, 4.37; N, 5.32.

Synthesis of $14A^{Bz},\,14_{Ac}G^{DPC},\,14C^{Bz},\,and\,14T.$ Compounds $14A^{Bz},\,14_{Ac}G^{DPC},\,14C^{Bz},\,and\,14T$ were prepared from $13A^{Bz},\,13_{Ac}G^{DPC},\,13C^{Bz},\,and\,13T$ according to the method of Markiewicw^{20} after debenzoylation.

N⁶-**Bz**-3',5'-*O*-**TIPDS**-[5'-¹³**C**]**adenosine** (14A^{Bz}) was obtained from 13A^{Bz} (342 mg, 0.5 mmol) in 74% yield (228 mg). ¹H NMR (CDCl₃): δ 9.00 (1H, bs, 6NH), 8.75 (1H, s, H8), 8.14 (1H, s, H2), 7.4–8.1 (5H, m, Ph-H), 6.04 (1H, d, $J_{1',2'} = 1.2$ Hz, H1'), 5.13 (1H, m, H3'), 4.64 (1H, m, H2'), 4.14 (1H, ddd, $J_{4',5''} = 4.8$ Hz, $J_{5',5''} = 12.5$ Hz, $J_{5',C5'} = 146.2$ Hz, H5'), 3.72 (1H, m, H4'), 3.67 (1H, ddd, $J_{4',5'} = 3.2$ Hz, $J_{5',5''} = 12.5$ Hz, $J_{5',C5'} = 142.5$ Hz, $J_{5',5''} = 12.5$ Hz, $J_{5',5''} = 12.2$ Hz, H5'), 3.21 (1H, bs, 2'-OH), 0.9–1.3 (28H, m, 'Pr x 4). ¹³C NMR (CDCl₃): δ 164.72, 152.74, 51.06, 149.75, 142.04, 133.73, 132.80, 128.87, 127.95, 123.72, 89.88, 82.28 (d, $J_{4',5'} = 43.8$ Hz), 75.12, 70.79, 61.65, 17.48, 17.40, 17.33, 17.15, 17.03, 16.96, 13.33, 13.09, 12.81, 12.66. HRMS (M + H)⁺: calcd for C₂₈¹³CH₄₃N₅O₆Si₂ 615.2684, found 615.2860.

N²-**Acetyl-6**-*O*-**diphenylcarbamoyl-3**',5'-*O*-**TIPDS**-[5'-¹³**C**]**guanosine** (**14**_{Ac}**G**^{DPC}) was obtained from **13**_{Ac}**G**^{DPC} (416 mg, 0.5 mmol) in 45% yield (171 mg). ¹H NMR (CDCl₃): δ 8.12 (1H, s, H8), 7.96 (1H, bs, 2-NH), 7.2–7.5 (10H, m, Ph-H), 5.98 (1H, d, $J_{1',2'} = 1.2$ Hz, H1'), 4.68 (1H, m, H3'), 4.46 (1H, m, H2'), 4.14 (1H, ddd, $J_{4',5''} = 4.1$ Hz, $J_{5',5''} = 12.9$ Hz, $J_{5'',C5'} = 146.6$ Hz, H5''), 3.85 (1H, m, H4'), 3.71 (1H, ddd, $J_{4',5'} = 3.0$ Hz, $J_{5',5''} = 12.8$ Hz, $J_{5',C5'} = 141.6$ Hz, H5''), 3.17 (1H, bs, 2'-OH), 2.54 (3H, s, COCH₃), 0.9–1.2 (28H, m, 'Pr × 4). ¹³C NMR (CDCl₃): δ 170.50, 156.22, 154.02, 152.11, 150.29, 141.92, 141.70, 129.17, 126.89 (br), 121.32, 89.32, 82.22 (d, $J_{4',5'} = 43.5$ Hz), 74.86, 70.34, 61.33, 25.14, 17.42, 17.34, 17.28, 17.19, 17.10, 17.01, 16.95, 16.91, 13.31, 13., 12.85, 12.58. HRMS (M + H)⁺: calcd for C₃₆¹³CH₅₁N₆O₈Si₂ 764.3341, found 764.3366.

