Conjugation of aminoadamantanes by copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition

V. B. Sokolov, A. Yu. Aksinenko,* T. A. Epishina, and T. V. Goreva

Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severnyi pr-d, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (496) 524 9508. E-mail: alaks@ipac.ac.ru

Four variants of conjugation of aminoadamantanes with 1,2,3-triazole- and ditriazolecontaining spacers by copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition of azido- and propargyl-containing aminoadamantanes were suggested.

Key words: 1-aminoadamantanes, *N*-propynylaminoadamantanes, *N*-(adamantan-1-yl)-2-azidoacetamides, terminal diazidoalkanes, 1,4-dipropynylpiperazine, 1,4-substituted 1,2,3-triazoles, 1,3-dipolar cycloaddition, conjugates.

The rational design of known pharmaceutical drugs is one of the possible approaches to the development of drugs affecting several targets.¹ From this perspective, in this work we present the data on synthetic approaches to the combination of adamantan-1-ylamines in one molecule. The study was prompted by the data on the biological activity of aminoadamantanes and their derivatives. Thus, adamantanylamine (amantadine) is used as an antiviral² and antiparkinsonian dopaminergic agent,³ 3,5-dimethyladamantan-1-ylamine (memantine) is one of the main drugs used in the treatment of Alzheimer's disease,⁴ and its derivatives modified at both the amino group^{5–8} and the adamantane core⁹ are also intensively studied in the last years.

Amantadine

Memantine

The purpose of the present work is the studies of synthetic potential of copper-catalyzed alkyne-azide cycloaddition, which is one of the click-chemistry standards, ^{10,11} for the combination of azido- and propargyl-containing aminoadamantanes by triazole- and ditriazole-containing spacers.

The starting objects of the transformations, N-(adamantan-1-yl)-2-azidoacetamides (**2a**,**b**), were obtained using a *one-pot* method, namely, by sequential addition to a solution of aminoadamantanes **1a**,**b** and Et₃N in DMF of an equimolar amount of chloroacetyl chloride and, once the exothermic reaction reached completion, sodium azide was added with further heating at 50 °C for 30 min to complete the reaction. N-(Prop-2-yn-1-yl)adamantan-1amines **3a,b** and *N*,*N*-di(prop-2-yn-1-yl)adamantan-1amines **4a**,**b** were formed in 74–84% yield upon heating aminoadamantanes **1a**,**b** and propargyl bromide in Pr^iOH in the presence of three equivalents of K_2CO_3 (Scheme 1).

Scheme 1

1-4: R = H (a), Me (b)

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1401-1405, August, 2018.

1066-5285/18/6708-1401 © 2018 Springer Science+Business Media, Inc.

6, 7: R = H, R' = H (a); Me (b); R = Me, R' = H (c); Me (d) 8: R = H (a), Me (b)

Conditions: $CuSO_4 \cdot 5 H_2O$, CH_2Cl_2 , sodium ascorbate, 40 °C.

10: *n* = 0 (**a**), 2 (**b**)

The thus obtained azidoacetamides 2a,b were studied in the cycloaddition reaction with propargyladamantanes 3a,b and 4a,b and 1,4-di(prop-2-yn-1-yl)piperazine (5) (Scheme 2). It was shown that azidoacetamides 2a,b in the presence of catalytic amounts of Cu^I under phasetransfer conditions (dichloromethane—water) react with compounds 3a,b, 4a,b, and 5 to form the corresponding 1,2,3-triazoles 6a-d, 7a-d, and 8a,b in high yield. In the ¹H NMR spectra of triazoles 6a-d, 7a-d, and 8a,b, representing the superposition of the aminoadamantane fragments, characteristic singlets for the proton of the triazole ring are observed in the region of δ 6.8-7.3.

Under similar conditions, N-(prop-2-yn-1-yl)adamantan-1-amine (**3a**) reacted with terminal diazidoalkanes **9a,b** to form the corresponding conjugates **10a,b** in 83 and 87% yield (Scheme 3). The ¹H NMR spectra of conjugates **10a**,**b** contain the singlets for the proton of the triazole ring in the region of $\delta 6.8-7.3$ and the multiplets for the protons of the spacer methylene groups.

In conclusion, we suggested four variants for the combination of aminoadamantanes in one molecule by triazole- and ditriazole-containing spacers, using the clickreaction of 1,3-dipolar cycloaddition, allowing obtaining a variety of potential multitarget neuroprotectors.

