Tetrahedron 66 (2010) 94-101

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

of queenslandon should be revised, probably to the C11 epimer.

Synthesis of the proposed structure of queenslandon

Vaidotas Navickas, Martin E. Maier*

Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 13 October 2009 Received in revised form 3 November 2009 Accepted 5 November 2009 Available online 10 November 2009

Keywords: Benzolactone Cross metathesis Mitsunobu macrolactonization Chiron approach

1. Introduction

Natural polyketides cover an enormous structural space, even though simple building blocks like acetate and propionate are

Figure 1. Structures of some representatives resorcylic acid lactones (RALs).

being used. Among the polyketides resorcylic acid lactones represent a unique family of privileged structures.¹ These 14-membered lactones are mycotoxins and are produced by fungal strains. Besides the resorcylic acid part, which results from an intramolecular aldol condensation, typical structural features include a double bond or ketomethylene function next to the aryl ring. In addition, the aliphatic part can be functionalized with keto or hydroxyl groups. The discovery, that radicicol (1) is a potent and selective Hsp90 inhibitor renewed interest in the RALs (Fig. 1). One of the most simple RAL, zearalenone (2) shows estrogenic activity. Its binding to Hsp90 and kinases is low.² Then there are several RALs, which are characterized by a *cis*-enone in the macrocyclic ring. These macrolactones like LL-Z1640-2 (3),³ radicicol A (4) or L-783,277 (5)^{4,5} are potent kinase inhibitors.⁶ Among the RALs, queenslandon (6) is unique since it features a dihydroxyacetone subunit and a highly oxidized benzoic acid.⁷ It was isolated from the strain Chrysosporium queenslandicum IFM51121. According to the original report queenslandon showed activity against several fungal strains but not bacteria. In order to further delineate its biological properties a synthetic route to queenslandon seemed highly desirable.

The proposed structure of the benzolactone queenslandon (6) was synthesized utilizing a triol containing

building block prepared from D-ribose. While a ring-closing metathesis approach did not lead to the

macrocycle, alkylation of a benzyl(phenyl)selane, elimination to generate the styrene double bond, fol-

lowed by Mitsunobu macrolactonization proved to be successful. Spectral data suggest that the structure

We previously described a strategy toward the core structure **12** of queenslandon using a chiral glycolate for construction of the dihydroxyacetone region (Fig. 2).⁸ Thus, an aldol reaction on one side and a Tebbe olefination followed by a hydroboration and a Suzuki cross-coupling stitched the glycolate between the vinylbenzoic acid and the aliphatic part. However, this strategy could not be extended to the real system due to problems in the late stage oxidative cleavage of the dioxane.

Therefore, a different strategy was chosen where the dihydroxyacetone part was fashioned from D-(+)-ribose (Fig. 3). In

© 2009 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +49 7071 2975247; fax: +49 7071 295137. *E-mail address:* martin.e.maier@uni-tuebingen.de (M.E. Maier).

^{0040-4020/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.11.024

Figure 2. Previous strategy toward the core structure 12 of queenslandon.

Figure 3. Plan for the synthesis of queenslandon via a metathesis strategy.

addition, we planned to form the styrene double bond either by intramolecular or intermolecular metathesis.

2. Results and discussion

The synthesis of the aliphatic sector was started with D-(+)-ribose, which was converted via acetonide formation and Wittig reaction to alkenol 13 (Scheme 1).⁹ A subsequent pivaoylation followed by hydrolysis of the acetal, mediated by CuCl₂·2H₂O¹⁰ led to triol 15 in good yield. A transacetalization reaction on benzaldehyde dimethylacetal produced 1,3-dioxane 16 thereby exposing the central hydroxyl function. This group was then protected as PMB ether. In the next step a cross-metathesis reaction¹¹ between alkene 17 and pent-4-en-2-ol derivative¹² 18 (1 equiv) using Grubbs second generation catalyst (5 mol%) at 80 °C in toluene provided an excellent vield of alkene **19**. A subsequent catalytic hydrogenation of the double bond furnished the differently protected pentaol **20**. Reductive cleavage of the pivalate group was followed by chain extension of alcohol 21 to nitrile 22 using Mitsunobu conditions.¹³ Reduction of nitrile **22** to the corresponding aldehyde and Wittig reaction furnished terminal alkene 24. Removal of the silyl protecting group provided alkenol 25.

The aromatic fragment of the metathesis route toward the styrene double bond was prepared from known hydroxyphthalide¹⁴ **26** via Wittig olefination. Acid **27** and alkenol **25** were then combined via Mitsunobu esterification to provide benzoic ester **28** in excellent yield.¹⁵ Based on previous experience, a clean inversion could be assumed.¹⁶ Ester **28** served as precursor for various substrates **28– 33** that were intended for RCM. Thus, oxidative cleavage of the PMB ether followed by oxidation provided ketone **29**. Treatment of acetal **29** with conc. HCl in MeOH removed the benzylidene acetal generating dihydroxy ketone **30**. We also prepared the derivatives **31– 33**. Unfortunately, none of the substrates **28–33** could be cyclized with the Grubbs second generation catalyst (5 mol %, toluene, 80 °C,

Scheme 1. Synthesis of alkenol 25 from D-ribose.

0.002–0.004 M). With the Grubbs–Hoveyda catalyst (5 mol %, CH₂Cl₂, room temperature, 0.002 M) substrate **30** dimerized (45% yield). The fact that the nor-methoxy substrate **35** gave macrolactone **36** (26%) in presence of Grubbs second generation catalyst (5 mol %, toluene, 80 °C, 0.004 M) points to steric or electronic interference by the 4-methoxy group (Scheme 2).

Therefore, we turned to a strategy pioneered by Winssinger et al.^{6,5} for the synthesis of other resorcylic acid lactones. This is characterized by alkylation of a 2-(phenylselanylmethyl)benzoate with an alkyl iodide followed by elimination of the derived phenylselenoxide. Accordingly, aldehyde 23 was reduced to primary alcohol 37 (Scheme 3). Reaction of alcohol 37 with iodine and PPh₃ gave iodide 38. Alkylation of the lithium anion of benzyl (phenyl)selane^{6,17–19} **39** in THF/HMPA afforded crude selenoether. The crude selenide was oxidized leading after elimination to E-alkene 40 in 75% yield. Simultaneous cleavage of the trimethylsilylethanyl (TMSE) ester and the silyl ether furnished hydroxy acid 41. Somewhat to our surprise the cyclization of hydroxy acid 41 under Mitsunobu conditions went quite well and gave macrolactone **34a** in 77% yield.²⁰ MacroModel calculations on a model compound (PMB and Ph replaced by methyl group) showed an all equatorial orientation of the substituents in the dioxane ring (see Supplementary data). Thus, the cyclic acetal seems to favor macrolactonization by imposing conformational constraint on the aliphatic region. Selective removal of the PMB protecting group with DDO was followed by oxidation of alcohol 42 to ketone 34b. Finally, the benzylidene acetal was cleaved by acid-catalyzed transacetalization. Treatment of the crude dihydroxy ketone with BCl_3 (4.0 equiv) at -50 °C, gave rise to the proposed structure 6 of queenslandon. The chemoselective ether

Scheme 2. Synthesis of various substrates for the RCM approach.

cleavage next to a carboxylic group is well known.^{1,21} However, this is also evident from the NOESY spectrum where the phenolic OH (3-OH) showed correlations to 17-H and 17-CH₃. In addition, the HMBC spectrum displays the expected correlations (5-OCH₃/C-5 and 6-OCH₃/C-6). Macrolactone **6** shows moderate cytostatic activity with an IC₅₀ of 33 μ g mL⁻¹ (84 μ M) against the mouse fibroblast cell line L929.

The ¹H NMR signatures of **6** matched nicely the ones published for the simple model compound **12**. In particular, a NOESY cross peak between 11-H (4.60–4.67) and 13-H (4.36–4.41) suggests the *cis*orientation at these methine carbons. However, with regard to the published data for queenslandon we observed some distinct discrepancies. For example, there are big differences (δ ppm>3) for C12 (keto function), C9 (alkene carbon), and C11 (δ ppm=6.4). Thus, one might conclude that something is wrong with C11 since both C9 and C12 are in the vicinity to C11. Further support for this hypothesis

Scheme 3. Synthesis of the proposed structure of queenslandon via Mitsunobu lactonization.

comes from a comparison of the queenslandon structure **6** with the related compounds **3**—**5**. In these macrolides C11 (or C3') have opposite configuration. The measured optical rotations for **6** are $[\alpha]_D^{20} = -41.0$ (*c* 0.5, CH₂Cl₂), $[\alpha]_D^{20} = -51.0$ (*c* 0.1, CH₃OH). The literature value for the isolated queenslandon⁷ amounts to $[\alpha]_D^{20} = +24.4$ (*c* 0.028, CH₃OH). Efforts are now underway to prepare the C11 epimer of **6**.

