Accepted Manuscript

Diversity-oriented four-component synthesis of solid state luminescent difluoro oxazaborinines

Janis Dohe, Janina Koßmann, Thomas J.J. Müller

PII: S0143-7208(18)30670-3

DOI: 10.1016/j.dyepig.2018.05.001

Reference: DYPI 6730

To appear in: Dyes and Pigments

Received Date: 26 March 2018

Revised Date: 30 April 2018

Accepted Date: 1 May 2018

Please cite this article as: Dohe J, Koßmann J, Müller TJJ, Diversity-oriented four-component synthesis of solid state luminescent difluoro oxazaborinines, *Dyes and Pigments* (2018), doi: 10.1016/ j.dyepig.2018.05.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

 $\begin{array}{r} & \text{Consecutive} \\ & \text{Four-component} \\ \text{BF}_3 \cdot \text{OEt}_2 \quad \text{H}_2\text{N}-\text{R}^2 \text{ Coupling-Addition-Cyclization} \\ & \underline{\text{Synthesis}} \end{array}$ 1,0 0,8 R³ 0,6 ۱Ð Intensity [a.u.] in one-pot ! R¹ 0,4 -R² R^1 29 examples (5-84%) 0,2 solid state emissive tunable electronic structue 0,0 500 600 Wavelength [nm] 400 700

Diversity-oriented Four-component Synthesis of Solid State Luminescent Difluoro Oxazaborinines

Janis Dohe,^a Janina Koßmann,^a and Thomas J. J. Müller*^{,a}

^aInstitut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany

Email: ThomasJJ.Mueller@hhu.de

Keywords: Absorption; Boron; Copper; Cross-coupling; DFT-calculations; Fluorescence; Heterocycles; Multi-component reactions; Palladium.

ABSTRACT

(Hetero)aroyl chlorides, alkynes, anilines, and BF₃ diethyl etherate are reacted in an alkynylationamination-cyclization one-pot process to give trisubstituted difluoro oxazaborinines in moderate to very good yield in the sense of a consecutive four-component synthesis. The obtained title compounds are intensely fluorescent with bluish to yellow color, however, only in the solid state. Photophysical measurements, physical organic correlation studies, and DFT and TD DFT calculations are employed to rationalize the substituent effects on the dominant chromophores, which is oriented along the dipole axis spanning from the (hetero)aroyl substituent to the aniline moiety.

1. Introduction

Difluoro oxazaborinines **A**, i.e. BF_2 -ketoimino complexes, can formally be considered as borondifluoride-enaminone complexes, which are in a line with BF_2 -diketo (**B**) and BF_2 -diimino complexes (**C**), the alternate complexes of 1,3-dicarbonyl synthetic equivalents (Figure 1) [1].

Figure 1. Structurally related BF₂-ketoimino (**A**), BF₂-diketo (**B**), and BF₂-diimino (**C**) complexes. Although already structurally characterized some decades ago [2,3] and employed in [2+2] photodimerizations [4], difluoro oxazaborinines **A** as polar heterocyclic π -systems have gained considerable interest as a consequence of their electronic ground and excited state properties [1]. According to cyclic voltammetry the chelating enaminone can be regarded as a weak electron acceptor. Its LUMO can be stabilized by extending the π -conjugation with suitable aromatic substituents, and thereby the reduction is facilitated. More recently, the observation of pronounced solid state fluorescence has led to closer inspection of the induction of luminescence by aggregation induced emission (AIE) [5] of the diffuoro oxazaborinines with extended π -conjugation [6], displaying mechanoluminescence and even heat-resistant mechanoluminescent chromism of oligomeric silsesquioxane boron ketoiminate hybrids [7]. In comparison to the diketo analogue **B** the B-N bond in the heterocycle **A** is considerably longer than the B-O bonds in structure **B** and therefore essential for the occurrence of AIE.