Experimental

¹H NMR spectra were recorded on a Bruker DPX 200 spectrometer at 200.13 MHz relative to SiMe₄ (an internal standard). Melting points were measured in a glass capillary tube. 1,4-Di-(prop-2-yn-1-yl)piperazine (5) was obtained according to the described procedure,¹² diazidoalkanes 9a,b (see Ref. 13), aminoadamantanes 1a,b, copper sulfate and sodium ascorbate (Aldrich) were used without additional purification.

Synthesis of *N*-(adamantan-1-yl)-2-azidoacetamide (2a) and 2-azido-*N*-(3,5-dimethyladamantan-1-yl)acetamide (2b) (general procedure). Chloroacetyl chloride (0.2 mmol) was added to a solution of aminoadamantane **1a,b** (0.2 mmol) and Et₃N (0.2 mmol) in DMF (30 mL) with stirring, the reaction mixture was stirred for 30 min, followed by the addition of NaN₃ (0.21 mmol), stirring for 30 min at 50 °C, and pouring into H₂O (100 mL). The precipitate formed was collected by filtration and recrystallized from 50% ethanol.

Synthesis of *N*-(prop-2-yn-1-yl)adamantan-1-amine (3a) and 3,5-dimethyl-*N*-(prop-2-yn-1-yl)adamantan-1-amine (3b) (general procedure). Potassium carbonate (0.6 mmol) was added to a solution of aminoadamantane 1a,b (0.2 mmol) and propargyl bromide (0.2 mmol) in PrⁱOH (30 mL). The mixture was stirred for 5 h at 70 °C, cooled, poured into H_2O (100 mL), extracted with chloroform, and dried with Na_2SO_4 . The solvent was evaporated *in vacuo*, the residue was purified by column chromatography on silica gel (chloroform—hexane, 5 : 1).

N,*N*-Di(prop-2-yn-1-yl)adamantan-1-amine (4a) and 3,5-dimethyl-*N*,*N*-di(prop-2-yn-1-yl)adamantan-1-amine (4b) were obtained similarly to 3a,b from aminoadamantane 1a,b (0.2 mmol) and propargyl bromide (0.4 mmol).

Synthesis of N-(adamantan-1-yl)-2-{4-[(adamantan-1-yl-amino)methyl]-1H-1,2,3-triazol-1-yl}acetamide (6a), N-(adamantan-1-yl)-2-{4-[(3,5-dimethyladamantan-1-ylamino)methyl]-1H-1,2,3-triazol-1-yl}acetamide (6b), 2-{4-[(adamantan-1-ylamino)methyl]-1H-1,2,3-triazol-1-yl}-N-(3,5-dimethyladamantan-1-yl)acetamide (6c), N-(3,5)-dimethyladamantan-1-yl)-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl]-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1H-1,2,3-triazol-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl]-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl]-1-(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl]-1-yl]-1-yl}-2-{4-[(3,5-dimethyladamantan-1-yl-2,3-triazol-1-yl]-1-yl]-1-yl]-1-yl}-2-{4-[(3,

Table 1. Yields, melting points, and elemental analysis data for compounds 2a,b, 3a,b, 4a,b, 6a-d, 7a-d, 8a,b, and 10a,b

