Reactivity of Negative Ions with Trifluoromethyl Halides

Robert A. Morris,* A. A. Viggiano, Thomas M. Miller, John V. Seeley, Susan T. Arnold, and John F. Paulson

Phillips Laboratory, Geophysics Directorate (GPID), 29 Randolph Road, Hanscom AFB, Massachusetts 01731-3010

Jane M. Van Doren

Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610-2395 Received: February 5, 1996; In Final Form: April 16, 1996[®]

The kinetics of reactions of selected anions (A⁻) with the trifluoromethyl halides CF₃X (X = F, Cl, Br, I) in the gas phase were measured at 300 K. Reaction rate constants and product branching fractions were determined using a selected ion flow tube (SIFT) instrument. The chosen anions were C₅F₅N⁻, *o*-, *m*-, and *p*-CF₃C₆H₄CN⁻, C₆F₅Br⁻, C₆F₅Cl⁻, C₆F₅CF₃⁻, C₆F₅COCH₃⁻, Fe⁻, FeCO⁻, SF₆⁻, SO⁻, SO₂⁻, NO⁻, NO₂⁻, and NO₃⁻. The reactivity of these systems varies from unreactive to collisional, and a variety of reaction types was found. The results of our present and previous measurements on A⁻ + CF₃X reactions show that, in cases where nondissociative electron transfer (NDET) is energetically allowed, the total reactivity tends to be high, approaching collisional. This suggests that reactivity in these cases is initiated and controlled by electron transfer from the anion. In addition, association reactions tend to be preempted when NDET is energetically allowed. A few exceptions to these tendencies were found and are discussed.

Introduction

We have previously reported kinetics measurements for a number of negative ions reacting with the trifluoromethyl halides CF_3X (X = F, Cl, Br, I).^{1,2} In those studies, trends in reactivity began to emerge, but the number and variety of systems studied were quite limited. It was found that the reactivity of O_2^- with fully halogenated methanes, including CF_3X , correlates with both the electron affinities of the perhalomethanes and their rates of thermal electron attachment.¹ This was interpreted as an indication that in these cases reactivity is initiated and governed by electron transfer from the anion to the perhalomethane, i.e., that initial electron transfer is the rate-limiting step.

Substitution reactions at carbon occurring in solution via initial electron transfer were first characterized in the 1960s by Kornblum et al.³ and by Russell and Danen.⁴ Bunnett⁵ named this mechanism "S_{RN}1" and studied its applicability to aromatic substitution. Initial electron transfer in the gas phase was proposed by McDonald et al.⁶ to explain the reactivity of (CH₃O)₂PO⁻ with CF₃X and by Jones et al.⁷ to explain the reactivity of 17-electron transition-metal complex anions with a variety of haloalkanes. Knighton and Grimsrud⁸ also attributed anion reactivity trends in haloalkanes to an initial electron transfer mechanism.

In order to investigate the extent of applicability of the initial electron transfer mechanism to other systems, we have studied the reactivity of the anions $C_5F_5N^-$, *o*-, *m*-, and *p*-CF₃C₆H₄-CN⁻, C₆F₅Br⁻, C₆F₅Cl⁻, C₆F₅CF₃⁻, C₆F₅COCH₃⁻, Fe⁻, FeCO⁻, SF₆⁻, SO⁻, SO₂⁻, NO⁻, NO₂⁻, and NO₃⁻ with the trifluoromethyl halides CF₃X (X = F, Cl, Br, I). Rate constants and product branching fractions were measured at 300 K using a selected ion flow tube (SIFT) instrument. The results are compared with previously published measurements of other A⁻/CF₃X systems performed on the same SIFT apparatus,^{1,2} and some trends are apparent in the combined data.

Experimental Section

The measurements were made under thermal conditions at 300 K using the selected ion flow tube (SIFT) instrument at Phillips Laboratory. This apparatus has been described previously,⁹ and the technique and generic instrumentation have been extensively reviewed.¹⁰ Therefore, we report here only those details which are relevant to the present study.

The ions were formed in a remote electron impact ion source from precursor chemicals as follows. NO⁻ was formed from N₂O, Fe⁻ and FeCO⁻ were formed from Fe(CO)₅ diluted in CO, SF₆⁻ was formed from an SF₆ impurity present in NF₃, SO⁻ and SO₂⁻ were formed from SO₂, NO₂⁻ and NO₃⁻ were formed from NO₂ which contained an impurity of HNO₃, and F⁻ was formed from CF₄. All of the organic anions were formed in the ion source from the corresponding parent neutral compounds, e.g., C₅F₅N⁻ from C₅F₅N.

The ion of interest was mass selected in a quadrupole mass filter and injected through a Venturi aspirator inlet into a stainless steel flow tube 1 m in length. The ions were conveyed along the flow tube by a fast flow (approximately 10^4 cm s⁻¹) of He buffer gas maintained at approximately 0.4 Torr, except in the case of the NO⁻ reactions which were studied in an Ar carrier gas at about 0.2 Torr; the Ar carrier was used in this case because the NO⁻ anion is destroyed in the flow tube by thermal electron detachment in collisions with He.11 Neutral CF₃X reactant gas was added to the flow tube, and the reactant and product ions were sampled through a 0.2 mm orifice in a flat plate mounted on a blunt sampling cone. The ion current reaching the flat plate was recorded in order to check for possible electron detachment reactions.¹² After being sampled, the ions were mass analyzed in a second quadrupole mass spectrometer and detected by a channel particle multiplier.

