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Abstract: The cis-1,2-dihydrocatechols 5-7, which are obtained in
high yield and ca. 99.8% ee by microbial oxidation of the corre-
sponding aromatic compound, have been converted, via reaction se-
quences involving three distinct types of one-carbon deletion
processes, into the four D-aldopentoses.

Key  words:   D-arabinose,  1,2-diol  cleavage,   cis-1,2-dihydro-
catechol,  D-lyxono-d-lactone, D-lyxose, ozonolytic cleavage,  D-
ribose, radical decarboxylation, D-xylose

The D-aldopentoses 1-4 and their derivatives are of con-
siderable interest as starting materials for chemical syn-
thesis,1 as building blocks in the construction of
carbohydrate-based drugs2 and as probes of various bio-
chemical processes.3 Consequently, new methods for the
preparation of differentially protected and/or isotopically
labelled forms of these compounds should prove valuable.
The capacity to prepare such five-carbon sugars, especial-
ly 17O-, 13C- and/or 2H-labelled variants,4 could be greatly
facilitated by using appropriate non-carbohydrate based
starting materials.4b,5 However, in contrast to the consid-
erable effort that has been devoted to the synthesis of var-
ious pentitols6 and the aldohexoses,7 much of which
exploits asymmetric epoxidation chemistry, examples of
the preparation of the aldopentoses from non-carbohy-
drate sources remain rather limited.3c,8 In an important
contribution to the general area, Hudlicky et al.9 have
demonstrated that the enantiopure six-carbon cis-1,2-di-
hydrocatechol 5 can be converted into L-ribono-g-lactone
acetonide. The key steps involved initial ozonolysis,

which deletes two carbons, followed by Wittig olefination
chemistry to reinstate one carbon. It is against such a
background that we now wish to report carbon-atom effi-
cient syntheses of the title compounds from the cis-1,2-di-
hydrocatechols 5-7 which are themselves readily obtained
in large quantity and high enantiomeric excess by micro-
bial oxidation of the corresponding halobenzene.10,11 

Scheme 1 Reagents and conditions: (i) see ref. 12; (ii) see ref. 12; (iii)
TBDMSCl (2.95 mole equiv.), Hünig's base (3.8 mole equiv.), DMF,
18 °C, 8 h; (iv) ozone (excess), MeOH, -78 °C, 10 min., then
NaBH3CN (ca. 6.0 mole equiv.), HCl (2 M in MeOH), 0 to 18 °C, ca.
2.5 h; (v) DIBALH (2.5 mole equiv.), CH2Cl2, -78 °C, 2 h then quench
with MeOH; (vi) 4:1 v/v TFA/H2O, 18 °C, 18 h.

A concise synthesis of D-lyxose (2) from compound 5 is
shown in Scheme 1 and involves initial conversion of the
starting material into the corresponding acetonide 8.12

This derivative undergoes a b-face selective reaction with
singlet-oxygen and the resulting endoperoxide is immedi-
ately cleaved with thiourea to give the previously
reported12 g-hydroxyenone 9 (ca. 38% from 5). In the key
step of the reaction sequence, the readily derived tert-bu-
tyldimethylsilyl (TBDMS)-ether, 10 {80%, m.p. < 50 °C
(lit.12 m.p. = 50-54 °C), [a]D = -74 (c 5.5)13}, of compound
9 was subjected to ozonolytic cleavage followed by a re-
ductive "work-up" using sodium cyanoborohydride at pH
3.14 In this way the lactone 11 {82%, m.p. = 61-62.5 °C,
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[a]D = -35 (c 1.6)} was obtained.15 This last compound
was readily converted into the target aldopentose by di-
isobutylaluminium hydride (DIBALH)-mediated reduc-
tion of the lactone moiety to the corresponding lactol 12
{95%, m.p. = 91-91.5 °C, [a]D = -15 (c 1.0 - rotation de-
termined after 24 h)} which when treated with aqueous
trifluoroacetic acid (TFA) afforded D-lyxose (2) {82%,
m.p. = 115 °C (decomp.), [a]D = -17 (c 1.0 in H2O - rota-
tion determined after 25 h)}. This material was identical,
in all respects, with an authentic sample obtained from Al-
drich™.

Efforts to adapt the above-mentioned chemistry so as to
access D-ribose are shown in Scheme 2 and start with the
g-hydroxyenone 9 which was protected as the triethylsilyl
(TES)-ether 13 {97%, [a]D = -38 (c 1.9)} under standard
conditions. L-Selectride-mediated reduction of this latter
compound  provided   allylic   alcohol   14  {[ a]D = -100
(c 1.8)} as the only isolable product of reaction albeit in
30% yield. Reaction of compound 14 with tert-butyldim-
ethylsilyl triflate (TBDMSOTf) in pyridine then gave the
TBDMS-ether 15 {96%, [a]D = -92 (c 1.6)} which upon
treatment with aqueous acetic acid in THF resulted in re-
moval of the TES-group to afford alcohol 16 {100%, [a]D

= -97 (c 1.2)}. 