Classical syntheses of difluoro oxazaborinines **A** are stepwise, starting from 1,3-dicarbonyl compounds and require isolation of the enaminone or the BF_2 -diketo complexes **B** [6]. A major drawback of this approach clearly is the inherent lack of control of the enaminone's regioselectivity. Alternative routes to enaminones are either long linear stepwise processes [8] or only deliver very specific substitution patterns [9]. For overcoming this shortcoming we reasoned that a diversity-oriented synthesis [10] obtained by the same reaction principle through variation of suitable starting

materials could be favorable. In particular, multicomponent reactions (MCR) [11] most beneficially combine economic and ecological aspects for reaching this challenging goal. In the sense of a chromophore concept, a chromogenic application of the MCR concept, functional chromophores have become accessible more easily and more generally [12], an approach that has now been systematically extended to a powerful tool in fluorophore design [13].

In the course of our program to devise multicomponent syntheses of heterocycles initiated by transition metal catalyzed alkynylation [14], we also disclosed a straightforward, highly stereoselective consecutive three-component synthesis of Z-configured enaminones 4 with perfect regiospecificity from acid chlorides 1, alkynes 2, and primary amines 3 via the intermediacy of alkynones 5 (Scheme 1) [15], which was later on expanded to four-component syntheses of tetrahydro- β -carbolines [16], pyridones [17], and pyrroles [18].

Scheme 1. Consecutive three-component synthesis of enaminones Z-4.

Herein, inspired by the interesting solid state luminescence of difluoro oxazaborinines **A** with extended π -conjugation [6,7] we report a novel consecutive four-component synthesis of difluoro oxazaborinines with perfect regioselectivity and their photophysical properties.

2. Results and discussion

2.1. Synthesis and structure

Initiated by our catalytic synthesis of alkynones **5** [14a,b,15] and a detailed optimization of the amine addition in the presence of boron trifluoride as an activating Lewis acid and the remaining fourth component (for details see Supp Inf) we identified optimal conditions for a diversity-oriented one-pot approach to difluoro oxazaborinines **6**. Upon subsequently reacting of acid chloride **1**, alkyne **2**, boron trifluoride, and amine **3** in the sense of a consecutive four-component process the title compounds **6** were obtained in modest to good yield as yellow solids in most cases (Scheme 2, Table 1), which are

nonemissive in solution but display pronounced solid state emission under UV light. A practical aspect is the isolation of the products **6**, which can often be obtained analytically pure by simple precipitation into cold methanol. Thereby, a facile scale-up to 10 mmol was readily achieved (Table 1, entries 2, 5, 8-11, 14, and 16-29). Although the substrate scope is broad with respect to the alkynylation substitution pattern, a special attention has to be paid to electron rich amines in the latter part of the sequence. The domino formation of the difluoro oxazaborinines is considerably hampered in these cases by formation of Lewis acid-base adducts between boron trifluoride and the amine nucleophiles. To some extent this problem could be circumvented by first performing the enaminone generation after the alkynylation, i. e. prior to the addition of the boron trifluoride as a cyclizing component.

Scheme 2. Consecutive four-component synthesis of 2,2-difluoro-2H-1,3 λ^4 ,2 λ^4 -oxazaborinines 6.