Rate constants were determined by the standard technique of recording the pseudo-first-order attenuation of the reactant ion count rate as a function of reactant neutral flow rate. The reaction time was measured directly by time-of-flight techniques.⁹ Buffer and reactant gas flow rates were maintained

^{*} To whom correspondence should be addressed.

[®] Abstract published in Advance ACS Abstracts, June 1, 1996.

and measured with flow controllers, and the flow tube pressure was measured with a capacitance manometer. Product branching fractions were determined by recording and plotting the fractional product ion abundances as a function of reactant neutral flow rate. The effects of secondary reactions were accounted for by extrapolating the branching fractions to zero reactant neutral flow rate. The product branching measurements were performed under conditions of low resolution in order to minimize the effects of mass discrimination. The reported branching percentages have been rounded off to the nearest five percentage points, except in those cases where a very minor product percentage was determined, e.g., 2%.

Results

The experimental results are presented in Table 1. The reactions are ordered by increasing detachment energy of the anion. The NO⁻ reactions were carried out in Ar buffer gas¹¹ and all others in He. Neutral products of reaction were not detected but were inferred from mass conservation and thermochemical considerations.¹³

The reactivity of the systems studied varies from fast, i.e., collisional,^{14,15} to immeasurably slow. A variety of reaction types is observed, including nondissociative electron transfer (NDET), halogen atom transfer, halide ion production, CF_3 radical transfer, and association. CF_4 does not react with any of the studied anions with the exception of a slow electron detachment "reaction" with the weakly-bound anion NO⁻.

Discussion

A. Reactivity. A few general observations about reactivity are offered in this section. In Table 2 we compare not only the results of the present measurements but also the previously reported data from our laboratory on reactivity of anions with CF₃X.^{1,2} The previous work involves the reactions of F^- , O^- , and O_2^- with the complete CF₃X series, as well as reactions of X⁻, XO⁻, and XF⁻ with the corresponding CF₃X compound, e.g., IF⁻ + CF₃I. The reactant anions and neutrals in Table 2 are ordered by increasing detachment energy and electron affinity, respectively.¹⁶ Table 2 gives the measured overall reaction rate constants; cases where the nondissociative electron transfer product CF₃X⁻ was observed are marked with an asterisk.

i. Bimolecular Reactivity. In general, these reactions are fast (i.e., at or near the collisional limit^{14,15}) when NDET is energetically allowed (exothermic or approximately thermoneutral²¹), regardless of the observed product channel(s). Actual NDET reaction products, i.e., CF_3X^- , are seen in a number of reactions with CF_3I , which has the highest electron affinity (EA) in the CF_3X series. Formation of CF_3Br^- was found in only one case, $O_2^- + CF_3Br,^1$ and no formation of CF_3Cl^- was observed in any of the reactions. $(CF_3Cl^-$ has been observed in the gas phase from electron attachment to $(CF_3Cl)_n$ clusters^{18,19} but has not been found as a product from ion–molecule reactions.)

The observation that reaction tends to be efficient in cases where NDET is energetically allowed suggests that the mechanism for these cases involves initial electron transfer from the anion to CF₃X either at long range or within the collision complex. The formation of halide ion products or other products which are fragments of CF₃X⁻ may then arise from subsequent dissociation of the CF₃X⁻ species either before or after the complex dissociates. We note that there are also cases where overall reaction is fast yet NDET is quite endothermic. Thus, while energetically-allowed NDET generally implies a fast overall reaction, endothermic NDET should not be seen as an indication that the reaction will be slow, since highly exothermic pathways may exist which do not involve electron transfer *per se*, e.g., nucleophilic attack at carbon by O⁻. Jones et al.⁷ have pointed out that, even in some cases where NDET is endothermic, electron transfer may occur within the collision complex, since the attractive ion-dipole and ion-induced dipole interactions supply additional energy with which to overcome the endothermicity of electron transfer. In that model, a subsequent step, halide transfer from CF₃X⁻, would then take place within the collision complex, leading to the observed exothermic products.

The slow reaction of SF_6^- with CF_3I does not contradict the proposal of an initial electron transfer mechanism because SF_6^- is generally unreactive or inefficient with respect to electron transfer processes;²² initial electron transfer from SF_6^- to CF_3I would be expected to be inhibited, which would lead to the observed low overall reactivity. Grimsrud et al.²³ have suggested that the low reactivity of SF_6^- toward electron transfer is caused by the significant geometry change required in going from SF_6^- anion to SF_6 neutral.