3. Conclusion

In conclusion, we accomplished the synthesis of the proposed structure of the macrolactone queenslandon (**6**). The structural challenges of this natural product include a highly substituted electron-rich benzoic acid part and an aliphatic region featuring a dihydroxy ketone subunit. This subunit was fashioned from p-ribose via triol **15**. Via formation of a benzylidene acetal the hydroxyl functions could be differentiated. Thereafter, this central fragment was extended via cross-metathesis at the alkene and substitution of the primary alcohol by cyanide. Several substrates that were intended for a ring-closing metathesis reaction failed to cyclize to

the corresponding macrolactone. The only ester that cyclized with moderate yield was the 6-nor-methoxy compound **35**. Finally, iodide **38** was used to alkylate the trimethylsilylethyl 2-methylbenzoate derivative **39**. This led after elimination of phenylselanol to seco acid **41**. This substrate underwent a clean Mitsunobu lactonization, probably facilitated by conformational constraint imposed through the benzylidene acetal. The spectral data showed that the prepared lactone **6** does not correspond to queenslandon. Since the biggest differences are observed for the chemical shifts around C11 it is likely that the configuration of C11 should be inverted. This work highlights the role of organic synthesis in detecting errors in structure elucidation of natural products.²²

4. Experimental section

4.1. (*R*)-2-((4*R*,5*S*)-2,2-Dimethyl-5-vinyl-1,3-dioxolan-4-yl)-2hydroxyethyl pivalate (14)

To an ice-cooled solution of diol⁹ **13** (16.65 g, 88.6 mmol) and DMAP (1.07 g, 8.8 mmol) in a CH₂Cl₂/pyridine mixture (120 mL, 5:1) was added PivCl (11.0 mL, 106.3 mmol) in a dropwise fashion. After the addition, the reaction mixture was allowed to warm to room temperature. Stirring was continued for 2 h before the reaction mixture was washed with 1 N HCl (5×100 mL) and satd. NaCl solution. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude pivaloate 14 (22.8 g, 95%) was pure enough to be introduced to the next step without additional purification. R_f (petroleum ether/EtOAc, 5:1): 0.25; $[\alpha]_D^{20}$ +9.7 (c 2.2, CH₂Cl₂); d_H (400 MHz CDCl₃) 1.21 (s, 9H, C(CH₃)₃), 1.34 (s, 3H, CH₃C), 1.46 (s, 3H, CH₃C), 3.84 (dd, *J*=7.9, 5.3 Hz, 1H, CH₂CHOH), 4.04-4.17 (m, 2H, CH₂OPiv), 4.36 (ddd, J=7.9, 4.3, 3.8 Hz, 1H, CHOH), 4.69 (t, J=6.6 Hz, 1H, CH₂=CHCHOR), 5.30-5.43 (m, 2H, CH₂=CH), 5.98 (ddd, J=17.3, 10.4, 6.9 Hz, 1H, CH₂=CH); d_C (150 MHz CDCl₃) 25.3 (C(CH₃)₃), 27.2 (CH₃), 27.7 (CH₃), 38.9 (C(CH₃)₃), 66.6 (Piv-OCH₂), 68.8 (CH₂CHOH), 77.5 (CHOH), 78.5 (CH₂=CHCHOR), 109.0 (C(CH₃)₂), 118.3 (CH₂=CH), 133.7 (CH=CH₂), 179.1 (C=O); HRMS (ESI): [M+Na]⁺ calcd for C₁₄H₂₄O₅Na 295.15159, found 295.15162.

4.2. (2R,3S,4S)-2,3,4-Trihydroxyhex-5-enyl pivalate (15)

To an ice-cooled solution of acetonide 14 (10.56 g, 38.8 mmol) in acetonitrile (100 mL) was added CuCl₂·2H₂O (46.0 g, 271.6 mmol) portionwise within 1 h and then the reaction mixture was allowed to warm to room temperature. After being stirred for 12 h at room temperature, inorganic solids were filtered off, and the filter cake washed with acetonitrile (100 mL). The combined filtrates were washed with satd. NH₄Cl (3×100 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/EtOAc, 5:1) to give triol 3 (6.59 g, 73%) as a white amorphous solid. R_f (petroleum ether/ EtOAc, 1:1) 0.26; [α]_D²⁰ –6.7 (*c* 1.0, CH₂Cl₂); d_H (400 MHz, CDCl₃) 1.22 (s, 9H, C(CH₃)₃), 2.54 (br s, 3H, 3×OH), 3.55 (dd, *J*=7.9, 5.3 Hz, 1H, CH₂CHOH), 3.84 (ddd, J=7.9, 4.3, 3.8 Hz, 1H, CHOH), 4.32-4.35 (m, 3H, PivOCH₂ and H₂C=CHCHOH), 5.98 (m, 2H, CH₂=CH), 5.99 (ddd, J=17.2, 10.5, 6.6 Hz, 1H, CH₂=CH); d_C (150 MHz, CDCl₃): 27.2 (C(CH₃)₃), 39.0 (C(CH₃)₃), 66.3 (PivOCH₂), 72.4 (CH₂CHOH), 72.8 (CHOH), 74.7 (CH₂=CHCHOH), 118.3 (CH₂=CH), 136.3 (CH=CH₂), 179.8 (C=O); HRMS (ESI): $[M+Na]^+$ calcd for $C_{11}H_{20}O_5Na$ 255.12029, found 255.12023.

4.3. ((2*S*,4*R*,5*S*,6*S*)-5-Hydroxy-2-phenyl-6-vinyl-1,3-dioxan-4-yl)methyl pivalate (16)

To a solution of triol **15** (6.59 g, 28.0 mmol) in CH_2Cl_2 (80 mL) was added CSA (1.29 g, 5.6 mmol) followed by the dropwise addition of benzaldehydedimethylacetal (5.1 mL, 33.6 mmol) at room

temp. After being stirred for 1 h the reaction mixture was washed with satd. NaHCO₃ (100 mL), satd. NaCl solution, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/EtOAc, 5:1) to give hydroxydioxane **16** (8.3 g, 91%) as a colorless oil. R_f (petroleum ether/EtOAc, 5:1) 0.17; $[\alpha]_D^{20}$ –31.3 (*c* 0.9, CH₂Cl₂); d_H (400 MHz, CDCl₃) 1.23 (s, 9H, C(CH₃)₃), 3.30 (t, *J*=9.2 Hz, 1H, CHOH), 3.82–3.86 (m, 1H, PivOCH₂CH), 4.07–4.11 (m, 1H, H₂C=CHCHOH), 4.34 (dd, *J*=12.2, 4.1 Hz, 1H, PivOCH₂), 4.56 (dd, *J*=12.2, 4.1 Hz, 1H, PivOCH₂), 5.32 (m, 2H, CH₂=CH), 5.63 (s, 1H, CHPh), 6.00 (ddd, *J*=17.0, 10.7, 6.4, 1H, CH₂=CH), 7.34–7.37 (m, 3H, H aryl), 7.48–7.50 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) 27.2 (C(CH₃)₃), 39.0 (C(CH₃)₃), 63.5 (PivOCH₂), 66.2 (CHOH), 79.4 (PivOCH₂CH), 81.8 (CH₂=CHCHOH), 100.6 (CHPh), 118.9 (CH₂=CH), 126.2, 128.2, 129.0, 134.5 (C aryl), 137.4 (CH=CH₂), 179.5 (C=O); HRMS (ESI): [M+Na]⁺ calcd for C₁₈H₂₄O₅Na 343.15159, found 343.15164.