Com- pound	Yield (%)	M.p./°C	$\frac{F}{C}$	Molecular		
	(70)		<u> </u>	H	N	Tormula
2a	91	96—98	<u>61.31</u>	<u>7.93</u>	24.12	C ₁₂ H ₁₈ N ₄ O
			61.52	7.74	23.91	
2b	88	83-85	<u>64.28</u>	<u>8.66</u>	<u>21.07</u>	$C_{14}H_{22}N_4O$
			64.09	8.45	21.36	
3a	76	56-57	<u>82.27</u>	<u>10.30</u>	<u>7.22</u>	$C_{13}H_{19}N$
			82.48	10.12	7.40	
3b	74	An oil	<u>83.11</u>	10.48	<u>6.29</u>	$C_{15}H_{23}N$
			82.89	10.67	6.44	
4 a	82	85-84	<u>84.71</u>	<u>9.50</u>	<u>6.05</u>	$C_{16}H_{21}N$
			84.53	9.31	6.16	
4b	84	An oil	<u>84.82</u>	<u>10.05</u>	<u>5.31</u>	$C_{18}H_{25}N$
			84.65	9.87	5.48	
6a	80	118-120	<u>70.71</u>	8.68	<u>6.72</u>	C ₂₅ H ₃₇ N ₅ O
			70.89	8.80	6.53	
6b	81	111-113	72.03	<u>8.99</u>	15.72	C ₂₇ H ₄₁ N ₅ O
			71.80	9.15	15.51	2, 11 0
6c	85	102-103	71.63	<u>9.33</u>	15.33	C ₂₇ H ₄₁ N ₅ O
			71.80	9.15	15.51	27 11 5
6d	86	95—97	72.43	9.62	14.45	C29H45N5O
			72.61	9.46	14.60	27 13 3
7a	81	267-269	68.82	8.06	18.30	C40H57N9O2
			69.03	8.26	18.11	40 57 9 2
7b	88	251-252	69.49	8.27	17.63	$C_{42}H_{61}N_9O_2$
			69.68	8.49	17.41	42 01 9 2
7c	91	244-245	70.11	8.56	16.52	$C_{44}H_{65}N_{0}O_{2}$
			70.27	8.71	16.76	44 05 9 2
7d	87	233-235	71.08	9.11	16.34	$C_{46}H_{69}N_9O_2$
			70.82	8.92	16.16	40 09 9 2
8a	86	162-164	64.92	8.17	22.41	C34H50N10O2
			64.73	7.99	22.20	54 50 10 2
8b	85	137-139	66.22	8.70	20.21	$C_{38}H_{58}N_{10}O_{2}$
			66.44	8.51	20.39	30 30 10 2
10a	83	140-142	68.69	8.84	22.66	$C_{28}H_{42}N_8$
	~ ~		68.54	8.63	22.84	- 2042- 0
10b	87	146-147	69.27	9.15	21.79	C20H46No
			69.46	8.94	21.60	- 30408

Table 2.	¹ H NMR sp	pectra of co	mpounds	2a,b,	3a,b,	4a,b, 5a	—d, (6 a —d,	8a,b, and	10a,b
----------	-----------------------	--------------	---------	-------	-------	----------	-------	----------------	-----------	-------