In addition to the $SF_6^- + CF_3I$ case, anomalous behavior is also found for the reaction of m-CF₃C₆H₄CN⁻ with CF₃Br, which is slow despite an apparent 0.24 eV exothermicity for NDET. Possible explanations for this behavior include incorrect thermochemistry as well as the possibility that the geometry of this anion is significantly different from that of the parent neutral, an argument similar to that offered above for SF₆⁻. An alternative explanation is that the delocalized nature of the negative charge in the reactant anion leads to the observed inefficiency of reaction. It should be noted that no NDET product CF₃X⁻ was observed from any of the CF₃C₆H₄CN⁻ reactions, while all of the other organic anions studied did form some CF₃I⁻ in reaction with CF₃I.

We have previously shown that the rates of the reactions of O_2^- with fully halogenated methanes correlate with both the electron affinities and the electron attachment rates of the halomethanes,¹ supporting the above mechanism. Earlier, McDonald et al.⁶ suggested an initial electron transfer mechanism to explain the reactivity of (CH₃O)₂PO⁻ with CF₃X. Jones et al.⁷ showed a correlation between haloalkane electron attachment rates and the rates for reactions of 17-electron transition-metal anions and concluded that the reactivity of these systems is governed by initial electron transfer. Knighton and Grimsrud⁸ also concluded that initial electron transfer controls the reactivity of a series of reactions of substituted benzene anions and haloalkanes. Pan and Ridge^{24,25} invoked this mechanism to explain the correlation between anion reactivity and the electron affinities of a series of organic electrophiles. Thus, a wealth of gas phase anion reactivity data support this mechanism for a variety of neutrals including CF₃X, although the mechanism does not hold for all molecules.²²

ii. Reactivity toward Association. Another general observation is that when association occurs, it tends to occur when NDET is endothermic; however, there are many cases where NDET is endothermic yet no association is found. NDET thus appears to preempt association as do other exothermic bimolecular channels when they are operating, in most cases. The reactions of the $CF_3C_6H_4CN^-$ ions and of SF_6^- are again notable exceptions. For the reaction of SF_6^- with CF_3I , slow association is the sole reaction channel in spite of NDET being exothermic and other bimolecular channels being available. This is consistent with the initial electron transfer mechanism as follows: since initial electron transfer. The $CF_3C_6H_4CN^-$ ions associate with CF_3Br and CF_3I despite the apparent availability