4.4. ((2*S*,4*R*,5*S*,6*S*)-5-(4-Methoxybenzyloxy)-2-phenyl-6-vinyl-1,3-dioxan-4-yl)methyl pivalate (17)

To a cooled $(-5 \degree C)$ suspension of NaH (0.54 g, 13.4 mmol, 60% in mineral oil) in anhydrous DMF (40 mL) was added dropwise a solution of alcohol 16 (1.23 g, 3.8 mmol) in DMF (5 mL) at the same temperature. After complete addition, the reaction mixture was stirred for 1 h at -5 °C before a solution of freshly prepared PMBBr⁸ (1.28 g, 6.4 mmol) in DMF (5 mL) was added. After being stirred for additional 2 h at -5 °C the reaction was guenched with satd. NH₄Cl (10 mL) and the product extracted with EtOAc (3×100 mL). The combined organic lavers were washed with water, satd. NaCl solution, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/EtOAc, 10:1) to give PMB ether 17 (0.97 g, 57%) as a colorless oil. R_f (petroleum ether/EtOAc, 10:1) 0.26; $[\alpha]_D^{20} = +5.5$ (c 0.8, CH₂Cl₂); d_H (400 MHz, CDCl₃) 1.26 (s, 9H, C(CH₃)₃), 3.40 (t, J=9.4 Hz, 1H, CHOPMB), 3.83 (s, 3H, OCH₃), 3.91–3.94 (m, 1H, PivOCH₂CH), 4.19-4.23 (m, 1H, H₂C=CHCHOH), 4.34 (m, 1H, CH₂Ar), 4.44-4.52 (m, 2H, CH₂Ar, PivOCH₂), 4.63 (d, J=10.2 Hz, 1H, PivOCH₂), 5.39 (d, J=10.4 Hz, 1H, CH₂=CH), 5.58 (d, J=10.4 Hz, 1H, CH₂=CH), 5.63 (s, 1H, CHPh), 6.09 (ddd, *J*=17.3, 10.7, 6.6, 1H, CH₂=CH), 6.90-6.92 (m, 2H, PMB), 7.25-7.29 (m, 2H, PMB), 7.35-7.39 (m, 3H, H aryl), 7.50-7.52 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) 27.2 (C(CH₃)₃), 38.9 (C(CH₃)₃), 55.3 (OCH₃), 62.9 (ArCH₂), 73.8 (CHOPMB), 74.4 (Piv-OCH2), 78.4 (PivOCH2CH), 81.6 (CH2=CHCHOH), 100.3 (CHPh), 114.0 (C aryl), 118.8 (CH₂=CH), 126.2, 128.2, 128.9, 129.4, 129.8 (C aryl), 135.1 (CH=CH₂), 137.5 (C aryl), 159.6 (C aryl), 178.2 (C=O); HRMS (ESI): [M+Na]⁺ calcd for C₂₆H₃₂O₆Na 463.20911, found 463.20878.

4.5. ((2*S*,4*R*,5*S*,6*S*)-6-((*R*,*E*)-4-(*tert*-Butyldimethylsilyloxy)-pent-1-enyl)-5-(4-methoxybenzyloxy)-2-phenyl-1,3-dioxan-4-yl)methyl pivalate (19)

Alkene **17** (1.76 g, 4.0 mmol) was dissolved in degassed toluene (17.6 mL) and then alkene¹² **18** (0.8 g, 4.0 mmol) was added. The reaction mixture was slightly warmed (to around 40–50 °C) and Grubbs second catalyst (170 mg, 5 mol %) was added. The temperature was brought to 80 °C and maintained for 2 h. After that air was bubbled through the reaction (for approx. 5 min) and the solvent was evaporated in vacuo. The crude product was purified by flash chromatography (petroleum ether/EtOAc, 10:1) to give metathesis product **19** (1.80 g, 74%) as a colorless oil. *R*_f (petroleum ether/EtOAc, 5:1) 0.34; $[\alpha]_D^{20}$ –9.8 (*c* 0.4, CH₂Cl₂); d_H (400 MHz, CDCl₃) 0.04 (s, 6H, Si(CH₃)₂), 0.88 (s, 9H, SiC(CH₃)₃), 1.14 (d, *J*=6.1 Hz, 3H, TBSOCHCH₃), 1.23 (s, 9H, C(CH₃)₃), 2.04–2.27 (m, 2H, CH₂), 3.34 (t, *J*=9.2 Hz, 1H, CHOPMB), 3.79 (s, 3H, OCH₃), 3.84–3.89 (m, 2H, Piv-OCH₂CHOR, TBSOCH), 4.11–4.47 (m, 3H, PivOCH₂, CH₂ of PMB), 4.58 (d,

J=10.3 Hz, 1H, PivOCH₂), 5.58 (s, 1H, CHPh), 5.64–5.70 (m, 1H, CH=CHCH₂), 5.94–6.02 (m, 1H, CH=CHCH₂), 6.86–6.88 (m, 2H, PMB), 7.18–7.22 (m, 2H, PMB), 7.32–7.34 (m, 3H, H aryl), 7.46–7.48 (m, 2H, H aryl); d_{C} (150 MHz, CDCl₃) –4.7, –4.5 (Si(CH₃)₂), 18.1 (CH₂), 23.6 (CHCH₃), 25.9 (SiC(CH₃)₃), 27.2 (C(CH₃)₃), 38.9 (C(CH₃)₃), 42.9 (SiC(CH₃)₃), 55.3 (OCH₃), 63.0 (CH₂ of PMB), 68.4 (CHCH₃), 73.9 (CHOPMB), 74.3 (PivOCH₂), 78.4 (PivOCH₂CHOR), 81.5 (CH₂CHOR), 100.3 (CHPh), 114.0, 126.2, 128.2, 128.8, 128.9, 129.5 (C aryl), 129.7 (CH=CHCH₂), 132.4 (CH=CHCH₂), 137.6, 159.6 (C aryl), 178.2 (C=O); HRMS (ESI): [M+Na]⁺ calcd for C₃₅H₅₂O₇SiNa 635.35310, found 635.34213.

4.6. ((2*S*,4*R*,5*S*,6*S*)-6-((*R*)-4-(*tert*-butyldimethylsilyloxy)pentyl)-5-(4-methoxybenzyloxy)-2-phenyl-1,3dioxan-4-yl)methyl pivalate (20)

Metathesis product 19 (1.64 g, 2.67 mmol) was dissolved in EtOAc (5 mL), Pd/C (10% wt) was added and a balloon filled with hydrogen was attached through a rubber septum. The reaction mixture was stirred for 5 h at room temperature and then the palladium catalyst was filtered off through a pad of Celite[®], washed with EtOAc (2×10 mL). The filtrate was concentrated in vacuo and the residue purified by flash chromatography (petroleum ether/ EtOAc, 10:1) to give protected polyol 20 (1.60 g, 98%) as colorless oil. R_f (petroleum ether/EtOAc, 5:1) 0.34; $[\alpha]_D^{20}$ –0.1 (*c* 4.4, CH₂Cl₂); d_H (400 MHz, CDCl₃) 0.04 (s, 3H, Si(CH₃)₂), 0.05 (s, 3H, Si(CH₃)₂), 0.88 (s, 9H, SiC(CH₃)₃), 1.13 (d, *J*=6.1 Hz, 3H, TBSOCHCH₃), 1.25 (s, 9H, (C(CH₃)₃), 1.39–1.62 (m, 4H, 2×CH₂), 1.85–1.90 (m, 2H, CH₂), 3.32 (t, *I*=9.1 Hz, 1H, HCOPMB), 3.64–3.68 (m, 1H, CH₂CHOR), 3.77–3.80 (m, 4H, OCH₃, HCOTBS), 3.84-3.87 (m, 1H, PivOCH₂CHOR), 4.28-4.32 (m, 1H, PivOCH₂), 4.50–4.57 (m, 3H, PivOCH₂, CH₂ of PMB), 5.54 (s, 1H, CHPh), 6.88-6.91 (m, 2H, PMB), 7.25-7.27 (m, 2H, PMB), 7.33-7.36 (m, 3H, H aryl), 7.46–7.48 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) –4.7, -4.4 (Si(CH₃)₂), 18.1, 21.3 (CH₂), 23.8 (CHCH₃), 25.9 (SiC(CH₃)₃), 27.2 (C(CH₃)₃), 32.1 (CH₂), 38.9 (SiC(CH₃)₃), 39.6 (C(CH₃)₃), 55.3 (OCH₃), 63.0 (CH₂ of PMB), 68.5 (CHCH₃), 74.1 (CHOPMB), 74.7 (PivOCH₂), 78.5 (PivOCH₂CHOR), 80.4 (CH₂CHOR), 100.2 (CHPh), 114.0, 126.0, 128.1, 128.6, 129.5, 129.7, 137.8, 159.6 (C aryl), 178.2 (C=O); HRMS (ESI): [M+Na]⁺ calcd for C₃₅H₅₄O₇SiNa 637.35310, found 637.35287.