Compound	δ (<i>J</i> /Hz)
2a	1.69 (s, 6 H, C _{Ad} H ₂); 2.01 (s, 6 H, C _{Ad} H ₂); 2.09 (br.s, 3 H, C _{Ad} H); 3.87 (s, 2 H, CH ₂ N); 5.94 (s, 1 H, NH)
2b	0.86 (s, 6 H, Me); 1.16 (s, 2 H, $C_{Ad}H_2$); 1.22–1.48 (m, 4 H, $C_{Ad}H_2$); 1.55–1.76 (m, 4 H, $C_{Ad}H_2$); 1.84 (s, 2 H, CH_2); 2.16 (septet, 1 H, $C_{Ad}H$, $J_{H,H}$ = 3.0); 3.85 (s, 2 H, CH_2N); 5.78 (s, 1 H, NH)
3a	1.52–1.78 (m,13 H, NH + $C_{Ad}H_2$); 2.01–2.17 (m, 3 H, $C_{Ad}H$); 2.19 (t, 1 H, CH, $J_{H,H} = 2.5$); 3.41 (d, 2 H, CH ₂ N, $J_{H,H} = 2.5$)
3b	0.84 (s, 6 H, Me); 1.08–1.15 (m, 2 H, $C_{Ad}H_2$); 1.21–1.33 (m, 4 H, $C_{Ad}H_2$); 1.35 (s, 1 H, NH); 1.46–1.52 (m, 4 H, $C_{Ad}H_2$); 1.80 (s, 2 H, CH ₂); 2.14 (septet, 1 H, $C_{Ad}H$, $J_{H,H} = 3.1$); 2.19 (t, 1 H, CH, $J_{H,H} = 2.5$); 3.41 (d, 2 H, CH ₂ N, $J_{H,H} = 2.5$)
4 a	1.63 (s, 6 H, $C_{Ad}H_2$); 1.83 (s, 6 H, $C_{Ad}H_2$); 2.08 (br.s, 3 H, $C_{Ad}H$); 2.21 (t, 2 H, CH, $J_{H,H} = 2.3$); 3.69 (d, 4 H, CH ₂ N, $J_{H,H} = 2.3$)
4b	0.87 (s, 6 H, Me); 1.08–1.17 (m, 2 H, $C_{Ad}H_2$); 1.25–1.35 (m, 4 H, $C_{Ad}H_2$); 1.36–1.56 (m, 4 H, $C_{Ad}H_2$); 1.8–34 (s, 2 H, CH ₂); 2.17 (septet, 1 H, $C_{Ad}H$, $J_{H,H}$ = 3.2); 2.22 (t, 2 H, CH, $J_{H,H}$ = 2.0); 3.70 (d, 4 H, CH ₂ N, $J_{H,H}$ = 2.0)
6a	1.60–1.75 (m, 18 H, C _{Ad} H ₂); 1.98 (s, 6 H, C _{Ad} H ₂); 2.05–2.20 (m, 7 H, C _{Ad} H + NH); 3.99 (s, 2 H, CH ₂ C(O)); 4.97 (s, 2 H, <u>CH₂NH</u>); 5.91 (s, 1 H, NHC(O)); 7.71 (s, 1 H, CH=)
6b	0.86 (s, 6 H, Me); 1.14 (s, 2 H, $C_{Ad}H_2$); 1.24–1.47 (m, 8 H, $C_{Ad}H_2$); 1.52–1.72 (m, 8 H, $C_{Ad}H_2$); 1.90–2.10 (m, 11 H, $C_{Ad}H_2 + C_{Ad}H$); 3.93 (s, 2 H, $CH_2C(O)$); 4.96 (s, 2 H, \underline{CH}_2NH); 6.30 (s, 1 H, NHC(O)); 7.71 (s, 1 H, CH=)
6c	0.83 (s, 6 H, Me); 1.13 (s, 2 H, $C_{Ad}H_2$); 1.20–1.41 (m, 4 H, $C_{Ad}H_2$); 1.47–1.84 (m, 18 H, $C_{Ad}H + C_{Ad}H_2$); 2.05–2.18 (m, 4 H, $C_{Ad}H_2$); 2.27 (s, 1 H, NH); 3.95 (s, 2 H, $CH_2C(O)$); 4.92 (s, 2 H, \underline{CH}_2NH); 5.95 (s, 1 H, NHC(O)); 7.66 (s, 1 H, CH=)
6d	0.83 (s, 6 H, Me); 0.87 (s, 6 H, Me); 1.14 (s, 4 H, $C_{Ad}H_2$); 1.24–1.47 (m, 12 H, $C_{Ad}H_2$); 1.49–1.70 (m, 5 H, NH + $C_{Ad}H_2$); 1.74–1.82 (m, 2 H, $C_{Ad}H_2$); 2.09–2.20 (m, 4 H, $C_{Ad}H_2$ + $C_{Ad}H$); 3.94 (s, 2 H, CH ₂ C(O)); 4.92 (s, 2 H, <u>CH₂NH</u>); 5.93 (s, 1 H, NHC(O)); 7.65 (s, 1 H, CH=)
7a	1.50–1.77 (m, 22 H, $C_{Ad}H_2$); 1.85–2.15 (m, 23 H, $C_{Ad}H_2 + C_{Ad}H$); 3.81 (s, 4 H, $CH_2C(O)$); 4.97 (s, 4 H, \underline{CH}_2N); 7.77 (s, 2 H, CH=); 7.86 (s, 2 H, NHC(O))
7b	0.84 (s, 6 H, Me); 1.14 (s, 2 H, $C_{Ad}H_2$); 1.21–1.53 (m, 8 H, $C_{Ad}H_2$); 1.57–1.73 (m, 21 H, $C_{Ad}H_2$); 1.85–2.15 (m, 12 H, $C_{Ad}H_2 + C_{Ad}H$); 3.97 (s, 4 H, $CH_2C(O)$); 4.92 (s, 4 H, \underline{CH}_2N); 5.82 (s, 2 H, NHC(O)); 7.65 (s, 2 H, CH=)
7c	0.81 (s, 12 H, Me); 1.10 (s, 4 H, $C_{Ad}H_2$); 1.18–1.39 (m, 8 H, $C_{Ad}H_2$); 1.57–1.80 (m, 23 H, $C_{Ad}H_2$); 1.95–2.13 (m, 6 H, $C_{Ad}H_2 + C_{Ad}H$); 3.62 (s, 4 H, $CH_2C(O)$); 4.65 (s, 4 H, \underline{CH}_2N); 7.77 (s, 2 H, $CH=$); 7.87 (s, 2 H, NHC(O))
7d	0.81 (s, 18 H, Me); 1.10 (s, 6 H, $C_{Ad}H_2$); 1.17–1.46 (m, 12 H, $C_{Ad}H_2$); 1.48–1.80 (m, 16 H, $C_{Ad}H_2$); 2.00–2.13 (m, 5 H, $C_{Ad}H_2 + C_{Ad}H$); 3.61 (s, 4 H, $CH_2C(O)$); 4.95 (s, 4 H, \underline{CH}_2N); 7.76 (s, 2 H, $CH=$); 7.88 (s, 2 H, NHC(O))
8a	$1.51-1.70 \text{ (m, 12 H, C_{Ad}H_2); } 1.80-2.10 \text{ (m, 18 H, C_{Ad}H_2 + C_{Ad}H); } 2.20-2.56 \text{ (m, 8 H, NCH2CH2); } 3.50 \text{ (s, 4 H, CH2C(O)); } 4.94 \text{ (s, 4 H, CH2N); } 7.83 \text{ (s, 4 H, CH= + NHC(O))}$
8b	0.81 (s, 12 H, Me); 1.10 (s, 4 H, $C_{Ad}H_2$); 1.17–1.46 (m, 8 H, $C_{Ad}H_2$); 1.48–1.80 (m, 12 H, $C_{Ad}H_2$); 2.00–2.13 (m, 2 H, $C_{Ad}H$); 2.18–2.54 (m, 8 H, N <u>CH</u> ₂ CH ₂); 3.50 (s, 4 H, CH ₂ C(O)); 4.93 (s, 4 H, <u>CH</u> ₂ N); 7.78 (s, 2 H, CH=); 7.83 (s, 2 H, NHC(O))
10a	1.53–1.82 (m, 18 H, $C_{Ad}H_2$); 1.86–2.17 (m, 14 H, NH + $C_{Ad}H + C_{Ad}H_2$); 3.85 (s, 4 H, CH_2CH_2); 4.86 (s, 4 H, \underline{CH}_2 NH); 7.30 (s, 2 H, CH=)
10b	$\begin{array}{l} 1.54-1.84 \ (m,\ 22\ H,\ NCH_2\underline{CH}_2+C_{Ad}H_2); \ 1.86-2.01 \ (m,\ 6\ H,\ C_{Ad}H_2); \ 2.01-2.20 \ (m,\ 8\ H,\ NH+C_{Ad}H); \\ 3.85 \ (s,\ 4\ H,\ N\underline{CH}_2CH_2); \ 4.86 \ (s,\ 4\ H,\ \underline{CH}_2NH); \ 7.30 \ (s,\ 2\ H,\ CH=) \end{array}$