Scheme 2 Reagents and conditions: (i) TESCl (3 mole equiv.), Hü-
nig's base (4.0 mole equiv.), DMF, 18 °C, 16 h; (ii) L-Selectride (1.1
mole equiv.), THF, -78 °C, 5 min; (iii) TBDMSOTf (3.0 mole equiv.),
pyridine (5.0 mole equiv.), CH2Cl2, 0-5 °C, 2 h; (iv) 11:5:3 v/v/v
AcOH/THF/H2O, 18 °C, 4 h; (v) TPAP (0.05 mole equiv.), NMO (3
mole equiv.), 4 Å molecular sieves, CH2Cl2, 18 °C, 16 h; (vi) ozone
(excess), MeOH, -78 °C, 10 min., then NaBH3CN (ca. 6.0 mole
equiv.), HCl (2 M in MeOH), 0 to 18 °C, ca. 1.5 h. NMO = N-methyl-
morpholine N-oxide; TPAP = tetrapropylammonium perruthenate. 

Oxidation of the last compound with the Ley-Griffith
reagent16 produced enone 17 {80%, [a]D = -102 (c 1.0)}
but when this material was subjected to the same condi-
tions as used to effect the conversion 10 Æ 11 the desired
D-ribono-d-lactone derivative 18 could not be detected

amongst the complex mixture of reaction products. That
analogue of compound 17 in which the TBDMS-group
has been replaced by an acetyl moiety also failed to under-
go the desired type ozonolytic-cleavage reaction. Conse-
quently, an alternate route from the cis-1,2-
dihydrocatechols 5-7 to D-ribose had to be devised (see
Scheme 3). 

Scheme 3 Reagents and conditions: (i) TBDPSCl (1.1 mole equiv.),
imidazole (3.0 mole equiv.), CH2Cl2, 18 °C, 7 h; (ii) OsO4 (cat.),
NMO (1.3 mole equiv.), 3:1 v/v Me2CO/H2O, 4 °C, 30 h; (iii)
Me2C(OMe)2, p-TsOH (cat.), 18 °C, 3 h; (iv) ozone (excess), MeOH,
-78 °C, 0.5 h then NaBH3CN (ca. 6.0 mole equiv.), HCl (2 M in Me-
OH), 0 to 18 °C, ca. 2.5 h; (v) LiBH4 (5 mole equiv.), MeOH (5 mole
equiv.), Et2O, reflux, 6 h; (vi) NaIO4 (2 mole equiv.), 3:1 v/v MeOH/
H2O, 18 °C, 3 h; (vii) 10% v/v aq. HCl, 18 °C, 18 h. 

A reaction sequence for the conversion of monochiral diol
7 into D-arabinose is shown in Scheme 3 and serves to
highlight an alternate one-carbon deletion process that al-
lows for the conversion of cis-1,2-dihydrocatechols into
aldopentoses. Thus, reaction of compound 7 with tert-bu-
tyldiphenylsilyl (TBDPS)-chloride under carefully con-
trolled conditions resulted in selective protection of the
less-hindered hydroxyl group within the substrate and the
formation of the rather unstable ether 19 (97%). Diastere-
ofacially-selective cis-1,2-dihydroxylation of the latter
compound could be effected under standard conditions17

and the resulting diol 20 was immediately converted, by
conventional means, into the corresponding acetonide 21
{ca. 80% from 19, m.p. < 25 °C, [a]D = +19 (c 1.4)}. Re-
action of compound 21 with ozone in methanol followed
by a reductive "work-up" using sodium cyanoborohydride
at low pH provided the methyl ester 22 {77%, m.p. = 145-
147 and 156-158 °C, [a]D = +41 (c 1.3, determined after 64
h)}. The structure of compound 22 was confirmed by sin-
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gle crystal X-ray analysis18 of its a-anomer which crystal-
lised from mixtures of 1,2-dimethoxyethane and hexane. 

Reduction of both the ester and lactol moieties within
compound 22 was effected with lithium borohydride and
the resulting triol 23 {71%, [a]D = +28 (c 3.9)} was sub-
jected to oxidative cleavage using sodium metaperiodate
thereby producing a protected form, 24 {80%, [a]D = -24
(c 3.5 - determined after 30 h)}, of target 1. Treatment of
lactol 24 with 10% aqueous HCl then provided D-arabi-
nose itself {68%, m.p. = 158 °C (decomp.), [a]D = -104 (c
1.0, H2O - determined after 48 h)} which was identical, in
all respects, with an authentic sample obtained from Ald-
rich™. 