N⁴-Benzoyl-3',5'-*O***-TIPDS-[5'-¹³C]cytidine (14C^{B2})** was obtained from **13C^{Bz}** (330 mg, 0.5 mmol) in 78% yield (231 mg). ¹H NMR (CDCl₃): δ 8.70 (1H, bs, 4NH), 8.23 (1H, d, $J_{5.6} = 7.5$ Hz, H6), 7.5–8.0 (6H, m, H5, Ph-H), 5.85 (1H, s, H1'), 4.68 (1H, m, H3'), 4.29 (1H, dd, $J_{5',5''} = 13.4$ Hz, $J_{5'',C5'} = 148.2$ Hz, H5''), 4.26 (1H, d, $J_{2',3'} = 4.7$ Hz, H2'), 3.83–4.23 (2H, m, H4', H5'), 2.97 (1H, bs, 2'-OH), 0.9–1.2 (28H, m, 'Pr × 4). ¹³C NMR (CDCl₃): δ 166.75, 162.56, 154.72, 144.46, 133.07, 128.92, 127.60, 96.35, 91.64, 81.94 (d, $J_{4',5'} = 43.1$ Hz), 75.09, 68.45, 59.94, 17.39, 17.34, 17.23, 16.91, 16.83, 18.75, 13.32, 12.87,

12.40. HRMS (M + H)+: calcd for $C_{27}{}^{13}CH_{43}N_3O_7Si_2$ 591.2751, found 591.2727.

3',**5'** - **O**-**TIPDS**-[**5'**⁻¹³**C**]**ribosylthymine (14T)** was obtained from **13T** (278 mg, 0.5 mmol) in 72% yield (175 mg). ¹H NMR (CDCl₃): δ 7.94 (1H, bs, H3), 7.35 (1H, d, $J_{5Me,6} = 0.9$ Hz, H6), 5.70 (1H, d, $J_{1',2'} = 0.9$ Hz, H1'), 4.43 (1H, m, H3'), 4.19 (1H, m, H2'), 4.17 (1H, dd, $J_{4',5''} = 2.8$ Hz, $J_{5',5''} = 13.0$ Hz, $J_{5'',C5'} =$ **147**.7 Hz, H5''), 4.06 (1H, m, H4'), 4.01 (1H, dd, $J_{4',5'} = 3.0$ Hz, $J_{5',5''} = 13.0$ Hz, $J_{5',C5'} = 140.0$ Hz, H5'), 3.00 (1H, bs, 2'OH), 1.91 (3H, d, $J_{5Me,6} = 0.9$ Hz, 5-CH₃), 0.9–1.2 (28H, m, 'Pr × 4). ¹³C NMR (CDCl₃): δ 164.13, 150.30, 135.54, 110.53, 91.13, 81.79 (d, $J_{4',5'} = 43.0$ Hz), 74.95, 60.16, 17.38, 18.31, 17.20, 17.02, 16.93, 16.78, 13.38, 12.90, 12.68, 12.55, 12.42. HRMS (M + H)⁺: calcd for C₂₁¹³CH₄₀N₂O₇Si₂ 502.2486, found 502.2509.

Synthesis of 15A^{Bz}, 15_{Ac}G^{DPC}, 15C^{Bz}, and 15T. Compounds 15A^{Bz}, 15_{Ac}G^{DPC}, 15C^{Bz}, and 15T were prepared from 14A^{Bz}, 14_{Ac}G^{DPC}, 14C^{Bz}, and 14T according to the method of Robins.²¹