TABLE 1: Rate Constants, Product Branching	r Percentages, a	nd Reaction Efficienc	ies from SII	FT Experiments at 300 K			
reaction	branching percentage	total rate constant $(10^{-9} \mathrm{cm^3 s^{-1}})$	efficiency $(\%)^{a}$	reaction	branching percentage	total rate constant $(10^{-9} \text{ cm}^3 \text{ s}^{-1})$	efficiency $(\%)^a$
$NO^- + CF_4 \rightarrow e^- + NO + CF_4$ $NO^- + CF_3CI \rightarrow CI^- + CF_3NO$	80	0.0035 0.33	0.4 25	$SF_{6-} + CF_4 \rightarrow \text{no reaction}$ $SF_{6-} + CF_3CI \rightarrow \text{no reaction}$		<0.001 <0.001	<pre>< 0.2</pre>
$NO^- + CF_3Br \rightarrow Urr + CF_3NO$	07	1.0	71	$SF_6 + CF_3BT \rightarrow no reaction$ $SF_6 - CF_3I \rightarrow SF_6 - CF_3I$		~0.002 0.005 (0.40 Torr)	0.55
$NO^{-} + CF_{3}I \rightarrow I^{-} + CF_{3}NO$ Fe ⁻ + $CF_{4} \rightarrow no$ reaction		1.9 <0.001	117 <0.2	C ₆ F ₅ CF ₃ ⁻ + CF ₄ → no reaction C ₆ F ₅ CF ₃ ⁻ + CF ₃ Cl → no reaction		<0.001 <0.001	<0.2 <0.2
$Fe^{-} + CF_{3}CI \rightarrow FeCI^{-} + CF_{3}$ $\rightarrow CF_{3}^{-} + FeCI$	70	0.63	61	$C_{6}F_{5}CF_{3}^{-} + CF_{3}Br \rightarrow C_{6}F_{5}CF_{3}Br^{-} + CF_{3}$ $\rightarrow Br^{-} + C_{7}F_{5}CF_{3} + CF_{3}$	50 50	0.0075	1.0
\rightarrow Cl ⁻ + FeCF ₃	15			$C_6F_5CF_3^- + CF_3I \rightarrow C_6F_5CF_3I^- + CF_3$	11	0.62	78
$Fe^- + CF_3Br \rightarrow Br^- + FeCF_3$ $\rightarrow FeBr^- + CF_3$	50 45	1.1	101	$\rightarrow I^{-} + C_{6}F_{5}CF_{3} + CF_{3}$ $\rightarrow CF_{4}I^{-} + C_{6}F_{5}CF_{3}$	5 8/		
$\rightarrow CF_{3}^{-} + FeBr$	1× 5	0 -	L71	$SO_2^- + CF_4 \rightarrow no reaction$		<0.001	<0.2
Fe + $CF_3I \rightarrow I$ + FeCF ₃ <i>m</i> - $CF_3C_6H_4CN^-$ + $CF_4 \rightarrow$ no reaction		<pre>-1.8 <0.001</pre>	147 <0.2	$SO_2 + CF_3CI \rightarrow no reaction$ $SO_2 + CF_3Br \rightarrow SO_3Br^- + CF_3$		~0.001 0.46	44 1.1
m -CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ Cl \rightarrow CF ₃ C ₆ H ₄ CNCl ⁻ + CF ₃ \rightarrow CF ₂ C H CN ⁻ CF ₂ C	90 10	0.0010 (0.40 Torr)	0.13	$SO_2^- + CF_3I \rightarrow I^- + CF_3SO_2$	90 2	1.25	105
m -CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ Br \rightarrow CF ₃ C ₆ H ₄ CNBr ⁻ + CF ₃	85	0.021 (0.40 Torr)	2.7	$\rightarrow CF_{3}^{DO2} + SO_{2}$	רא ה		
\rightarrow CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ I \rightarrow CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ Br m-CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ I \rightarrow CF ₃ C ₆ H ₄ CNI ⁻ + CF ₃	دا ر	0.81 (0.40 Torr)	94	$SO^- + CF_4 \rightarrow no$ reaction $SO^- + CF_3CI \rightarrow no$ reaction		100.0>	<0.2 <0.1
$\sim \text{ F} \text{ N}^- + CF \rightarrow CF_3C_6H_4CN^- \cdot CF_3I$	95			$SO^- + CF_3Br \rightarrow Br^- + CF_3SO$	98	0.066 (0.48 Torr)	5.6
$C_5F_5N + CF_4 - 10$ reaction $C_5F_5N^- + CF_5CI \rightarrow no$ reaction		<0.002	<0.3	$SO^- + CF_3I \rightarrow I^- + CF_3SO$	70	1.4	108
$C_5F_5N^- + CF_3B_1 \rightarrow Br^- + C_5F_5NCF_3 \rightarrow C_5F_5NBr^- + CF_3$	90 10	0.12	15	$\rightarrow m/e$ 159±1 amu $\rightarrow CF_{1}^{-} + FSO$	10		
$C_5F_5N^- + CF_3I \rightarrow I^- + C_5F_5NCF_3$	06	0.71	82	\rightarrow CF ₃ I ⁻ + SO	10		
$\rightarrow CF_3C_6H_4CN^- + CF_4 \rightarrow no reaction$	10	<0.001	<0.2	$C_6F_5Br^- + CF_4 \rightarrow$ no reaction $C_6F_5Br^- + CF_3CI \rightarrow$ no reaction		<0.001 <0.001	<pre>>0.2 > 0.2 > 0.2</pre>