Scheme 4 Reagents and conditions: (i) ref 20; (ii) ref 20; (iii) 1% v/v
HCl in THF, 2:1 v/v THF/H2O, 18 °C, 16 h; (iv) TBDMSOTf (3.6
mmol), 2,6-lutidine (6.0 mole equiv.), CH2Cl2, 18 °C, 18 h; (v) ozone
(excess), 1:1 v/v MeOH/CH2Cl2 , -78 °C, 0.5 h then NaBH4 (4.0 mole
equiv.), 0-18 °C, 3.5 h; (vi) MEM-Cl (5.5 mole equiv.), Hünig's base
(3.0 mole equiv.), CH2Cl2, 18 °C, 18 h; (vii) KOH (3.0 mole equiv.),
THF, MeOH, H2O, 18 °C, 18 h then 10% v/v aq. HCl; (viii) 2-mer-
captopyridine N-oxide (1.15 mole equiv.), DCC (1.0 mole equiv.),
Et2O, 18 °C, 2 h then tert-dodecanethiol (1.86 mole equiv.), irradiati-
on (400 W high pressure Hg lamp), 18 °C, 2h; (ix) TBAF (4.0 mole
equiv.), THF, 18 °C, 18 h; (x) Me2C(OMe)2, p-TsOH (cat.), 18 °C, 3
h; (xi) n-BuLi (4.0 mole equiv.), THF, 18 °C, 10 h then Hg(OAc)2 (2.5
mole equiv.), 1:1 v/v THF/H2O, 18 °C, 5 h; (xii) Dess-Martin periodi-
nane (2.5 mole equiv.), CH2Cl2, 18 °C, 1.5 h; (xiii) 6% v/v aq. HCl,
18 °C, 18 h. TBAF = tetra-n-butylammonium fluoride. 

The acquisition of D-arabinose (1) by the method just de-
scribed also constitutes a formal total synthesis of D-ri-
bose (3) from non-carbohydrate sources since treatment
of  the  L-enantiomer  of   the  former  compound  with

molybdenum(VI) oxide bis-2,4-pentanedionate has been
shown19 to provide the L-enantiomer of the latter in ca.
28% yield.

Developing a synthesis of D-xylose (4) from the cis-1,2-
dihydrocatechols proved the most demanding aspect of
the present work and, ultimately, a radical-decarboxyla-
tion process was used to effect the necessary one-carbon
deletion step. The initial stages of the synthesis (Scheme
4) involved epoxidation of the acetonide derivative of bro-
modiol 6 so as to generate the previously reported20 ox-
irane 25 (>80% from 6). Ring-opening of the epoxide
moiety within the latter compound could be achieved us-
ing water as the nucleophile and HCl as catalyst so as to
produce the previously reported21 trans-diol 26 {92%,
m.p. = 147 °C, [a]D = -4 (c 1.0)}. The regioselectivity ex-
hibited in this conversion is consistent with related cleav-
ages of similar epoxides22 where-in the newly introduced
hydroxyl group derives from attack of the nucleophile at
the allylic position within substrate 25. Compound 26 was
converted into the corresponding bis-TBDMS-ether
27{89%, m.p. = 101.5-102.5 °C, [a]D = +43 (c 1.1)} and
this latter compound subjected to ozonolysis in methanol
then "work-up" with sodium borohydride. In this fashion
the hydroxy-ester 28 {85%, [a]D = -10 (c 10.0)} was ob-
tained and could be converted into the corresponding 2-
methoxyethoxymethyl (MEM)-ether 29 {99%, [a]D = -4
(c 1.9)} under standard conditions. Using the carefully
controlled conditions reported by Crich23 the ester moiety
within this latter compound could be converted into the
corresponding acid 30 {100%, [a]D = -9 (c 1.7)} without
any complications arising from cleavage of the silyl ether
units. 

The ester derived from condensation of acid 30 with 2-
mercaptopyridine N-oxide was then photolysed in the
presence of tert-dodecanethiol23 to afford the radical de-
carboxylation product 31 {45% from 30, [a]D = -31 (c
0.7)} which was desilylated under standard conditions
and the resulting vic-diol 32 immediately reprotected as
the corresponding acetonide 33 {68% from 31, [a]D = -9 (c
0.2)}. Removal of the MEM-group within this last com-
pound was achieved by sequential treatment with n-BuLi
then Hg(OAc)2

24 and the resulting xylitol derivative 34
{45%, [a]D = -12 (c 2.5, MeOH)}25 oxidised to the alde-
hyde 35 {92%} 26 using the Dess-Martin periodinane.27 Fi-
nally, deprotection of the last compound using aqueous
hydrochloric acid afforded D-xylose (4) itself (30%) the
tetra-O-acetyl-b-D-pyranose derivative {m.p. = 127-128
°C, [a]D = -23 (c 0.5)} of which proved identical with an
authentic sample {m.p. = 126-127 °C, [a]D = -25 (c 2.0)}28

derived from commercially available D-xylose.

The work described here-in, especially when considered
alongside previous reports from these29 and other labora-
tories,5,11 should serve to emphasise the considerable util-
ity and potential of cis-1,2-dihydrocatechols as starting
materials for the synthesis of monosaccharides and vari-
ous derivatives there-of. 
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