N⁶-**Benzoyl-2'**-*O*-**phenoxythiocarbonyl-3'**,5'-*O*-**TIPDS**-[5'-¹³**C**]**adenosine (15A**^{Bz}) was obtained from **14A**^{Bz} (220 mg, 0.36 mmol) in 68% yield (184 mg). ¹H NMR (CDCl₃): δ 8.97 (1H, bs, 6-NH), 8.77 (1H, s, H8), 8.18 (1H, s, H2), 7.1–8.1 (10H, m, Ph-H), 6.40 (1H, dd, J_{1',2'} = 0.9 Hz, J_{2',3'} = 5.3 Hz, H2'), 6.23 (1H, d, J_{1',2'} = 0.9 Hz, H1'), 5.37 (1H, m, H3'), 4.19 (1H, ddd, J_{4',5''} = 2.7 Hz, J_{5',5''} = 12.9 Hz, J_{5',5''} = 147.4 Hz, H5''), 4.16 (1H, m, H4'), 4.08 (1H, ddd, J_{4',5'} = 2.5 Hz, J_{5',5''} = 12.9 Hz, J_{5',5''} = 140.3 Hz, H5'), 0.9-1.3 (28H, m, 'Pr × 4). ¹³C NMR (CDCl₃): δ 193.88, 164.66, 153.28, 152.72, 151.00, 149.73, 141.97, 133.55, 132.70, 129.54, 128.75, 126.71, 123.57, 121.62, 87.41, 83.80, 82.14 (d, J_{4',5'} = 43.4 Hz), 69.28, 60.24, 17.35, 17.29, 17.23, 17.07, 16.99, 16.89, 13.20, 12.91, 12.77, 12.75. HRMS (M + H)⁺: calcd for C₃₅¹³CH₄₇N₅O₇SSi₂ 751.2847, found 751.2784.

*N*²-Acetyl-6-*O*-diphenylcarbamoyl-2'-*O*-phenoxythiocarbonyl-3',5'-*O*-TIPDS-[5'-¹³C]guanosine (15_{Ac}G^{DPC}) was obtained from 14_{Ac}G^{DPC} (502 mg, 0.66 mmol) in 68% yield (403 mg). ¹H NMR (CDCl₃): δ 8.18 (1H, s, H8), 7.90 (1H, bs, 2-NH), 7.2-7.5 (15H, m, Ph-H), 6.24 (1H, dd, $J_{1',2'} = 1.2$ Hz, $J_{2',3'} =$ 5.2 Hz, H2'), 6.20 (1H, d, $J_{1',2'} = 1.2$ Hz, H1'), 4.87 (1H, m, H3'), 4.22 (1H, ddd, $J_{4',5''} = 2.5$ Hz, $J_{5',5''} = 12.9$ Hz, $J_{5'',C5'} =$ 147.9 Hz, H5''), 4.17 (1H, m, H4'), 4.08 (1H, ddd, $J_{4',5'} = 2.5$ Hz, $J_{5',5''} = 12.9$ Hz, $J_{5',C5'} = 140.0$ Hz, H5'), 2.58 (3H, s, COCH₃), 0.9-1.2 (28H, m, ³Pr × 4). ¹³C NMR (CDCl₃): δ 193.74, 170.96, 156.35, 153.82, 153.31, 152.33, 150.16, 141.64, 141.55, 129.59, 129.14, 128.90, 128.40, 128.33, 126.90, 126.76 (br), 121.57, 121.11, 86.90, 83.38, 82.40 (d, $J_{4',5'} = 43.1$ Hz), 69.04, 60.21, 25.20, 17.37, 17.29, 17.22, 17.01, 16.89, 13.32, 12.90, 12.76. HRMS (M + H)⁺: calcd for C₄₃¹³CH₅₄N₆O₉SSi₂ 900.3323, found 900.3271.

N⁴-Benzoyl-2'-*O*-**phenoxythiocarbonyl-3'**,5'-*O*-**TIPDS**-[5'-1³**C**]**cytidine (15C^B²)** was obtained from **14C^{Bz}** (267 mg, 0.45 mmol) in 86% yield (284 mg). ¹H NMR (CDCl₃): δ 8.66 (1H, bs, 4-NH), 8.27 (1 H, d, $J_{5,6} = 7.5$ Hz, H6), 7.1–8.0 (11 H, m, H5, Ph-H), 6.09 (2H, m, H1', H2'), 3.8–4.6 (4 H, m, H3', H4', H5', H5''), 0.9–1.2 (28 H, m, 'Pr × 4). ¹³C NMR (CDCl₃): δ 193.42, 167.10, 162.72, 153.42, 144.02, 133.11, 129.40, 128.93, 127.57, 126.48, 121.75, 96.61, 89.13, 83.52, 82.32 (d, $J_{4;5'} = 42.7$ Hz), 67.90, 59.34, 17.37, 17.33, 17.21, 17.19, 16.89, 16.84, 13.26, 12.93, 12.81, 12.73. HRMS (M + H)⁺: calcd for C₃₄¹³CH₄₇N₃O₈SSi₂ 727.2734, found 727.2681.