o -CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ Cl \rightarrow CF ₃ C ₆ H ₄ CNCl ⁻ + CF ₃ \rightarrow CF ₂ C ₁ H ₂ CNCl ⁻ +CF ₃ Cl	87	0.013 (0.40 Torr)	1.7	$C_{0}E_{5}Br^{-} + CF_{3}Br \rightarrow no reaction$	00	<0.001	<0.2
$\rightarrow CF_3C_6H_4CNCF_3^- + CI$	 ≤2			$\begin{array}{rcl} C_{6}\Gamma_{5}DI & \top & C\Gamma_{3}I & \top & I & \top & C_{6}\Gamma_{5}DI \\ & \rightarrow & CF_{3}I^{-} + & C_{6}F_{5}BI \end{array}$	2 40	00.0	11
o -CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ Br \rightarrow CF ₃ C ₆ H ₄ CNBr ⁻ + CF ₃ \rightarrow CF ₂ C ₁ H ₂ CN ⁻ + CF ₃ Br	90 10	0.34 (0.40 Torr)	43	$FeCO^{-} + CF_4 \rightarrow \text{no reaction}$ $FeCO^{-} + CF_4 \rightarrow FeCOC1^{-} + CF_4$	59	<0.001	<0.2
o -CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ I \rightarrow CF ₃ C ₆ H ₄ CNI ⁻ + CF ₃ \rightarrow T \rightarrow CF ₂ C ₆ H ₄ CNI ⁻ + CF ₃	25	0.89 (0.40 Torr)	103	$\rightarrow CE_{1} \leftarrow CE_{1} \leftarrow CE_{2} \leftarrow CE_{3} \leftarrow$	15	17.0	04
$\rightarrow CF_3C_6H_4CN^{-1}CF_3I$	55			\rightarrow FeCOCF ₃ ⁻ + Cl	≤10		
p -CF ₃ C ₆ H ₄ CN ⁻ + CF ₄ \rightarrow no reaction p -CF ₃ C ₆ H ₄ CN ⁻ + CF ₄ \rightarrow no reaction	01	<0.001	<0.2	$FeCO^{-} + CF_{3}Br \rightarrow FeCOBr^{-} + CF_{3}$ $\rightarrow FeDr^{-} + CF_{2}O$	45 30	0.94	98
$P-Cr_{3}C_{114}CU + Cr_{3}CU + Cr_{3}C_{114}CU + Cr_{3}CU + Cr_{3}CU$		0.0020 (0.40 1.011)	07.0	$\rightarrow CF_{3-} + CF_{3-}CO$	20		
p -CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ Br \rightarrow CF ₃ C ₆ H ₄ CNCF ₃ + CF ₃ C ₆ H ₄ CNBr ⁻ + CF ₃ C ₆ C ₆ H ₄ CNBr ⁻ + CF ₃ C ₆ C ₆ H ₄ CNBr ⁻ + CF ₃ C ₆ C ₆ C ₆ C ₆ C ₆ H ₄ CNBr ⁻ + CF ₃ C ₆	208	0.22 (0.40 Torr)	28	$FeCO^- + CF_{3I} \rightarrow I^- + FeCOCF_{3}$	35	1.4	126
p -CF ₃ C ₆ H ₄ CN ⁻ + CF ₃ I \rightarrow CF ₃ C ₆ H ₄ CN ⁻ + CF ₃	07 & 7	0.87 (0.40 Torr)	101	$\rightarrow CF_1 + CF_3CO$ $\rightarrow CF_3 + FecOI$	25		
$\rightarrow \mathbf{I} + \mathbf{CF}_{3}\mathbf{C}_{6}\mathbf{H}_{4}\mathbf{CN} + \mathbf{CF}_{3}$ $\rightarrow \mathbf{CF}_{3}\mathbf{C}_{6}\mathbf{H}_{4}\mathbf{CN} - \mathbf{cF}_{3}\mathbf{I}$	18 74			$NO_2^- + CF_4 \rightarrow no reaction$	<u>c1</u>	<0.0005	<0.1
$C_{6}F_{5}CI^{-} + CF_{4} \rightarrow no reaction$ $C_{6}F_{5}CI^{-} + CF_{3}CI \rightarrow no reaction$		<0.001 <0.001	<0.2 <0.2	$NO_2^- + CF_3CI \rightarrow no reaction$ $NO_2^- + CF_3Br \rightarrow NO_2^- \cdot CF_3Br$		<0.0005 <0.001 (0.43 Torr)	<0.1 <0.1
$C_6F_5CI^- + CF_3Br \rightarrow \text{no reaction}$ $C_6F_5CI^- + CF_3I \rightarrow I^- + C_6F_5CI + CF_3$	55	<0.001 0.80	<0.2 97	$NO_2^{-} + CF_3I \rightarrow NO_2^{-} \cdot CF_3I$ $F^{-} + CF_4 \rightarrow no reaction$		0.063 (0.43 Torr) <0.0005	4.7 <0.1
$\rightarrow CF_{3}\Gamma + C_{6}F_{5}CI$	45			$NO_3^- + CF_4 \rightarrow \text{no reaction}$		<0.0005	<0.1
C6F5COCH3 \leftarrow C74 \rightarrow C74 \rightarrow C6F5COCH4 \leftarrow F75CI \rightarrow no reaction C6F5COCH5 \leftarrow F73Br \rightarrow C6F5COCH3Br $-$ CF3	97	<0.001 <0.0034 0.0034	<0.2 <0.2 0.45	$NO_3^{-1} + CF_3D - NO_3^{-1} + CF_3D - NO_3$		<pre><0.001 (0.43 Torr) <0.027 (0.43 Torr)</pre>	<0.1 <0.1 2.2
$ Br^- + C_6F_5COCH_3^+ + CF_3 \\ C_6F_5COCH_3^- + CF_3I C_6F_5COCH_3^- + CF_3 \\ T^- + C_7F_5COCH_4^- + CF_5. $	20 20 25	0.81	66				
$\rightarrow CF_{3}\Gamma + C_{6}F_{5}COCH_{3}$	Sr C						