(0.002 g, 0.01 mmol) in water (0.5 mL), and sodium ascorbate (0.008 g, 0.04 mmol) in water (0.25 mL) were added to a solution of azidoacetamide **2a,b** (0.1 mmol) in dichloromethane (20 mL) with vigorous stirring. The reaction mixture was stirred for 7 h at 40 °C, cooled to room temperature, diluted with dichloromethane (10 mL), and washed with 2% aqueous ammonia (10 mL) and water. The organic layer was separated and dried with

 Na_2SO_4 , The solvent was evaporated *in vacuo*, the residue was subjected to chromatography on silica gel (60 mesh, eluent methanol—chloroform, 1 : 10).

2,2'-{4,4'-[(Adamantan-1-ylazanediyl)bis(methylene)bis-(1*H*-1,2,3-triazole-4,1-diyl)]bis(*N*-adamantan-1-yl)acetamide} (7a), 2,2'-{4,4'-[(3,5-dimethyladamantan-1-ylazanediyl)bis-(methylene)bis(1*H*-1,2,3-triazole-4,1-diyl)]bis(*N*-adamantan-1yl)acetamide} (7b), $2,2'-{4,4'-[(adamantan-1-ylazanediyl)bis-(methylene)bis(1H-1,2,3-triazole-4,1-diyl)]bis(N-3,5-dimethyl$ $adamantan-1-yl)acetamide} (7c), and <math>2,2'-{4,4'-[(3,5-dimethyl$ adamantan-1-ylazanediyl)bis(methylene)bis(1H-1,2,3-triazole- $4,1-diyl)]bis(N-3,5-dimethyladamantan-1-yl)acetamide} (7d) were$ obtained similarly to <math>6a-d from azidoacetamide 2a,b (0.1 mmol) and N.N-dipropenylaminoadamantane 4a,b (0.2 mmol).