2'-O-Phenoxythiocarbonyl-3',5'-O-TIPDS-[5'-13C]ribosylthymine (15T) was obtained from **14T** (300 mg, 0.6 mmol) in 87% yield (333 mg). ¹H NMR (CDCl₃): δ 8.41(1H, bs, H3), 7.35 (6H, m, H6, Ph-H), 6.10 (1H, d, $J_{2',3'} = 5.1$ Hz, H2'), 5.92 (1H, s, H1'), 4.60 (1H, m, H3'), 3.8-4.5 (3H, m, H4', H5', H5''), 1.93 (3H, s, 5-CH₃), 0.9-1.2 (28H, m, 'Pr x 4). ¹³C NMR (CDCl₃): δ 193.76, 163.80, 153.41, 149.72, 135.15, 129.49, 126.60, 121.74, 111.02, 88.55, 83.80, 82.00 (d, $J_{4',5'} = 43.3$ Hz), 68.37, 59.50, 17.37, 17.32, 17.22, 16.99, 16.897, 13.36, 12.88, 12.79, 12.69, 12.55. HRMS (M + H)⁺: calcd for C₂₈-¹³CH₄₄N₂O₈SSi₂ 638.2469, found 638.2435.

Synthesis of 16A^{Bz}, 16_{Ac}G^{DPC}, 16C^{Bz}, and 16T. Reductive

deoxygenation of $15A^{Bz},\ 15_{Ac}G^{DPC},\ 15C^{Bz},\ and\ 15T$ was performed according to the method of Robins et al.^{21}

N⁶-Benzoyl-2'-deoxy-3',5'-O'TIPDS-[5'.¹³C]adenosine (16A^{B2}) was obtained from **15A^{Bz}** (150 mg, 0.2 mmol) in 85% yield (101 mg). ¹H NMR (CDCl₃): δ 9.02(1H, bs, 6-NH), 8.78 (1H, s, H8), 8.22 (1H, s, H2), 7.5-8.1 (5H, m, Ph-H), 6.36 (1H, dd, $J_{1',2'} = 2.5$ Hz, $J_{1',2''} = 7.5$ Hz, H1'), 4.99 (1H, m, H3'), 4.06 (2H, m, H5', H5''), 3.92 (1H, m, H4'), 2.79 (1H, ddd, $J_{1',2'} = 2.5$ Hz, $J_{2',2''} = 13.4$ Hz, $J_{2',3'} = 7.4$ Hz, H2'), 2.69 (1H, ddd, $J_{1',2'} = 7.5$ Hz, $J_{2',2''} = 13.4$ Hz, $J_{2',3'} = 9.0$ Hz, H2''), 0.9-1.3 (28H, m, 'Pr x 4). ¹³C NMR (CDCl₃): δ 164.60, 152.51, 150.87, 149.51, 141.49, 133.678, 132.68, 127.78, 127.82, 123.60, 85.26 (d, $J_{4',5'} = 43.6$ Hz), 83.39, 69.88, 61.74, 39.94, 17.45, 17.35, 17.29, 16.99, 16.93, 16.85, 13.32, 13.06, 12.82, 12.49. HRMS (M + H)+: calcd for C₂₈¹³CH₄₃N₅O₅Si₂ 599.2915, found 599.2856.