4.7. ((2*S*,4*R*,5*S*,6*S*)-6-((*R*)-4-(*tert*-Butyldimethylsilyloxy)-pentyl)-5-(4-methoxybenzyloxy)-2-phenyl-1,3-dioxan-4-yl)methanol (21)

A solution of pivaloate 20 (1.18 g, 1.92 mmol) in CH₂Cl₂ (15 mL) was cooled to -80 °C and then DIBAL-H (11.52 mL, 11.5 mmol, 1 m M in hexane) was added over 1 h at the same temperature. The reaction mixture was stirred for an additional 1 h before satd. NH₄Cl (5 mL) was added dropwise and the reaction mixture was allowed to warm to room temperature. The layers were separated and the aqueous layer extracted with CH_2Cl_2 (2×10 mL). The combined organic extracts were washed with satd. NaCl solution (20 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 5:1) to give alcohol **21** (0.82 g, 81%) as a colorless oil. R_f (petroleum ether/EtOAc, 5:1) 0.17; $[\alpha]_D^{20}$ –22.4 (*c* 1.4, CH₂Cl₂); d_H (400 MHz, CDCl₃) 0.04 (s, 6H, Si(CH₃)₂), 0.87 (s, 9H, Si(CH₃)₃), 1.12 (d, J=6.1 Hz, 3H, CHCH₃), 1.36–1.60 (m, 4H, 2×CH₂), 1.82–1.88 (m, 2H, CH₂), 1.95 (br s, 1H, OH), 3.38 (t, J=9.2 Hz, 1H, CHOPMB), 3.62–3.71 (m, 1H, CH₂CHOCHPh), 3.73–3.77 (m, 1H, TBSOCHCH₃), 3.77–3.80 (m, 4H, OCH₃, HOCH₂), 3.93–3.96 (m, 1H, HOCH₂), 4.58 (s, CH₂ of PMB), 5.56 (s, 1H, CHPh), 6.88-6.90 (m, 2H, PMB), 7.25-7.28 (m, 2H, PMB), 7.34-7.38 (m, 3H, H aryl), 7.47-7.49 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) -4.7, -4.4 (Si(CH₃)₂), 18.1, 21.3 (CH₂), 23.8 (CHCH₃), 25.9 (SiC(CH₃)₃), 32.0 (CH₂), 39.7 (SiC(CH₃)₃), 55.3 (OCH₃), 62.2 (CH₂ of PMB), 68.5 (CHCH₃), 73.3 (HCOPMB), 74.7 (PivOCH₂), 80.4 (HOCH₂CHOR), 80.7 (CH₂CHOR), 100.3 (CHPh), 114.0, 126.1, 128.2, 128.8, 129.8, 137.8, 159.5 (C aryl); HRMS (ESI): $[M+Na]^+$ calcd for $C_{30}H_{46}O_6SiNa$ 553.29559, found 553.29557.

4.8. 2-((2S,4R,5S,6S)-6-((R)-4-(*tert*-Butyldimethylsilyloxy)pentyl)-5-(4-methoxybenzyloxy)-2-phenyl-1,3dioxan-4-yl)acetonitrile (22)

To a stirred solution of alcohol **21** (0.54 g, 1.0 mmol) in diethyl ether (3.4 mL) was added PPh₃ (0.59 g, 2.2 mmol) at -5 °C. The mixture was stirred at the same temperature for 15 min before DEAD (0.98 mL, 2.2 mmol) was added dropwise. The reaction mixture became like a white paste. After 20 min acetone cyanohydrine (0.21 mL, 2.2 mmol) was added dropwise and the solids dissolved. The mixture was stirred at $-5 \degree C$ for 6 h and for additional 12 h at room temperature. After that the solvent was evaporated and the residue purified by flash chromatography (petroleum ether/EtOAc, 10:1) to give nitrile **22** (0.487 g, 89%) as a colorless oil. R_f (petroleum ether/EtOAc, 5:1) 0.42; $[\alpha]_D^{20}$ –1.0 (*c* 1.4, CH₂Cl₂); d_H (400 MHz, CDCl₃) 0.03 (s, 3H, Si(CH₃)₂), 0.04 (s, 3H, Si(CH₃)₂), 0.87 (s, 9H, SiC(CH₃)₃), 1.12 (d, J=6.1 Hz, 3H, TBSOCHCH₃), 1.37-1.65 (m, 4H, 2×CH₂), 1.86-1.88 (m, 2H, CH₂), 2.54-2.75 (m, 2H, NCCH₂), 3.23 (t, J=9.2 Hz, CHOPMB), 3.63–3.68 (m, 1H, CH₂CH₂CH), 3.76–3.85 (m, 5H, OCH₃, NCCH₂CH and TBSOCHCH₃), 4.50–4.69 (dd, J=17.9, 10.9 Hz, 2H, CH2 of PMB), 5.54 (s, 1H, CHPh), 6.89-6.92 (m, 2H, H of PMB), 7.25-7.27 (m, 2H, H of PMB), 7.34-7.35 (m, 3H, H aryl), 7.47-7.49 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) -4.7, -4.4 (Si(CH₃)₂), 18.1, 21.4 (CH₂), 23.8 (CHCH₃), 25.9 (SiC(CH₃)₃), 29.3 (NCCH₂), 32.1 (CH₂), 39.6 (SiC(CH₃)₃), 55.3 (OCH₃), 68.4 (CHCH₃), 75.0 (CH₂ of PMB), 75.6 (CH₂CH₂CH), 76.8 (CHOPMB), 80.6 (HOCH₂CHO), 100.4 (CHPh), 114.0 (C aryl), 116.9 (NC), 126.1, 128.2, 128.9, 129.2, 129.9, 137.1, 159.8 (Caryl); HRMS (ESI): [M+Na]⁺ calcd for C₃₁H₄₅NO₅SiNa 562.29592, found 562.29624.

4.9. 2-((2S,4R,5S,6S)-6-((R)-4-(*tert*-Butyldimethylsilyloxy)pentyl)-5-(4-methoxybenzyloxy)-2-phenyl-1,3dioxan-4-yl)acetaldehyde (23)

A solution of nitrile 22 (0.49 g, 0.90 mmol) in CH₂Cl₂ (10 mL) was cooled to -80 °C followed by slow addition of DIBAL-H (5.4 mL, 1 M in hexane, 5.4 mmol). After being stirred for 1 h at -80 °C satd. NH₄Cl solution was added and the mixture allowed to warm to room temperature. The organic layer was separated and the aqueous phase extracted with CH_2Cl_2 (2×10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 10:1) to give aldehyde 23 (469 mg, 96%) as a colorless oil. R_f (petroleum ether/EtOAc, 5:1) 0.42; $[\alpha]_D^{20}$ –7.8 (*c* 1.7, CH₂Cl₂); d_H (400 MHz, CDCl₃) 0.06 (s, 6H, Si(CH₃)₂), 0.90 (s, 9H, SiC(CH₃)₃), 1.16 (d, J=6.1 Hz, 3H, TBSOCHCH₃), 1.41-1.65 (m, 4H, 2×CH₂), 1.87-1.91 (m, 2H, CH₂), 2.65–2.83 (m, 2H, CHOCH₂), 3.14 (t, *J*=9.2 Hz, 1H, CHOPMB), 3.68–3.73 (m, 1H, CH₂CH₂CH), 3.80–3.84 (m, 4H, OCH₃, TBSOCHCH₃), 4.18–4.24 (m, 1H, CHOCH₂CH), 4.49–4.62 (dd, *J*=17.8, 10.9 Hz, 2H, CH₂ of PMB), 5.59 (s, 1H, CHPh), 6.90-6.92 (m, 2H, PMB), 7.25-7.27 (m, 2H, PMB), 7.34-7.36 (m, 3H, H aryl), 7.46-7.48 (m, 2H, H aryl), 9.82 (t, J=2.3 Hz, 1H, CHO); d_C (150 MHz, CDCl₃) -4.7, -4.4 (Si(CH₃)₂), 18.1, 21.3 (CH₂), 23.8 (CHCH₃), 25.9 (SiC(CH₃)₃), 32.1 (CH₂), 39.6 (SiC(CH₃)₃), 46.3 (CHOCH₂), 55.3 (OCH₃), 68.5 (CHCH₃), 74.7 (CH₂ of PMB), 75.9 (CH₂CH₂CH), 77.4 (CHOPMB), 80.8 (O=CCH₂CH), 100.3 (CHPh), 114.0, 126.0, 128.1, 128.8, 129.3, 129.8, 137.5, 159.7 (C aryl), 200.2 (CHO); HRMS (ESI): [M+CH₃OH+Na]⁺ calcd for C₃₂H₅₀O₇SiNa 597.32180, found 597.32221.