^a Calculated from the measured total rate constant divided by the collisional rate constant obtained using the parametrized trajectory method,^{14,15} expressed as a percentage.

TABLE 2: Rate Constants (10^{-9} cm³ s⁻¹) for OverallReaction of Selected Negative Ions with CF_3X

		CF ₃ Cl	CF ₃ Br	CF ₃ I
	$CF_4 (<0)^b$	$(>\sim 0)^{b,c}$	(0.91)	(1.57)
NO ⁻ (0.026)	0.0035	0.33	1.0	1.9
Fe ⁻ (0.151)	nr	0.63	1.1	1.8
$O_2^{-}(0.451)^d$	nr	< 0.004	1.0*	1.5*
$m-C_8F_3H_4N^-$ (0.67)	nr	0.0010	0.021	0.81
$C_5F_5N^-(0.68)$	nr	nr	0.12	0.71*
$o - C_8 F_3 H_4 N^- (0.70)$	nr	0.013	0.34	0.89
$p-C_8F_3H_4N^-$ (0.76)	nr	0.0020	0.22	0.87
C ₆ F ₅ Cl ⁻ (0.82)	nr	nr	nr	0.80*
$C_6F_5COCH_3^-$ (0.88)	nr	nr	0.0034	0.81*
$SF_6^{-}(1.05)$	nr	nr	nr	0.005
$C_6F_5CF_3^-$ (1.06)	nr	nr	0.0075	0.62*
$SO_2^{-}(1.107)$	nr	nr	0.46	1.25*
SO ⁻ (1.125)	nr	nr	0.066	1.4*
$C_6F_5Br^-$ (1.15)	nr	nr	nr	0.56*
FeCO ⁻ (1.157)	nr	0.21	0.94	1.4
$O^{-}(1.461)^{d}$	nr	0.86	1.4	1.9
NO ₂ ⁻ (2.273)	nr	nr	0.0005	0.063
$ClO^{-}(2.275)^{d}$		nr		
$BrO^{-}(2.353)^{d}$			0.0099	
$IO^{-}(2.378)^{d}$				0.13
$ClF^{-}(2.4)^{d,e}$		nr		
BrF ⁻ (~ 2.5) ^{<i>d</i>,<i>f</i>}			< 0.003	
$\text{IF}^{-}(\sim 2.5)^{d,f}$				0.94
$I^{-}(3.059)^{d}$				< 0.005
$Br^{-}(3.364)^{d}$			< 0.003	
$F^{-}(3.401)^{d}$	nr	< 0.003	0.084	0.72
$Cl^{-}(3.613)^{d}$		< 0.003		
NO ₃ ⁻ (3.937)	nr	< 0.0005	< 0.0005	0.027

a The notation nr denotes no evidence of reaction. An asterisk indicates observation of the nondissociative electron transfer product CF_3X^- . Values in parentheses are electron affinities of neutrals and electron binding energies of anions (both in electronvolts; ref 16 unless otherwise noted). ^{*b*} Reference 17. ^{*c*} References 18 and 19. ^{*d*} Rate constants from ref 1. ^{*e*} Reference 20. ^{*f*} Estimated.

of exothermic NDET. Here the clustering might be explained by electron transfer to CF_3X followed by association. The $CF_3C_6H_4CN^-$ ions, however, also associate with CF_3Cl for which NDET is clearly endothermic. We note that no NDET products, i.e., CF_3X^- , were observed in any of the reactions of the $CF_3C_6H_4CN^-$ ions, while all of the other organic anions studied formed some CF_3I^- from reaction with CF_3I .

Association is not observed for any of the CF_4 "reactions", and the association rates for the other CF_3X generally increase with heavier CF_3X , as expected from the increasing dipole moment and polarizability of the heavier CF_3X , both of which lead to larger cluster bond strengths.

B. Chemical Reaction Channels. i. Halogen Atom Transfer. A major and sometimes dominant pathway in most of the reactions of both Fe⁻ and FeCO⁻ is halogen atom transfer, a channel found previously in work involving other transition metal complex anions.^{7,26} The relative contribution from the halogen transfer channel diminishes with heavier CF₃X. This same trend is found in the reactions of o-, m-, and p-CF₃C₆H₄-CN⁻, for which halogen atom transfer dominates for CF₃Cl and CF₃Br but is a minor pathway for CF₃I, where the main channel is association. Halogen atom transfer is also observed in the reactions of C₆F₅COCH₃⁻, C₆F₅CF₃⁻, and SO₂⁻ with CF₃Br and CF₃I, with a larger contribution from CF₃Br than from CF₃I in each case. The anion $C_5F_5N^-$ is unreactive with CF_3Cl but undergoes halogen atom transfer with CF₃Br; this pathway is not seen for CF₃I. Thus, all of the results show the same trend of decreasing relative contribution from halogen atom transfer with heavier CF₃X, while the overall reactivity is increasing. The decrease in percent halogen transfer with heavier CF₃X is offset by halide formation in the cases of Fe⁻, C₆F₅COCH₃⁻,

 $C_6F_5CF_3^-$, and SO_2^- , by NDET for $C_5F_5N^-$, and by association for *o*-, *m*-, and *p*-CF₃C₆H₄CN⁻. In the case of FeCO⁻, decreasing halogen transfer with heavier CF₃X is accompanied by increases in several pathways. The decrease in the contribution by halogen atom transfer with heavier CF₃X could be the result of the increasing strength of the C–X⁻ bond in the CF₃X⁻ anion. If reaction is initiated by electron transfer from A⁻, forming CF₃X⁻ which then transfers X⁻ to A (the net result of which is halogen atom transfer), then the process involves breaking increasingly stronger C–X⁻ bonds for heavier CF₃X.

ii. Halide Ion Formation. The present results show formation of halide ion X^- from CF₃X in many cases, but production of F⁻ is not found in any of these cases. The halide formation channel, when operating, generally increases with heavier CF₃X. In fact, some I⁻ is formed from CF₃I in every case except for SF₆⁻, NO₂⁻, and NO₃⁻, which react only by association, and *m*-CF₃C₆H₄CN⁻ which reacts by association and I atom transfer. The *o*- and *p*-CF₃C₆H₄CN⁻ isomers both react with CF₃I to form I⁻ as well as the association adduct and the I atom transfer product CF₃C₆H₄CNI⁻.