N^z-Acetyl-2'-deoxy-6-*O*-diphenylcarbamoyl-3',5'-*O*-TIP-DS-[5'-¹³C]guanosine (16_{Ac}G^{DPC}). Compound 15_{Ac}G^{DPC} (343 mg, 0.38 mmol) was treated similarly to 16A^{Bz} to give 16_{Ac}G^{DPC} (255 mg, 90%). ¹H NMR (CDCl₃): δ 8.16 (1H, s, H8), 7.90 (1H, bs, 2-NH), 7.2-7.5 (10H, m, Ph-H), 6.28 (1H, dd, $J_{1',2'} = 3.3$ Hz, $J_{1',2''} = 6.64$ Hz, H1'), 4.72 (1H, m, H3'), 4.04 (2H, m, H5', H5''), 3.88 (1H, m, H4'), 2.65 (2H, m, H2', H2''), 2.55 (3H, s, COCH₃), 0.9-1.2 (28H, m, ⁴Pr × 4). ¹³C NMR (CDCl₃): δ 170.72, 156.12, 154.00, 152.02, 150.33, 141.84, 141.72, 129.14, 126.94 (br), 121.22, 85.20 (d, $J_{4',5'} = 43.1$ Hz), 83.07, 69.53, 61.51, 39.89, 25.07, 17.45, 17.35, 17.29, 17.14, 16.99, 16.94, 16.85, 13.37, 13.05, 12.91, 12.49. HRMS (M + H)⁺: calcd for C₃₆¹³CH₅₀N₆O₇Si₂ 748.3391, found 748.3441.

N⁴-Benzoyl-2'-deoxy-3',5'-O-TIPDS-[5'⁻¹³C]cytidine (**16C**^{Bz}). Compound **15C**^{Bz} (200 mg, 0.28 mmol) was treated similarly to **16A**^{Bz} to give **16C**^{Bz} (120 mg, 76%). ¹H NMR (CDCl₃): δ 8.65 (1H, bs, 4-NH), 8.31 (1H, d, J_{5,6} = 7.4 Hz, H6), 7.4-8.0 (6H, m, H5, Ph-H), 6.10 (2H, d, J_{1',2"} = 6.3 Hz, H1'), 3.7-4.5 (4H, m, H3', H4', H5', H5''), 2.61 (1H, ddd, J_{1',2"} = 6.3 Hz, J_{2',2"} = 13.22 Hz, J_{2",3'} = 10.9 Hz, H2''), 2.38 (1H, dd, J_{2',2"} = 13.2 Hz, J_{2',3'} = 7.4 Hz, H2'), 0.9-1.2 (28H, m, ⁴Pr x 4). ¹³C NMR (CDCl₃): δ 166.64, 162.30, 154.66, 144.34, 133.00, 128.88, 128.53, 96.04, 85.60, 85.20 (d, J_{4',5'} = 43.1 Hz), 66.33, 59.69, 39.61, 17.41, 17.36, 17.24, 16.93, 16.87, 16.75, 13.32, 12.95, 12.88, 12.33. HRMS (M + H)⁺: calcd for C₂₇¹³CH₄₃N₃O₆-Si₂ 575.2802, found 575.2781.

3',5'-*O* -**TIPDS-**[5'-¹³**C**]**thymidine (16T).** Compound **15T** (165 mg, 0.27 mmol) was treated similarly to **16A**^{Bz} to give **16T** (124 mg, 98%). ¹H NMR (CDCl₃): δ 8.30 (1H, bs, H3), 7.41 (1H, d, $J_{5Me,6} = 1.2$ Hz, H6), 6.07 (1H, dd, $J_{1',2'} = 2.3$ Hz, $J_{1',2''} = 7.4$ Hz, H1'), 4.50 (1H, m, H3'), 4.11 (1H, ddd, $J_{4',5''} = 2.5$ Hz, $J_{5',5''} = 13.1$ Hz, $J_{5',C5'} = 147.2$ Hz, H5''), 4.02 (1H, ddd, $J_{4',5''} = 3.0$ Hz, $J_{5',5''} = 13.1$ Hz, $J_{5',C5'} = 139.5$ Hz, H5'), 3.75 (1H, m, H4'), 2.49 (1H, ddd, $J_{1',2''} = 7.4$ Hz, $J_{2',3''} = 13.5$ Hz, $J_{2',3''} = 9.7$ Hz, H2''), 2.38 (1H, ddd, $J_{1',2''} = 2.3$ Hz, $J_{2',2''} = 13.5$ Hz, $J_{2',3'} = 7.5$ Hz, H2'), 1.93 (3H, d, $J_{5Me,6} = 1.2$ Hz, 5-CH₃), 0.9-1.2 (28H, m, ¹Pr x 4). ¹³C NMR (CDCl₃): δ 164.03, 150.24, 135.13, 110.52, 84.89 (d, $J_{4',5'} = 43.3$ Hz), 83.73, 67.52, 60.14, 39.76, 17.42, 14.37, 17.29, 17.25, 17.06, 16.96, 16.81, 13.44, 12.97, 12.73, 12.60, 12.42. HRMS (M + H)⁺: calcd for C₂₁¹³CH₄₀N₂O₆Si₂ 486.2537, found 486.2498.