4.10. 3,4,6-Trimethoxy-2-vinyl-benzoic acid (27)

KOtBu (0.41 g, 3.34 mmol) was added in one portion to a stirred suspension of PPh₃MeBr (1.22 g, 3.34 mmol) in THF (12 mL) at 0 °C.

After 0.5 h hydroxyphthalide¹⁴ **26** (0.10 g, 0.42 mmol) was added in one portion and the mixture was allowed to warm to rt. After 2 h, water (2 mL) was added followed by addition of 1 N HCl until the pH of a reaction mixture was approx. 2. The organic layer was separated and the aqueous phase extracted with EtOAc (2×10 mL). The combined organic extracts were washed with satd. NaCl solution (20 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 1:4) to give styrene 27 (76 mg, 76%) as a white crystalline solid. R_f (petroleum ether/EtOAc, 1:4) 0.56; d_H (400 MHz, CDCl₃) 3.70 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 5.49 (dd, *J*=11.7, 1.3 Hz, 1H, CH₂=CH), 7.75 (dd, *J*=17.8, 1.3 Hz, 1H, CH₂=CH), 6.46 (s, 1H, H aryl), 6.84 (dd, J=17.8, 11.5 Hz, 1H, CH₂=CH); d_C (150 MHz, CDCl₃) 56.0, 56.7, 60.4 (OCH₃), 96.3 (CH aryl), 113.7 (CH₂=CH), 120.4, 130.4 (C aryl), 132.0 (CH₂=CH), 141.0, 153.6, 154.8 (C aryl), 171.1 (C=O); HRMS (ESI): [M+Na]⁺ calcd for C₁₂H₁₄O₅Na 261.07390, found 261.07378.

4.11. 2-((2*S*,4*R*,5*S*,6*S*)-6-((*R*)-4-(*tert*-Butyldimethylsilyloxy)-pentyl)-5-(4-methoxybenzyloxy)-2-phenyl-1,3-dioxan-4-yl)ethanol (37)

A solution of aldehyde 23 (107 mg, 0.20 mmol) in a THF/MeOH mixture (3.3 mL, 10:1) was cooled in an ice/salt bath and NaBH₄ (17.1 mg, 0.24 mmol) was added in one portion. The reaction mixture was stirred in an ice bath for 1 h followed by the addition of satd. NH₄Cl solution (5 mL). The mixture was extracted with EtOAc (3×10 mL). The combined organic layers were washed with satd. NaCl solution, dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/EtOAc, 5:1) to give alcohol 37 (102 mg, 94%) as a colorless oil. R_f (petroleum ether/EtOAc, 1:1) 0.77; $[\alpha]_D^{20}$ –2.3 (c 1.3, CH₂Cl₂); d_H (400 MHz, CDCl₃) 0.04 (s, 6H, SiC(CH₃)₂), 0.87 (s, 9H, SiC(CH₃)₃), 1.12 (d, J=6.1 Hz, 3H, CHCH₃), 1.37-1.47 (m, 2H, CH₂), 1.58-1.73 (m, 2H, CH₂), 1.83–1.91 (m, 2H, CH₂), 2.13–2.18 (m, 2H, HOCH₂CH₂CH), 3.12 (m, 1H, CHOPMB), 3.61–3.66 (m, 1H, CH₂CH₂CH), 3.77–3.88 (m, 7H, OCH₃, TBSOCH, HOCH₂, HOCH₂CH₂CH₂CH), 4.56 (dd, *J*=19.0, 10.4 Hz, 2H, CH2 of PMB), 5.53 (s, 1H, CHPh), 6.88-6.90 (m, 2H, PMB), 7.24-7.26 (m, 2H, PMB), 7.33–7.36 (m, 3H, H aryl), 7.44–7.46 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) -4.7, -4.3 (Si(CH₃)₂), 18.1, 21.5 (CH₂), 23.8 (CHCH₃), 25.9 (SiC(CH₃)₃), 32.2 (CH₂), 34.3 (HOCH₂CH₂) 39.7 (SiC(CH₃)₃), 55.3 (OCH₃), 60.7 (HOCH₂), 68.5 (CHCH₃), 74.9 (CH₂ of PMB), 77.8 (CH₂CH₂CH₂CH), 80.2 (HCOPMB), 80.7 (HOCH₂CH₂CH), 100.2 (CHPh), 114.0, 125.9, 128.2, 128.7, 129.7, 137.8, 159.6 (C aryl); HRMS (ESI): [M+Na]⁺ calcd for C₃₁H₄₈O₆SiNa 567.31124, found 567.31077.

4.12. (2*S*,4*R*,5*S*,6*S*)-6-((*R*)-4-(*tert*-Butyldimethylsilyloxy)-pentyl)-4-(2-iodoethyl)-5-(4-methoxybenzyloxy)-2-phenyl-1,3-dioxane (38)

Iodine (407 mg, 1.60 mmol) was added to a cooled solution (ice bath) of PPh₃ (392 mg, 1.49 mmol) and imidazole (131 mg, 1.91 mmol) in CH₂Cl₂ (3 mL). The resulting yellow suspension was stirred for 20 min at the same temperature before a solution of alcohol 37 (584 mg, 1.07 mmol) in CH₂Cl₂ (1 mL) was added. The cooling bath was removed and the resulting yellowish suspension was stirred for additional 12 h at ambient temperature. After that, the CH₂Cl₂ was evaporated and the residue purified by flash chromatography (petroleum ether/EtOAc, 20:1) to give primary iodide 38 (655 mg, 93%) as a slightly yellow oil. R_f (petroleum ether/EtOAc, 10:1) 0.59; $[\alpha]_D^{20}$ +19.2 (*c* 0.9, CH₂Cl₂); d_H (400 MHz, CDCl₃) 0.04 (s, 6H, Si(CH₃)₂), 0.88 (s, 9H, SiC(CH₃)₃), 1.13 (d, J=6.1 Hz, 3H, CHCH₃), 1.37-1.47 (m, 2H, CH₂), 1.57-1.43 (m, 2H, CH₂), 1.86-2.04 (m, 2H, CH₂), 2.35–2.39 (m, 2H, ICH₂CH₂), 3.07 (t, J=9.2 Hz, 1H, CHOPMB), 3.29-3.34 (m, 2H, ICH₂CH₂CH, CH₂CH₂CH), 3.62-3.74 (m, 2H, ICH₂), 3.77-3.81 (m, 4H, OCH₃, TBSOCH), 4.50-4.60 (m, 2H, CH₂ of PMB), 5.52 (s, 1H, CHPh), 6.89–6.91 (m, 2H, PMB), 7.25–7.27 (m, 2H, PMB), 7.25–7.27 (m, 3H, H aryl), 7.46–7.48 8 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) –4.7, –4.3, (Si(CH₃)₂), 1.6 (CH₂I), 18.1, 21.5 (CH₂), 23.8 (CHCH₃), 25.9 (SiC(CH₃)₃), 32.2 (CH₂), 36.3 (HOCH₂CH₂) 39.7 (SiC(CH₃)₃), 55.3 (OCH₃), 68.5 (CHCH₃), 74.8 (CH₂ of PMB), 77.6 (CH₂CH₂CH), 80.0 (HCOPMB), 80.6 (ICH₂CH₂CH), 100.0 (CHPh), 114.0, 126.0, 128.1, 128.7, 129.6, 129.7, 137.9, 159.6 (C aryl); HRMS (ESI): [M+Na]⁺ calcd for C₃₁H₄₇IO₅SiNa 677.21297, found 677.21222.