entry	acid chloride	alkyne 2	primary	2,2-difluoro-2 <i>H</i> -1,3 λ^4 ,2 λ^4 -
	1		amine 3	oxazaborinines 6 (yield)
1	$\mathbf{R}^{1}=\mathbf{Ph}\left(\mathbf{1a}\right)$	$\mathbf{R}^2 = \mathbf{Ph} \ (\mathbf{2a})$	$\mathbf{R}^3 = \mathbf{Ph} \left(\mathbf{3a} \right)$	FOF
2 ^a	$R^1 = p$ - MeOC ₆ H ₄	2a	3a	Ph $\mathbf{6a}$ (73%) $\mathbf{F} \oplus \mathbf{F}$ $\mathbf{Ph} \oplus \mathbf{F}$
3	(1b) $R^{1} = p$ - $MeC_{6}H_{4}$ (1c)	2a	3 a	MeO F⊕F Ph Ph Ph Ph Ph
4	$R^{1} = 2$ -thienyl (1d)	2a	3a	Me $f \oplus F$ G (62%) $S \to Ph$ Ph
5 ^a	$\mathbf{R}^{1} = p - \mathbf{NCC}_{6}\mathbf{H}_{4} (\mathbf{1e})$	2a	3a	6d (74%) F⊖F BN⊕Ph Ph
6	$R^{1} = p$ - $O_{2}NC_{6}H_{4}$ (1f)	2a	3 a	NC $f \oplus F$ $f \oplus F$ $f \oplus F$ $h \oplus F$
7	$R^{1} = o - FC_{6}H_{4}$ (1g)	2a	3a	$O_2 N$ 6f (52%)
8 ^a	1a	$R^2 = p$ -MeOC ₆ H ₄ (2b)	3 a	6g (74%) F,⊖,F O ^B N⊕ Ph
9 ^a	1a	$R^2 = p - MeC_6H_4 (2c)$	3 a	Ph ← 6i (50%)
10 ^a	1 a	$R^2 = 2$ -thienyl (2d)	3a	F ⊖ F Ph → S 6j (56%)

Table 1. Experimental details of the four-component synthesis of 2,2-difluoro-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinines **6**.

		ACCEP	TED MANUS	CRIPT
11 ^a	1a	$R^2 = p - NCC_6H_4 (2e)$	3 a	F⊕F O ^B N⊕ Ph
12	1a	$R^2 = n-Bu (2f)$	3a	$ \begin{array}{c} \downarrow \\ CN \ \mathbf{6k} \ (48\%) \\ F \\ O \\ F \\ O \\ F \\ N \\ Ph \\ I \\ $
13	1c	2f	3a	Ph ⁿ Bu 6l (40%) F ⊖ F O ^B N⊕ I.
14 ^a	1a	2a	$R^{3} = p$ - Me ₂ NC ₆ H ₄ (3b)	Me 6m (44%) F ⊖ F O B N⊕
15	1 a	2a	$R^{3} = p - MeOC_{6}H_{4} (3c)$	Ph Ph $6n (5\%)$ F O F O N_{\oplus}
16 ^ª	1a	2a	$R^{3} = p-ClC_{6}H_{4}$ (3d)	Ph Ph 60 (61%)
17 ^a	1a	2a	$\mathbf{R}^3 = p \cdot \mathbf{I} \mathbf{C}_6 \mathbf{H}_4$ (3e)	Ph Ph $6p (71\%)$
18 ^a	1 a	2a	$R^{3} = m - O_{2}NC_{6}H_{4} (\mathbf{3f})$	Ph $6q(73\%)$ $F \ominus F$ $O^{B} N \oplus NO_{2}$
19 ^ª	1a	2a	$R^{3} = p-NCC_{6}H_{4}$ (3g)	Ph Ph 6r (27%) $F \odot F$ $O B N \odot$
20 ^a	1a	2a	$R^{3} = 2,6-Me_{2}C_{6}H_{3}$ (3h)	Ph Ph $6s (36\%)$ $F \ominus F$ $O B N \oplus$
21ª	1a	2a	$R^3 = 1-$ naphthyl (3i)	Ph Ph h^{Me} 6t (51%)
22 ^a	1b	2a	3c	Ph Ph $6u (73\%)$ F \odot F OMe B N \oplus
				MeO Ph (69%) 6v

^aPerformed on 10 mmol scale with the alkynylation step at room temp for 2 d and the amination-cyclization step at 65 °C for 3 h. ^bPerformed on 10 mmol scale with the alkynylation step at room temp for 2 d, the amination step at 65 °C for 3 h and the cyclization step at 65 °C for 3 h.