In the reactions of Fe⁻ with CF₃X, production of X⁻ increases from 15% Cl⁻ to 50% Br⁻ to 100% I⁻, with the reaction rate increasing with heavier CF₃X. The rate constant for Fe^- + CF₃I exceeds the collisional rate constant by 47%, which is greater than the combined uncertainties in the measured and calculated^{14,15} rate constants. Because of this apparent discrepancy, we repeated the measurements and checked the calibration of the flow meters and manometer. We are confident in the measurement to within our usual absolute uncertainty of $\pm 25\%$; therefore, we propose that the reaction is in fact faster than the theoretical ion-dipole capture rate. The explanation likely involves initial electron transfer at relatively long distancesdistances outside of the capture radius of the ion-molecule orbiting complex. A theoretical examination of the curve crossings in this system as well as the ionic radius of Fe⁻ could shed light on this possibility. It should be pointed out that electron transfer at distances greater than the capture radius have been reported previously.^{27,28}

*iii. CF*₃ *Radical Transfer*. Transfer of a CF₃ radical from CF₃X to the reactant anion occurs as a minor channel in the reactions of *o*- and *p*-CF₃C₆H₄CN⁻ with CF₃Cl, where the overall reactivity is low, but not at all with the more reactive CF₃Br and CF₃I. The isomer *m*-CF₃C₆H₄CN⁻ does not undergo CF₃ transfer with any CF₃X. Transfer of CF₃ also was observed in the cases of FeCO⁻ with CF₃Cl and CF₃Br but not with CF₃I.

iv. Association Reactions. The ions NO₂⁻ and NO₃⁻ react with the CF₃X series only by association and only for the heavier CF₃X: measurable rates are found just for NO₂⁻ + CF₃I and NO₃⁻ + CF₃I. At 0.43 Torr, the second-order association rate constant for NO₂⁻ + CF₃I is more than twice the value for NO₃⁻ + CF₃I. The NO₃⁻ • CF₃I adduct has additional internal degrees of freedom and on that basis alone would be expected to display a faster rate of formation, due to the resulting longer complex lifetime. Therefore, the explanation for the difference in rates must lie in the relative cluster bond strengths for NO₂⁻ • CF₃I versus NO₃⁻ • CF₃I.^{29,30} These bond strengths are not available in the literature, but NO₂⁻ is known to bond more strongly to polar molecules than does NO₃^{-.31}

Association in competition with bimolecular channels was observed for the anions o-, m-, and p-CF₃C₆H₄CN⁻ with CF₃-Cl, CF₃Br, and CF₃I, and in the reaction of SO⁻ with CF₃Br. A pressure dependence study of these reactions might prove interesting. In our previous work on F⁻ + CF₃Br and CF₃I,² we found that increasing pressure leads to larger rate constants for association but not at the expense of the rate constants for the other reaction channel, in this case halide formation, and we therefore postulated that the two pathways arise from two different intermediates.

The slow association reaction of SF_6^- with CF_3I was discussed in section A.ii.

v. Collisional Electron Detachment. Collisional electron detachment from NO⁻ has been the subject of several studies, $^{11,32-35}$ and the efficiency of detachment depends on the particle colliding with the NO⁻. The NO⁻ detachment energy is only 0.026 eV,³⁶ essentially equal to kT at room temperature. Electron detachment from NO⁻ is seen in the present work in collisions with CF₄, with a modest rate constant value of 3.5×10^{-12} cm³ s⁻¹. No *chemical* reactions, i.e., bonds broken or formed, are found for anions in collision with CF₄. Since exothermic reactive channels are available for the other CF₃X species, NO⁻ detachment is preempted by fast reaction. We cannot, however, rule out a very minor (~5%) contribution by NO⁻ detachment in the reactive cases.

vi. Other Reaction Types. The occurrence of nondissociative electron transfer (NDET) was discussed in section A.i.

Formation of the dihalide anion ClF⁻ was observed in the reaction of NO⁻ with CF₃Cl but not with the other CF₃X and not from any other anions in the present study. In previous work on CF₃X reactions, we found production of XF⁻ from O⁻ reactant anion for X = Cl, Br, and I.¹

 CF_3^- product formation occurs in the reactions of Fe⁻ with CF₃Cl and CF₃Br, with decreasing percentages, respectively. CF_3^- is formed in the case of FeCO⁻ + CF₃Cl, CF₃Br, and CF₃I.

In the FeCO⁻ reactions, formation of FeX⁻ is observed along with three other channels.

Transfer of F^+ is a minor pathway in the reaction of SO⁻ with CF₃I.

Conclusions

A wide range of reactivity is found for the systems studied. The reactions tend to be fast when nondissociative electron transfer is energetically allowed, suggesting that reactivity in these cases is determined by an initial electron transfer mechanism. Association is usually most prevalent when nondissociative electron transfer is endothermic. While the reactions of SF_6^- and of the *o*-, *m*-, and *p*-CF₃C₆H₄CN⁻ ions do not follow these tendencies, the generally low reactivity of SF_6^- toward electron transfer is consistent with them, and the behavior of the CF₃C₆H₄CN⁻ species may be due to similar effects.