4.13. 2-(Trimethylsilyl)ethyl 2-((*E*)-3-((*2S*,4*R*,5*S*,6*S*)-6-((*R*)-4-(*tert*-butyldimethylsilyloxy)pentyl)-5-(4-methoxybenzyloxy)-2-phenyl-1,3-dioxan-4-yl)prop-1-enyl)-3,4,6trimethoxybenzoate (40)

(a) *Alkylation*: To a solution of phenylbenzyl selenoether¹⁷ **39** (65.4 mg, 0.14 mmol) in a THF/HMPA mixture (3.3 mL, 10:1) was added dropwise a preformed solution of LDA (0.22 mmol) in THF (0.54 mL) whereby the reaction mixture turned red. After 20 min, a precooled (-40 °C) solution of alkyl iodide **38** (89.2 mg, 0.1 mmol) in THF (0.5 mL) was added slowly and the resulting reaction mixture was stirred for 2 h at -80 °C before satd. NH₄Cl solution (5 mL) was added. The reaction mixture was allowed to warm to room temperature, then the layers were separated and the aqueous phase extracted with EtOAc (2×10 mL). The combined organic layers were washed with satd. NaCl solution, dried over MgSO₄, filtered, and concentrated in vacuo to a volume of around 2 mL. This solution was filtered through a short pad of Celite[®] and the Celite washed with EtOAc (2×10 mL). The combined organic washings were evaporated to give crude alkylation product (118.9 mg), which was directly introduced to the next step. R_f (petroleum ether/EtOAc, 3:1) 0.43. (b) Elimination: The crude alkylation product (119 mg, 0.1 mmol) was dissolved in THF (2 mL) and H₂O₂ (0.026 mL, 0.25 mmol, 30%) was added at rt. After being stirred for 2 h, the reaction was quenched with satd. Na₂S₂O₈ solution (2 mL), and the mixture extracted with EtOAc (2×10 mL). The combined organic layers were washed with satd. NaCl solution, dried over MgSO₄, filtered, and evaporated. The crude product was purified by flash chromatography (petroleum ether/EtOAc, 8:1) to give styrene 40 (85.5 mg, 75% over 2 steps) as a colorless oil. R_f (petroleum ether/EtOAc, 3:1) 0.41; $[\alpha]_D^{20}$ +10.4 (c0.5, CH₂Cl₂); d_H (400 MHz, CDCl₃) -0.04 (s, 9H, Si(CH₃)₃), 0.03 (s, 6H, Si(CH₃)₂), 0.87 (s, 9H, SiC(CH₃)₃), 1.12 (d, J=6.1 Hz, 3H, CHCH₃), 1.40-1.88 (m, 8H, 3×CH₂, CH₂TMS), 2.53-2.63 (m, 1H, CH=CHCH₂), 2.76-2.79 (m, 1H, CH=CHCH₂), 3.14 (t, J=9.2 Hz, 1H, CHOPMB), 3.58-3.62 (m, 4H, OCH₃, TBSOCH), 3.71-3.80 (m, 8H, 2×OCH₃, HC=CHCH₂CH, CH₂CH₂CH), 3.87 (s, 3H, OCH₃), 4.20-4.35 (m, 2H, OCH₂CH₂TMS), 4.56-4.65 (m, 2H, CH2 of PMB), 5.49 (s, 1H, CHPh), 6.34-6.41 (m, 2H, H₂CCH=CH, H aryl), 6.55 (d, J=16.3 Hz, 1H, H₂CCH=CH), 6.87-6.89 (m, 2H, H aryl), 7.25–7.32 (m, 6H, H aryl), 7.47–7.49 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) -4.7, -4.4 (Si(CH₃)₂), -1.6 (Si(CH₃)₃), 17.3 (CH2TMS), 18.1 (SiC(CH3)3), 21.6 (CH2), 23.8 (CHCH3), 25.9

 $\begin{array}{l} ({\rm SiC}({\rm CH}_3)_3), \ 32.8 \ ({\rm CH}_2), \ 36.2 \ ({\rm CH}{=}{\rm CHCH}_2), \ 39.7 \ ({\rm CH}_2), \ 55.3, \ 56.1, \\ 56.5, \ 60.4 \ ({\rm OCH}_3), \ 63.5 \ ({\rm CH}_2{\rm CH}_2{\rm TMS}), \ 68.6 \ ({\rm CHCH}_3), \ 74.8 \ ({\rm CH}_2 \ of \\ {\rm PMB}), \ 77.5 \ ({\rm CH}_2{\rm CH}_2{\rm CH}), \ 80.0 \ ({\rm CHOPMB}), \ 80.7 \ ({\rm CH}{=}{\rm CHCH}_2{\rm CH}), \ 96.1 \\ ({\rm CH \ aryl}), \ 100.0 \ ({\rm CHPh}), \ 113.9, \ 116.1, \ 125.6, \ 126.1, \ 128.0 \ ({\rm C \ aryl}), \ 128.4 \\ ({\rm CH}{=}{\rm CHCH}_2), \ 129.5, \ 130.0 \ ({\rm C \ aryl}), \ 130.5 \ ({\rm CH}{=}{\rm CHCH}_2), \ 132.5, \ 138.3, \\ 140.7, \ 153.1, \ 153.8, \ 159.4 \ ({\rm C \ aryl}), \ 168.1 \ ({\rm C}{=}{\rm O}); \ {\rm HRMS} \ ({\rm ESI}): \ [{\rm M}{+}{\rm Na}]^+ \\ {\rm calcd \ for \ } C_{47}H_{70}O_{10}{\rm Si}_2{\rm Na} \ 873.43997, \ found \ 873.43955. \end{array}$

4.14. 2-((*E*)-3-((2*S*,4*R*,5*S*,6*S*)-6-((*R*)-4-Hydroxypentyl)-5-(4methoxybenzyloxy)-2-phenyl-1,3-dioxan-4-yl)prop-1-enyl)-3,4,6-trimethoxybenzoic acid (41)

To a cooled (ice bath) solution of ester **40** (85.5 mg, 0.1 mmol) in THF (1.5 mL) was added TBAF (0.6 mL, 0.8 mmol, 1 M in THF) and the mixture was allowed to warm to room temperature. After being

stirred overnight satd. NH₄Cl solution (3 mL) was added to the mixture. The layers were separated and the aqueous phase extracted with EtOAc (3×5 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified by flash chromatography (petroleum ether/ EtOAc, 1:2) to give hydroxy acid 41 (53.5 mg, 84%) as a white amorphous solid. R_f (petroleum ether/EtOAc, 1:5) 0.68; $[\alpha]_D^{20}$ +8.0 (c 0.2, CH₂Cl₂); d_H (400 MHz, CDCl₃) 1.13 (d, *J*=6.1 Hz, 3H, CHCH₃), 1.50-1.82 (m, 6H, 3×CH₂), 2.63-2.64 (m, 1H, CH=CHCH₂), 2.78-2.82 (m, 1H, CH=CHCH₂), 3.23-3.27 (dd, J=9.2, 9.2 Hz, 1H, CHOPMB), 3.62-3.65 (m, 4H, OCH₃, HOCHCH₃), 3.75-3.81 (m, 8H, 2×OCH₃, CH=CHCH₂CH, CH₂CH₂CH), 3.86 (s, 3H, OCH₃), 4.55-4.66 (m, 2H, CH₂ of PMB), 5.48 (s, 1H, CHPh), 6.37–6.42 (m, 2H, H aryl, CH=CHCH₂), 6.61–6.65 (d, *J*=16.3 Hz, HC=CHCH₂), 6.85–6.87 (m, 2H, PMB), 7.25–7.33 (m, 6H, H aryl), 7.46–7.48 (m, 2H, H aryl), 8.58 (br s, 1H, CO₂H); d_C (150 MHz, CDCl₃) 20.8 (CH₂), 23.2 (HOCHCH₃), 31.5 (CH₂), 35.8 (CH=CHCH₂), 38.8 (CH₂), 55.2, 56.0, 56.5 (OCH₃), 68.1 (HOCHCH₃), 74.6 (CH₂ of PMB), 75.7 (CH₂CH₂CH), 79.8 (CH=CHCH₂CH), 80.6 (CHOPMB), 96.0 (C aryl), 100.5 (CHPh), 113.9 (C aryl), 126.0 (CH=CHCH₂), 126.2, 128.1, 128.6, 129.5, 130.1, 131.1 (C aryl), 132.4 (CH=CHCH₂), 138.0, 140.6, 153.2, 154.2, 159.3 (C aryl), 176.8 (C=O) (very small); HRMS (ESI): $[M+Na]^+$ calcd for C₃₆H₄₄O₁₀Na 659.28267, found 659.28274.