N⁶-Benzoyl-2'-deoxy[5'-¹³C]adenosine (17A^{Bz}). To 16A^{Bz} (101 mg, 0.17 mmol) in THF (20 mL) was added tetraethylammonium fluoride (Et₄NF)·2H₂O (703 mg, 3.8 mmol) at rt and the mixture stirred for 4 h. MeOH (20 mL) and silica gel (10 g) were added to the reaction mixture, and then solvent was slowly evaporated to dryness. The slurry was subjected to flash column chromatography employing a CH₂Cl₂-MeOH system to give $17A^{Bz}$ (59.2 mg, 98%). ¹H NMR (MeOH-d₄): δ 8.70 (1H, s, H8), 8.65 (1H, s, H2), 7.5-8.1 (5H, m, Ph-H), 6.57 $(1H, dd, J_{1',2'} = 6.1 Hz, J_{1',2''} = 6.2 Hz, H1'), 4.61 (1H, m, H3'),$ 4.07 (1H, m, H4'), 3.84 (1H, ddd, $J_{4',5''} = 3.3$ Hz, $J_{5',5''} = 12.01$ Hz, $J_{5'',C5'} = 142.2$ Hz, H5'), 3.75 (1H, ddd, $J_{4',5'} = 3.8$ Hz, $J_{5',5''}$ = 12.0 Hz, $J_{5',C5'}$ = 140.9 Hz, H5'), 2.86 (1H, ddd, $J_{1',2'}$ = 6.1 Hz, $J_{2',2''} = 13.5$ Hz, $J_{2',3'} = 7.2$ Hz, H2'), 2.69 (1H, ddd, $J_{1',2''} =$ 6.2 Hz, $J_{2',2''} = 13.5$ Hz, $J_{2'',3'} = 3.4$ Hz, H2''). ¹³C NMR (MeOHd₄): δ 168.06, 152.89, 151.16, 144.51, 134.93, 133.88, 129.73,

129.41, 125.44, 89.69 (d, $J_{4',5'}$ = 41.5 Hz), 86.69, 72.66, 63.30, 41.47. HRMS (M + H)⁺: calcd for $C_{16}^{13}CH_{17}N_5O_4$ 357.1392, found 357.1403.

*N*²-Acetyl-2'-deoxy-6-*O*-diphenylcarbamoyl[5'-¹³C]guanosine (17_{Ac}G^{DPC}). Compound 16_{Ac}G^{DPC} (222 mg, 0.30 mmol) was treated similarly to 17A^{Bz} to give 17_{Ac}G^{DPC} (134.3 mg, 89%) as a foam. ¹H NMR (MeOH-d₄): δ 8.58 (1H, s, H8), 7.2–7.5 (10H, m, Ph-H), 6.51 (1H, dd, $J_{1',2'} = 6.4$ Hz, $J_{1',2''} = 6.5$ Hz, H1'), 4.64 (1H, m, H3'), 3.5–4.0 (3H, m, H4', H5', H5'), 2.82 (1H, ddd, $J_{1',2'} = 6.4$ Hz, $J_{2',2''} = 13.62$ Hz, $J_{2',3'} = 6.4$ Hz, H2'), 2.47 (1H, ddd, $J_{1',2''} = 6.5$ Hz, $J_{2',2''} = 13.64$ Hz, $J_{2',3'} = 4.2$ Hz, H2''), 2.29 (3H, s, COCH₃). ¹³C NMR (MeOH-d₄): δ 173.71, 158.43, 157.21, 155.15, 153.78, 146.98, 144.80, 131.73, 129.97-(br), 123.68, 90.75 (d, $J_{4',5'} = 40.1$ Hz), 87.68, 73.66, 64.54, 42.82, 26.10. HRMS (M + H)⁺: calcd for C₂₄¹³CH₂₄N₆O₆ 506.1869, found 506.1853.