The structures of the difluoro oxazaborinines **6** were unambiguously assigned by comprehensive ¹H and ¹³C NMR spectroscopy and mass spectrometry. Most characteristically the proton resonances for the central CH appear between δ 6.0 and 7.0, depending of on shielding or deshielding by anisotropy cone of the neighboring (hetero)aryl substituents. The corresponding methine carbon nuclei resonate in range from δ 93.7 to 101.9, but mostly in a very narrow window between δ 95 to 98. In addition, heteronuclear NMR spectra were recorded. The BF₂-unit gives rise to coupling between the boron and the fluorine nuclei that can be found in the ¹¹B (δ 0.86-1.56; t, ^{*1*}J_{*B*·*F*} = 14.1.-17.1 Hz) and ¹⁹F (δ -132.3 to -138.7; q, ^{*1*}J_{*F*·*B*} = 13.7-19.7 Hz) NMR spectra. Due to the steric hindrance of the 1-naphthyl

substitution compound **6u** displays atropisomerism, which can be detected at room temp in both the ¹¹B and the ¹⁹F NMR spectra by the occurrence of diastereotopic fluorine nuclei (Figure 2). While in the ¹¹B NMR spectrum the signal at δ 1.5 splits into a doublet of doublets with direct coupling constants of ¹J of 12.4 and 17.1 Hz, the two diastereotopic fluorine nuclei give two doublets of quartets at δ -133.09 (dq, ²J_{*F*·*F*</sup> = 89.3 Hz, ¹J_{*F*·B} = 16.6 Hz) and -138.43 (dq, ²J_{*F*·*F*} = 91.4 Hz, ¹J_{*F*·B} = 11.5 Hz), with direct coupling constants at ¹J_{*F*·B} = 11.5 and 16.6 Hz, respectively, and large geminal coupling constants at ²J_{*F*·*F*} = 89.3 and 91.4 Hz. This sterically hindered rotation of the R³ substituent can be additionally supported by inspection of the variable temperature (VT) ¹⁹F NMR spectra of compound **6r** (Figure 3), where the broad signal at δ -133.37 for a coalescence temperature $T_c = 258$ K can be used to estimate the rotational barrier $\Delta G^{\neq} = 11.35 \pm 0.23$ kcal/mol ($\Delta G^{\neq} = 4.575 \cdot 10^{-3} \cdot T_c$ [9.972 + log₁₀($T_c/\Delta v$)]. But it has to be mentioned that in the measuring range the signals are broad and do not resolve to quartets by coupling to the boron nucleus.}

In all EI mass spectra of the compounds **6**, with exception of difluoro oxazaborinine **6k**, the molecular peak can be detected, which undergoes extrusion of BF₂ to give the corresponding enaminoyl radical cations. This intermediate fragments into three dominant units, i.e. the fragments R^{1+} , R^1CO^+ , and $R^2CN^+R^3$, which appear in most cases and can be rationalized by α -cleavages.

^{-131.5} -132.0 -132.5 -133.0 -133.5 -134.0 -134.5 -135.0 -135.5 -136.0 -136.5 -137.0 -137.5 -138.0 -138.5 -139.0 -139.5 -140.0 Figure 2. a) ¹¹B NMR spectrum of compound **6u** (recorded in CDCl₃, 96 MHz, T = 298 K). b) ¹⁹F NMR spectrum of compound **6u** (recorded in CDCl₃, 282 MHz, T = 298 K).

Figure 3. VT ¹⁹F NMR spectra of compound **6r** (recorded in $CDCl_3$, 565 MHz, T = 268, 258, 248, and 243 K).