4.15. Macrolactone 34a

To a solution of acid 41 (60.2 mg, 0.095 mmol) in toluene (9.5 mL) was added PPh₃ (55.6 mg, 0.19 mmol) at 0 °C. After being stirred for 15 min at 0 °C, DEAD (0.097 mL, 0.19 mmol) was added dropwise and the resulting mixture allowed to warm to room temperature. After 12 h the toluene was evaporated and the crude material purified by flash chromatography (petroleum ether/ EtOAc, 3:1) to give macrolactone 34a (45.3 mg, 77%) as a colorless oil. R_f (petroleum ether/EtOAc, 1:1) 0.41; $[\alpha]_D^{20}$ +52.4 (c 1.3, CH₂Cl₂); d_H (400 MHz, CDCl₃) 1.31 (d, J=6.3 Hz, 3H, CHCH₃), 1.54– 1.81 (m, 2H, CH₂), 1.98-2.00 (m, 2H, CH₃CHCH₂CH₂), 2.24-2.30 (m, 2H, CH₂CH₂CHOCHPh), 2.67–2.74 (m, 1H, CH=CHCH₂), 2.80–2.84 (m, 1H, CH=CHCH₂), 3.69 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.80-3.85 (m, 4H, OCH₃, HCOPMB), 3.88-3.91 (m, 4H, OCH₃, CH₂CH₂CHOCHPh), 4.54-4.64 (m, 2H, CH₂ of PMB), 5.35-5.39 (m, 1H, CH₃CH), 5.50 (s, 1H, CHPh), 6.46 (s, 1H, H aryl), 6.53–6.60 (m, 1H, CH=CHCH₂), 6.66-6.70 (d, J=16.7 Hz, 1H, CH=CHCH₂), 6.82-6.84 (m, 2H, H aryl), 7.21-7.24 (m, 3H, H aryl), 7.34-7.41 (m, 3H, H aryl), 7.64–7.66 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) 17.9 (CH₂), 18.9 (CH₃CH), 30.0, 34.1 (CH₂), 36.4 (CH=CHCH₂), 55.2, 56.1, 56.5, 60.5 (OCH₃), 70.1 (CH₂ of PMB), 73.0 (CH₃CH), 73.2 (CH₂CH₂CHOCHPh), 77.8 (CH=CHCH₂CH), 78.9 (CHOPMB), 96.3 (C aryl), 101.3 (CHPh), 113.9, 116.8 (C aryl), 126.8 (CH=CHCH₂), 127.0, 128.4, 129.0, 129.1, 129.2, 130.3 (C aryl), 132.4 (CH=CHCH₂), 138.5, 140.6, 153.0, 153.5, 159.3 (C aryl), 167.9 (C=O); HRMS (ESI): [M+Na]⁺ calcd for C₃₆H₄₂O₉Na 657.24604, found 657.24650.

4.16. Macrolactone 42

Macrolactone **34a** (12.7 mg, 0.021 mmol) was dissolved in CH₂Cl₂ (0.5 mL), then water was added (0.25 mL) followed by DDQ (5.7 mg, 0.025 mmol). The resulting mixture was stirred for 1 h at room temperature and then satd. NaHCO₃ solution was added. The layers were separated and the aqueous layer extracted with CH₂Cl₂ (3×5 mL). The combined organic extracts were washed with satd. NaHCO₃ solution (5 mL), satd. NaCl solution, dried over MgSO₄, and filtered. The solvent was evaporated and the residue purified by flash chromatography (petroleum ether/EtOAc, 3:1) to give alcohol **42** (6.6 mg, 64%) as a white amorphous solid. *R*_f (petroleum ether/EtOAc, 1:1) 0.28; $[\alpha]_D^{20}$ +55.7 (*c* 0.6, CH₂Cl₂); d_H (400 MHz, CDCl₃) 1.30 (d, *J*=6.4 Hz, 3H, CHCH₃), 1.50–1.75 (m, 4H, 2×CH₂), 2.08–2.22

(m, 2H, CH₂), 2.64–2.77 (m, 2H, HC=CHCH₂), 3.71 (s, 3H, OCH₃), 3.74–3.72 (m, 5H, OCH₃, CHOH, CH₂CHOCHPh), 3.86–3.91 (m, 4H, OCH₃, CH=CHCH₂CH), 5.34–5.38 (m, 1H, CH₃CH), 5.46 (s, 1H, CHPh), 6.38–6.45 (m, 2H, H aryl, CH=CHCH₂), 6.69 (d, *J*=16.5 Hz, 1H, CH=CHCH₂), 7.32–7.41 (m, 3H, H aryl), 7.65–7.67 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) 17.2 (CH₂), 19.0 (CH₃CH), 29.4, 34.5 (CH₂), 35.1 (CH=CHCH₂), 56.1, 56.5, 60.7 (OCH₃), 62.9 (CH₃CH), 73.6 (CH₂CH₂CHOCHPh), 78.8 (CH=CHCH₂CH), 79.1 (CHOH), 96.4 (C aryl), 102.1 (CHPh), 116.8 (C aryl), 126.6 (CH=CHCH₂), 127.0, 129.1, 129.7 (C aryl), 132.0 (CH=CHCH₂), 138.2, 140.4, 153.1, 153.3 (C aryl), 167.8 (C=O); HRMS (ESI): [M+Na]⁺ calcd for C₂₈H₃₄O₈Na 521.21459, found 521.21456.

4.17. Ketone 34b

Dess-Martin periodinane (0.063 mL, 0.03 mmol, sol 15wt % in CH₂Cl₂) was added dropwise to a cooled (ice bath) solution of alcohol **42** (9.8 mg, 0.02 mmol) in CH₂Cl₂ (1 mL). Then the reaction mixture was allowed to warm to room temperature and stirred for additional 2 h. After that, the resulting suspension was loaded directly on a flash column. Elution (petroleum ether/EtOAc, 1:1) gave ketone **34b** (9.2 mg, 94%) as a white amorphous solid. R_f (petroleum ether/EtOAc, 1:1) 0.34; [a]_D²⁰ +25.4 (c 0.5, CH₂Cl₂); d_H (400 MHz, CDCl₃) 1.28 (d, J=6.4 Hz, 3H, CHCH₃), 1.41-1.64 (m, 4H, 2×CH₂), 1.88-1.93 (m, 1H, CH₂CH₂CH), 2.10-2.14 (m, 1H, CH₂CH₂CH), 2.72-2.80 (m, 1H, CH=CHCH₂), 3.09-3.15 (m, 1H, CH=CHCH₂), 3.68 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 4.50-4.55 (m, 2H, CH=CHCH₂CH and CH₂CH₂CHOCHPh), 5.13–5.17 (m, 1H, CH₃CH), 5.94 (s, 1H, CHPh), 6.30 (ddd, *J*=16.3, 14.0, 6.9 Hz, 1H, CH=CHCH₂), 6.41 (s, 1H, H aryl), 6.47 (d, *J*=16.3 Hz, 1H, CH=CHCH₂), 7.35-7.44 (m, 3H, H aryl), 7.62–7.64 (m, 2H, H aryl); d_C (150 MHz, CDCl₃) 19.9 (CH₂), 20.4 (CH₃CH), 30.1, 36.6 (CH₂), 36.4 (CH=CHCH₂), 56.1, 56.5, 60.3 (OCH₃), 72.0 (CH₃CH), 81.7 (CH₂CH₂CHOCHPh), 82.8 (CH=CHCH₂CH), 96.5 (C aryl), 99.9 (CHPh), 116.2 (C aryl), 126.5, 126.8 (CH=CHCH₂), 128.5 (C aryl), 129.1 (C aryl), 129.3 (CH=CHCH₂), 129.5, 138.0 (C aryl), 140.8, 152.7, 153.8 (C aryl), 167.4 (C=O), 207.5 (C=O ketone); HRMS (ESI): $[M+Na]^+$ calcd for C₂₈H₃₂O₈Na 519.19894, found 519.19936.

4.18. (3*S*,7*S*,9*R*,*E*)-7,9,16-Trihydroxy-13,14-dimethoxy-3methyl-4,5,6,7,9,10-hexahydro-3*H*-benzo[*c*][1]oxacyclotetradecine-1,8-dione (6)

(a) Acetal cleavage: Ketone **34b** (15.5 mg, 0.03 mmol) was dissolved in MeOH (1 mL) and then a solution of MeOH/HCl conc. (1.05 mL, 20:1) was added dropwise at room temperature. After being stirred for 0.5 h, the solution was neutralized with satd. NaHCO₃ and the mixture extracted with EtOAc (2×10 mL). The combined organic layers were washed with satd. NaCl solution, dried with MgSO₄, filtered, and concentrated in vacuo to provide the dihydroxy ketone (8.0 mg) as a yellow oil. The compound was directly introduced to the next step.