N⁴-Benzoyl-2'-deoxy[5'-1³C]cytidine (17C^{Bz}). Compound **16C^{Bz}** (57 mg, 0.1 mmol) was treated similarly to **17A^{Bz}** to give **17C^{Bz}** (31.8 mg, 96%) as a foam. ¹H NMR (MeOH-*d*₄): δ 8.54 (1H, d, *J*_{5,6} = 7.5 Hz, H6), 7.5-8.0 (6H, m, H5, Ph-H), 6.24 (2H, dd, *J*_{1',2'} = 6.3 Hz, *J*_{1',2'} = 6.2 Hz, H1'), 4.39 (1H, m, H3'), 4.01 (1H, m, H4'), 3.84 (1H, ddd, *J*_{4',5'} = 3.2 Hz, *J*_{5',5''} = 12.1 Hz, *J*_{5'',C5'} = 142.9 Hz, H5''), 3.75 (1H, ddd, *J*_{4',5'} = 3.8 Hz, *J*_{5',5''} = 12.1 Hz, *J*_{5',C5'} = 140.1 Hz, H5'), 2.52 (1H, ddd, *J*_{1',2''} = 6.2 Hz, *J*_{2',2''} = 13.7 Hz, *J*_{2',3'} = 4.3 Hz, H2''), 2.20 (1H, ddd, *J*_{1',2''} = 6.3 Hz, *J*_{2',2''} = 13.7 Hz, *J*_{2',3'} = 6.3 Hz, H2'). ¹³C NMR (MeOH*d*₄): δ 169.09, 164.77, 157.86, 146.45, 134.74, 134.08, 129.83, 129.15, 98.27, 89.52 (d, *J*_{4',5'} = 41.7 Hz), 88.76, 71.64, 62.45, 42.54. HRMS (M + H)⁺: calcd for C₁₅¹³CH₁₇N₃O₅ 333.1280, found 333.1250. [5'.¹³C]Thymidine (17T). Compound 16T (47 mg, 0.1 mmol) was treated similarly to $17A^{Bz}$ to give 17T (22.8 mg, 92%). ¹H NMR (MeOH- d_4): δ 7.81 (1H, d, $J_{5Me,6} = 1.2$ Hz, H6), 6.27 (1H, d, $J_{1',2'} = J_{1',2''} = 6.7$ Hz, H1'), 4.39 (1H, m, H3'), 3.91 (1H, m, H4'), 3.79 (1H, ddd, $J_{4',5''} = 3.2$ Hz, $J_{5',5''} = 12.1$ Hz, $J_{5'',C5'} = 142.3$ Hz, H5''), 3.65 (1H, ddd, $J_{4',5'} = 3.7$ Hz, $J_{5',5''} = 12.1$ Hz, $J_{5',C5'} = 140.3$ Hz, H5'), 2.22 (2H, m, H2', H2''). ¹³C NMR (MeOH- d_4): δ 166.37, 152.34, 137.15, 111.50, 88.76 (d, $J_{4',5'} = 41.6$ Hz), 86.23, 72.17, 62.81, 41.15, 12.43; HRMS (M + H)⁺: calcd for C₉3CH₁₄N₂O₅ 244.1015, found 244.0992.

Acknowledgment. We are grateful to Professor Emeritus Yoshiharu Ishido for helpful discussions. This work was supported in part by a Grant-in-Aid for Scientific Research (C)(No. 116772117) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and in part by Hayashi Memorial Foundation for Female Natural Science Japan.

Supporting Information Available: Copies of the ¹H NMR, ¹³C NMR, and mass spectra or analytical data of compounds **2**, **3**, **4-Bn**, and **4-Me**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO016281Q