2.2. Photophysical properties

Most remarkably difluoro oxazaborinines **6** are nonluminescent in solution, but the vast majority distinctly fluoresces in the solid state upon excitation of the solid materials with a handheld UV lamp and aroused our interest to study their photophysical properties by solid state absorption and emission spectroscopy (Table 3). Only exemplarily, three representative difluoro oxazaborinines **(6a, 6c, and 6o)** were characterized by the solution absorption spectra (Table 1, entries 1, 3, and 12) showing broad longest wave length absorption bands at 360 to 367 nm with decadic molar extinction coefficients ε between 23000 and 34500 L·mol⁻¹·cm⁻¹. In the solid state the excitation maxima of the *N*-aryl substituted difluoro oxazaborinines **6a-z**, which correspond to the longest absorption bands are considerably red shifted and appear between 389 and 448 nm. The *N*-alkyl substituted derivatives **6ab** and **6ac** absorb in the solid state with a maxima at 384 and 360 nm, respectively. This already indicates that the nature of *N*-substituent R³ is of prominent importance for the absorption behavior as a consequence of extending the π -conjugation for *N*-aryl substituents. With exception of compounds **6f, 6l, 6n,** and **6aa**, which did not fluoresce in the solid state, all other compounds were studied in the emission behavior with an integrated sphere (Ulbricht sphere). Thereby, the emission

maxima $\lambda_{max,em}$, the fluorescence quantum yields Φ_{j} , the excitation maxima $\lambda_{max,abs}$ (determined from the fluorescence excitation spectra) (Figure 3), and the huge Stokes shifts $\Delta \tilde{v}$ in a range from 2400 to 6500 cm⁻¹ were determined.

Table 3. Selected photophysical data (solid state absorption and emission, Stokes shifts) of difluoro oxazaborinines **6** (recorded at T = 293 K).

entry	compound	solution	solid state		
	•	absorption	absorption	emission	Y
		$\lambda_{max,abs}$ [nm] (ε	λ_{exc} [nm]	$\lambda_{max,em}$ [nm]	Stokes shift
		$[L \cdot mol^{-1} \cdot cm^{-1}])^a$		$(\mathbf{\Phi}_{f}[\%])$	$\Delta v [\text{cm}^{-1}]^{\text{b}}$
	F,⊖,F _B,Ph	253 (6100)			
1	O V⊕	360 (23200)	425	523 (18)	4400
	Ph 6a				
	FOF	-			
	Q B [_] N⊕				
2	Ph		444	497 (34)	2400
			\checkmark		
	MeO 6b	2 (2 (2 0 0)			
	F	367 (34500)			
2	Or Nr⊕ I. II		120	500 (20)	2200
3	Ph		430	500 (39)	5500
	Me fo				
	F.O.F	-			
	O ^B N ^{Ph}				
4	s t		448	525 (16)	4900
	6α Ε.Θ.Ε	Y			
	Ph				
5			423	563 (2)	5900
-	Ph		-		
	NC 6e				
	FOF	-			
	F O ^B N⊕				
6	Ph		406	512 (13)	5100
	S⊝F 6g	_			
	B N Ph				
7			443	533 (12)	3800
	Ph Y		-		
	OMe 6h				
	FOF	-			
	ON⊕				
8	Ph		422	526 (10)	4700
	🔨 Me Gi				

^aRecorded in CH₂Cl₂, $c(\mathbf{6}) = 10^{-5}$ M at T = 293 K. ^b $\Delta \tilde{\nu} = 1/\lambda_{exc} - 1/\lambda_{max,em}$ [cm⁻¹].

Figure 3. a) Normalized solid state excitation (solid line) and fluorescence spectra (dashed line) of compound **6v** (recorded at T = 293 K). b) Normalized solid state excitation (solid line) and fluorescence spectra (dashed line) of compound **6x** (recorded at T = 293 K).

The physical organic treatment of the substituent effects on difluoro oxazaborinines **6** was performed by screening for possible linear structure-property relationships based upon Hammett-Taft correlations for the three points of diversity represented by the *para*-phenyl substituents R^1 , R^2 , and R^3 . The photophysical data λ_{exc} (excitation maximum), $\lambda_{max,em}$ (emission maximum), Φ_j (fluorescence quantum

yield), and $\Delta \tilde{\nu}$ (Stokes shift) of three consanguineous series, where one substituent was varied while the other two substituents were held constant (as phenyl substituents), were plotted against the Hammett-Taft parameters [19] σ_{p} , σ_{I} , σ_{R} , σ_{p+} , and σ_{p-} (for details, see Supp Inf).