(b) *OMe cleavage*: To a solution of crude dihydroxy ketone (8.0 mg, 0.02 mmol) in CH₂Cl₂ (1 mL) was added BCl₃ (0.08 mL, 0.08 mmol, 1 M sol in CH₂Cl₂) dropwise at $-50 \,^{\circ}$ C. After 20 min the reaction was quenched with satd. NaOAc (3 mL). The layers were separated and aqueous phase extracted with CH₂Cl₂ (3×5 mL). The combined organic extracts were washed with satd. NaCl solution, dried over MgSO₄ and the solvent was evaporated. The residue was purified via flash chromatography (CH₂Cl₂/MeOH, 40:1) to give compound **22** (5.2 mg, 43% over 2 steps) as a colorless crystalline solid. *R*_f (petroleum ether/EtOAc, 1:5) 0.47; [α]_D²⁰ –41.0 (*c* 0.5, CH₂Cl₂), [α]_D²⁰ –51.0 (*c* 0.1, CH₃OH); d_H (400 MHz, CDCl₃) 1.18–1.33 (m, 2H, CH₂), 1.37 (d, *J*=6.1 Hz, 3H, CH₃CH), 1.45–1.75 (m, 3H, CH₂), 2.12–2.20 (m, 1H, CH₂), 2.70–2.76 (m, 1H, CH=CHCH₂), 3.03–3.09 (m, 2H, CH=CHCH₂, CH₂CHOH), 3.44–3.49 (m, 1H, CH=CHCH₂CHOH),

3.58 (s, 3H, OCH₃), 3.86 (s, 3H. OCH₃), 4.36–4.41 (m, 1H, CH₂CH₂CHOH), 4.60–4.67 (m, 1H, CH=CHCH₂CHOH), 5.00–5.06 (m, 1H, CH₃CH), 5.84 (ddd, *J*=15.3, 8.9, 3.3 Hz, 1H, CH=CHCH₂), 6.40 (s, 1H, H aryl), 6.65 (d, *J*=15.3 Hz, 1H, CH=CHCH₂), 11.56 (br s, 1H, OH aromatic); d_C (150 MHz, CDCl₃) 20.5 (CH₂), 20.7 (CHCH₃), 32.5 (CH₂), 35.6 (CH₂), 37.0 (CH=CHCH₂), 55.9, 60.6 (OCH₃), 73.2 (CH₃CH), 73.4 (CH=CHCH₂CH), 75.0 (CH₂CH₂CHOH), 99.7 (CH aryl), 103.7 (C aryl), 126.6 (CH=CHCH₂), 127.3 (CH=CHCH₂), 133.5, 140.3, 158.7, 160.9 (C aryl), 170.7 (C=O ester), 213.0 (C=O ketone); HRMS (ESI): [M+Na]⁺ calcd for C₂₀H₂₆O₈Na 417.15199, found 417.15197.

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. We also thank Dr. Florenz Sasse (HZI Braunschweig, Germany) for the cytotoxicity assay.

Supplementary data

Supplementary data associated with this article (remaining procedures for Scheme 1 and 2, copies of NMR spectra) can be found in the online version, at doi:10.1016/j.tet.2009.11.024.

References and notes

- 1. For a review, see: Winssinger, N.; Barluenga, S. Chem. Commun. 2007, 22-36.
- Zimmermann, T. J.; Niesen, F. H.; Pilka, E. S.; Knapp, S.; Oppermann, U.; Maier, M. E. Bioorg. Med. Chem. 2009, 17, 530–536.
- Ellestad, G. A.; Lovell, F. M.; Perkinson, N. A.; Hargreaves, R. T.; McGahren, W. J. J. Org. Chem. 1978, 43, 2339–2343.
- Zhao, A.; Lee, S. H.; Mojena, M.; Jenkins, R. G.; Patrick, D. R.; Huber, H. E.; Goetz, M. A.; Hensens, O. D.; Zink, D. L.; Vilella, D.; Dombrowski, A. W.; Lingham, R. B.; Huang, L. J. Antibiot. **1999**, *52*, 1086–1094.
- 5. For a synthesis, see: Hofmann, T.; Altmann, K.-H. Synlett 2008, 1500–1504.

- Dakas, P.-Y.; Barluenga, S.; Totzke, F.; Zirrgiebel, U.; Winssinger, N. Angew. Chem. 2007, 119, 7023–7026; Angew. Chem., Int. Ed. 2007, 46, 6899–6902 and references therein.
- Hoshino, Y.; Ivanova, V. B.; Yazawa, K.; Ando, A.; Mikami, Y.; Zaki, S. M.; Karam, A.-Z. A.; Youssef, Y. A.; Gräfe, U. J. Antibiotics 2002, 55, 516–519.
- 8. Khartulyari, A. S.; Kapur, M.; Maier, M. Org. Lett. 2006, 8, 5833-5836.
- Moon, H. R.; Choi, W. J.; Kim, H. O.; Jeong, L. S. Tetrahedron: Asymmetry 2002, 13, 1189–1193.
- 10. Liu, Z.-Y.; Chen, Z.-C.; Yu, C.-Z.; Wang, R.-F.; Zhang, R.-Z.; Huang, C.-S.; Yan, Z.; Cao, D.-R.; Sun, J.-B.; Li, G. *Chem.—Eur. J.* **2002**, *8*, 3747–3756.
- Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360–11370.
- (a) Fürstner, A.; Thiel, O. R.; Kindler, N.; Bartkowska, B. J. Org. Chem. 2000, 65, 7990–7995; (b) Kumar, P.; Gupta, P.; Naidu, S. V. Chem.—Eur. J. 2006, 12, 1397–1402.
- (a) Wilk, B. K. Synth. Commun. 1993, 23, 2481–2484; (b) Aesa, M. C.; Baán, G.; Novák, L.; Szántay, C. Synth. Commun. 1995, 25, 1545–1550.
- (a) Parker, K. A.; Spero, D. M.; Koziski, K. A. J. Org. Chem. 1987, 52, 183–188; (b)
 Evans, J. C.; Klix, R. C.; Bach, R. D. J. Org. Chem. 1988, 53, 5519–5527; (c)
 Watanabe, M.; Ijichi, S.; Furukawa, S. Synthesis 1993, 94–98.
- For a recent review, see: Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551–2651.
- In this paper the inversion could be shown by X-ray on the derived macrolactone Ugele, M.; Sasse, F.; Knapp, S.; Fedorov, O.; Zubriene, A.; Matulis, D.; Maier, M. E. ChemBioChem. 2009, 10, 2203–2212.
- Barluenga, S.; Dakas, P.-Y.; Ferandin, Y.; Meijer, L.; Winssinger, N. Angew. Chem. 2006, 118, 4055–4058; Angew. Chem., Int. Ed. 2006, 45, 3951–3954.
- Seleno ether **39** was prepared in eight steps from 5-bromovanillin: (a) Sánchez, I. H.; Larraza, M. I.; Basurto, F.; Yafñez, R.; Avila, S.; Tovar, R.; Joseph-Nathan, P. *Tetrahedron* **1985**, *41*, 2355–2359; (b) Evans, G. E.; Staunton, J. J. Chem. Soc., Perkin Trans. 1 **1988**, 755–761; (c) Fürstner, A.; Stelzer, F.; Rumbo, A.; Krause, H. *Chem.—Eur. J.* **2002**, *8*, 1856–1871; for an overall Scheme, see supporting information.
- For a recent application of this methodology, see: (a) Jogireddy, R.; Dakas, P.-Y.; Valot, G.; Barluenga, S.; Winssinger, N. *Chem.—Eur. J.* **2009**, *15*, 11498–11506; (b) Dakas, P.-Y.; Jogireddy, R.; Valot, G.; Barluenga, S.; Winssinger, N. *Chem.—Eur. J.* **2009**, *15*, 11490–11497.
- 20. Parenty, A.; Moreau, X.; Campagne, J. M. Chem. Rev. 2006, 106, 911-939.
- (a) Dean, F. M.; Goodchild, J.; Houghton, L. E.; Martin, J. A.; Morton, R. B.; Parton, B.; Price, A. W.; Somvichien, N. *Tetrahedron Lett.* **1966**, *7*, 4153–4159; (b) Nagaoka, H.; Schmid, G.; Iio, H.; Kishi, Y. *Tetrahedron Lett*. **1981**, *22*, 899–902; (c) Bhatt, M. V.; Kulkarni, S. U. Synthesis **1983**, 249–282.
- 22. Maier, M. E. Nat. Prod. Rep. 2009, 26, 1105-1124.