Acknowledgment. We thank Amy Miller, Paul Kebarle, and two reviewers for helpful comments. Technical assistance from John Williamson and Paul Mundis is appreciated. Partial financial support from the Air Force Office of Scientific Research is gratefully acknowledged.

References and Notes

- (1) Morris, R. A. J. Chem. Phys. 1992, 97, 2372.
- (2) Morris, R. A.; Viggiano, A. A. J. Phys. Chem. 1994, 98, 3740.
- (3) Kornblum, N.; Michel, R. E.; Kerber, R. C. J. Am. Chem. Soc.
- **1966**, 88, 5662. (4) Russell, G. A.; Danen, W. C. J. Am. Chem. Soc. **1966**, 88, 5663.
 - (5) Bunnett, J. F. Acc. Chem. Res. 1978, 11, 413.
- (6) McDonald, R. N.; Chowdhury, A. K.; Gung, W. Y.; DeWitt, K. D. Adv. Chem. Ser. 1987, 215, 51.
 (7) Jones, M. T.; McDonald, R. N.; Schell, P. L.; Ali, M. H. J. Am.
- (h) Soc. 1989, 111, 5983.
 (8) Knighton, W. B.; Grimsrud, E. P. J. Am. Chem. Soc. 1992, 114,
- (b) Kinghon, W. B., Ormistad, E. T. J. Am. Chem. Soc. 1992, 114, 2336.
- (9) Viggiano, A. A.; Morris, R. A.; Dale, F.; Paulson, J. F.; Giles, K.; Smith, D.; Su, T. J. Chem. Phys. **1990**, *93*, 1149.
 - (10) Smith, D.; Adams, N. G. Adv. At. Mol. Phys. 1988, 24, 1.
- (11) McFarland, M.; Dunkin, D. B.; Fehsenfeld, F. C.; Schmeltekopf, A. L.; Ferguson, E. E. J. Chem. Phys. **1972**, *56*, 2358.
- (12) Viggiano, A. A.; Morris, R. A.; Paulson, J. F.; Ferguson, E. E. J. Phys. Chem. **1990**, *94*, 7111.
- (13) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data Suppl. 1 1988, 17, 1.
 - (14) Su, T.; Chesnavich, W. J. J. Chem. Phys. 1982, 76, 5183.
 (15) Su, T. J. Chem. Phys. 1988, 89, 5355.
- (16) Miller, T. M. In *Handbook of Chemistry and Physics*; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 1995; pp 10–180.
 - (17) Preston, H. J. T.; Kaufman, J. J. Chem. Phys. Lett. 1977, 50, 157.
 - (18) Kuhn, A.; Illenberger, E. J. Phys. Chem. **1989**, 93, 7060.
 - (19) Kuhn, A.; Illenberger, E. J. Chem. Phys. **1990**, 93, 357.
 - (20) Nguyen, M. T.; Ha, T.-K. Chem. Phys. Lett. 1987, 136, 413.
- (21) Bohme, D. K.; Mackay, G. I.; Schiff, H. I. J. Chem. Phys. 1980,
- 73, 4976. (22) Ikezoe, Y.; Matsuoka, S.; Takebe, M.; Viggiano, A. A. *Gas Phase*
- *Ion-Molecule Reaction Rate Constants Through 1986*; Maruzen Company, Ltd.: Tokyo, 1987; see also references therein.
- (23) Grimsrud, E. P.; Chowdhury, S.; Kebarle, P. J. Chem. Phys. 1985, 83, 1059.
 - (24) Pan, Y. H.; Ridge, D. P. J. Am. Chem. Soc. 1989, 111, 1150.
 - (25) Pan, Y. H.; Ridge, D. P. J. Am. Chem. Soc. 1992, 114, 2773.
- (26) VanOrden, S. L.; Pope, R. M.; Buckner, S. W. Organometallics 1991, 10, 1089.
 - (27) Bowers, M. T.; Laudenslager, J. B. J. Chem. Phys. 1972, 56, 4711.
 - (28) Su, T.; Bowers, M. T. J. Chem. Phys. 1973, 58, 3027.
 - (29) Bates, D. R. J. Phys. B: At. Mol. Phys. 1979, 12, 4135.
 - (30) Herbst, E. J. Chem. Phys. 1980, 72, 5284.
- (31) Keesee, R. G.; Castleman Jr., A. W. J. Phys. Chem. Ref. Data 1986, 15, 1011.
- (32) Maricq, M. M.; Tanquay, N. A.; O'Brien, J. C.; Rodday, S. M.; Rinden, E. J. Chem. Phys. **1989**, *90*, 3136.
- (33) Rinden, E.; Maricq, M. M.; Grabowski, J. J. J. Am. Chem. Soc. 1989, 111, 1203.
- (34) Morris, R. A.; Viggiano, A. A.; Paulson, J. F. J. Chem. Phys. 1990, 92, 2342.
- (35) Viggiano, A. A.; Morris, R. A.; Paulson, J. F. J. Phys. Chem. 1990, 94, 3286.
- (36) Travers, M. J.; Cowles, D. C.; Ellison, G. B. Chem. Phys. Lett. 1989, 164, 449.

JP960355Y