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Abstract

An enantiospecific synthesis of 3,4,5-@Henzyl-6O-triisopropylsilyl-D-myainositol from D-xylose is
reported. The synthesis features a diastereofacially selective@orhoted pinacol cyclization. © 1998 Elsevier
Science Ltd. All rights reserved.

The rich biochemistry of inositol phosphates identified as second messengers in a variety of cellular
signal transduction systems has stimulated intense interest in these compounds and their analogs.
Consequently, extensive efforts have been made toward the preparation of differentially protected,
enantiomerically purenycinositol derivatives. Of these, Byainositol derivatives orthogonally pro-
tected at positions (1,2), (6), and (3,4,5) as in compolrde of special interest for the synthesis of
inositol phosphate glycans (IPGs) implicated in insulin signal transdugtion.

Four general synthetic strategies have been employed in the synthesis of differentially protected
myoinositols. The most frequently used are the procedures starting from parent acyirmlositol 3
Although this strategy provides a wide array of differential protection schemes, the major drawbacks
include tedious manipulations of the many hydroxyl groups and the necessity of enantiomeric resolution.
Other strategies which circumvent some of these difficulties are the syntheses based on microbial oxida-
tion of aromatic compoundsand derivatization of naturally occurring enantiomerically pure cyclfols.

In addition, approaches utilizing other readily available, enantiomerically pure starting materials such
as glucosé, mannitol! diethyltartraté® quinic acid® and dehydroshikimic acid have been reported. In

view of the practicality of the latter, we sought to utilize this strategy for the preparation of an inositol
precursor suitable for use in the synthesis of IPGs. We report herein a new enantiospecific synthesis of
compoundl from D-xylose.

We recently reported a synthesis of a differentially protectethite-inosito* wherein 26),3(R),4(9-
tribenzyloxyhex-5-enal, prepared in five steps from D-xylose, was treated with vinylmagnesium bromide
in the presence of 3 equiv. of MgBIOE®L in CH»ClI, to give a 1:8 mixture of syn and anti alcohols
2a and 2b (Scheme 1). Further experimentation allowed us to reverse the selectivity to 3:1 favoring
2a by performing the reaction in the absence of Mgl¥E®L in CH,Cl>: THF (5:1) solvent pair. The

* Corresponding author.
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crude mixture of the diastereomeric alcohols was treated with triisopropylsilyl chloride in DMF—py in
the presence of AgNgand the resulting TIPS-protected derivati&ssand 3b were separated by silica
gel chromatography eluting with hexane:ether, 24:1 (6193éwver two steps).
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Ozonolysis of3a gave4, which was subjected to Smimediated reductive ring closure to produce
myainositol derivativesl and5 in >20:1 ratio'? The diols could be conveniently separated by column
chromatography eluting with Gi€l,:benzene:ethyl acetate (50:533)providing 1in 67% isolated yield
(from 3a).

The exclusive formation of cis-diols in this reaction is not surprising and has been amply precedented
in cyclitol syntheses utilizing this technology in a six-membered ring constructiort -&t&jHowever,
the face selectivity is noteworthy. The previously reported methodologies have employed either C
symmetric dialdehydes similar &/-8142-¢(Fig. 1), where the face discrimination is inconsequential, or
asymmetric dialdehydes similar &'1-14¢dwhere the face selection is controlled by the two adjacent
alkoxy substituents both oriented trans to the incipient hydroxyl groups. Bygialdehydes do not
producemyainositols, whereas the dialdehydes of ty@eesult in less versatile protection schemes.
The Smj reaction of4 is, to the best of our knowledge, the first example of a face-selective pinacol
coupling resulting in anycinositol.

The structure ofl was established byH NMR and confirmed by an independent synthesis of
10 starting from unprotectedanyainositol. The enantiomeric identity ofO from each source was
demonstrated by conversion to the Mosher e&(Scheme 2). Compounii2 prepared vial was
identical to that prepared vibl'® by mixed TLC,'H and°F NMR.

To confirm unequivocally the structure Bfthe mixture ofs and1 obtained in a reaction quenched at
room temperatufé was desilylated (TBAF, THF, 2 h, 90%) and exhaustively benzylated (BnBr, DMF,
NaH, rt, 2 days, 85%) to give a single compound, hexabemgyHnositol (established by TLC and
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IH NMR analyses). The preparation of a single mono-Mosher estedefmonstrated its enantiomeric

integrity.

The synthesis of the differentially protected and enantiomerically pyreinositol derivativel is
relatively short and requires only three facile chromatographic purifications starting from inexpensive D-
xylose. It could be further extended for the preparation of the enantiomeprofided that commercially
available L-xylose is used as a starting material. We believe that this method will be applicable for the
preparation of a variety ahycinositol containing compounds.
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