1,4-Bis({1-[2-(adamantan-1-ylamino)-2-oxoethyl]-1,2,3triazol-4-yl}methyl)piperazine (8a) and 1,4-bis({1-[2-(3,5-dimethyladamantan-1-ylamino)-2-oxoethyl]-1,2,3-triazol-4-yl}methyl)piperazine (8b) were obtained similarly to 6a-d from azidoacetamide 2a,b (0.2 mmol) and 1,4-dipropenylpiperazine 5 (0.1 mmol).

 $N,N' - \{[1,1'-(Ethane-1,2-diyl)bis(1H-1,2,3-triazole-4,1-diyl)]bis(methylene)\}bis(adamantan-1-amine) (10a) and <math>N,N' - \{[1,1'-(butane-1,2-diyl)bis(1H-1,2,3-triazole-4,1-diyl)]bis(methylene)\}bis(adamantan-1-amine) (10b) were obtained similarly to 6a—d from N-propenylaminoadamantane 3a (0.2 mmol) and diazidoalkanes 9 (0.1 mmol).$

Yields, melting points, elemental analysis data, and spectral characteristics of compounds **2a**,**b**, **3a**,**b**, **4a**,**b**, **6a**–**d**, **7a**–**d**, **8a**,**b**, and **10a**,**b** are given in Tables 1 and 2.

This work was financially supported by the Russian Science Foundation (Project No. 14-23-00160-P: synthesis of conjugates 6a-d, 7a-d, 8a,b, and 10a,b) and within the State Assignment for 2018 (Theme No. 0090-2017-0023: synthesis of compounds 2a,b, 3a,b, and 4a,b).

References

 S. O. Bachurin, E. V. Bovina, A. A. Ustyugov, *Med. Res. Rev.*, 2017, 37, 1186.

- A. J. Kesel, H.-C. Weiss, A. Schönleber, C. W. Day, D. L. Barnard, M. A. Detorio, R. F. Schinazi, *Antivir. Chem. Chemother.*, 2013, 23, 113.
- N. Crosby, K. H. Deane, C. E. Clarke, *Cochrane Database Syst. Rev.*, 2003, Issue 1, Art. No.: CD003468; DOI: 10.1002/14651858.CD003468.
- 4. R. S. Doody, P. N. Tariot, E. Pfeiffer, J. T. Olin, S. M. Graham, *Alzheimers Dement.*, 2007, 3, 7.
- E. Simoni, S. Daniele, G. Bottegoni, D. Pizzirani, M. L. Trincavelli, L. Goldoni, G. Tarozzo, A. Reggiani, C. Martini, D. Piomelli, C. Melchiorre, M. Rosini, A. Cavalli, *J. Med. Chem.*, 2012, 55, 9708.
- 6. S. O. Bachurin, V. B. Sokolov, A. Yu. Aksinenko, T. A. Epishina, T. V. Goreva, E. F. Shevtsova, P. N. Shevtsov, Pat. RF 2608731, 2016 (in Russian).
- S. O. Bachurin, V. B. Sokolov, A. Yu. Aksinenko, E. F. Shevtsova, A. Yu. Abramov, D. V. Vinogradova, M. E. Neganova, Pat. RF 2608737, 2016 (in Russian).
- V. B. Sokolov, A. Yu. Aksinenko, T. V. Goreva, T. A. Epishina, V. V. Grigor'ev, A. V. Gabrel'yan, D. V. Vinogradova, M. E. Neganova, E. F. Shevtsova, S. O. Bachurin, *Russ. Chem. Bull.*, 2016, 65, 1354.
- 9. S. A. Lipton, Nat. Rev. Drug Discov., 2006, 5, 160.
- H. C. Kolb, M. G. Finn, K. B. Sharpless, *Angew. Chem.*, *Int. Ed.*, 2001, 40, 2004.
- V. D. Bock, H. Hiemstra, J. H. Maarseveen, *Eur. J. Org. Chem.*, 2006, 2006, 51.
- R. S. Singh, R. K. Gupta, R. P. Paitandi, A. Misra, D. S. Pandey, *New J. Chem.*, 2015, **39**, 2233.
- F. M. Betzler, T. M. Klapoetke, S. M. Sproll, *Eur. J. Org. Chem.*, 2013, 2013, 509.

Received April 20, 2018; in revised form May 29, 2018; accepted May 31, 2018