The excitation spectra which were determined from the emission maxima did not reveal any correlation in either substituent position. While substituent R¹, introduced by the acid chloride **1**, is not affected by steric interactions with the neighboring substituents as for R² and R³ stemming from the alkyne **2** and the aniline **3**, respectively, the electronic ground state properties, represented by the excitation maxima λ_{exc} , are obviously affected by the presence of different conformers, which are in a thermodynamic equilibrium. Also the fluorescence quantum yields Φ_f do not give systematic linear free energy relationships. This is partly reflected by the fact that fluorescence quantum yield are far from unity in all cases and, therefore, nonradiative deactivation dominates all excited stated processes in all three series. Most interestingly, best correlations are found for the emission maxima $\lambda_{max,em}$, and for the Stokes shifts $\Delta \tilde{\nu}$ in the series of the variation of substituent R¹.

The series of R¹ consists of compounds **6a-e**, where the variation proceeds from electron releasing (**6b**) over electro neutral (**6a**) to electron deficient (**6e**). The emission maxima $\lambda_{max,em}$ give a good linear correlation with the substituent parameter $\sigma_p (\lambda_{max,em} = -2558.5 \cdot \sigma_P + 19348 [cm⁻¹]; r^2 = 0.9593)$ indicating that the substituent effect is transmitted both by resonance and inductive pathways in the excited state. The negative reaction parameter accounts for a lowering of the energy of the emission by electron withdrawing substituents. Most remarkably the Stokes shifts $\Delta \tilde{\nu}$ of this first series correlates excellently with the substituent parameter ($\Delta \tilde{\nu} = 2459.6 \cdot \sigma_{p+} + 4266.9 [cm⁻¹]; r^2 = 0.9876$), which accounts for a significant charge transfer character in the vibrationally relaxed excited singlet state from an electron releasing substituent capable of stabilizing positive charge to the nitrogen atom of the difluoro oxazaborinine.

The second series of \mathbb{R}^2 consists of compounds **6a,h-k**, where the variation proceeds from electron releasing (**6h**) over electro neutral (**6a**) to electron deficient (**6k**). The only good linear correlation that could be established occurs with the inductive parameter $\sigma_I (\lambda_{max,em} = -1710.5 \cdot \sigma_I + 19003 \text{ [cm}^{-1}], r^2 =$

0.9335). This indicates that in the vibrationally relaxed excited singlet state the aromatic substituent is distorted considerably out of coplanarity with the major chromophore.

The last series of \mathbb{R}^3 encompasses the compounds **6a,0-q,s**, where the variation proceeds from electron releasing (**60**) over electro neutral (**6a**) to electron deficient (**6s**). The best linear correlation can be established with the resonance parameter $\sigma_{\mathbb{R}}$ ($\lambda_{max,em} = 3091.6 \cdot \sigma_{\mathbb{R}} + 19360$ [cm⁻¹], r² = 0.9393), indicating that delocalization with substituents in the *para*-position stabilize the formally electron deficient difluoro oxazaborinine nitrogen. This is further supported by the positive slope of the reaction parameter.

This physical organic analysis of the difluoro oxazaborinine fluorophore suggests R^1 adopts the function as an acceptor moiety, whereas R^3 acts as the donor counterpart (Figure 4). Substituent R^2 is obviously distorted out of coplanarity in the excited state and only can operate by its inductive effect.

Figure 4. Electronic substituent design of difluoro oxazaborinine fluorophores.

The interaction between substituents can be nicely demonstrated for variation of substituents R^1 and R^3 compared to the mother system **6a** ($R^1 = R^2 = R^3 = Ph$). Donor (*p*-anisyl) and acceptor substituents (*p*-cyanophenyl) were placed at positions R^1 and R^3 and for the compounds **6a** ($R^1 = Ph$, $R^3 = Ph$), **6b** ($R^1 = p$ -anisyl, $R^3 = Ph$), **6e** ($R^1 = p$ -NCC₆H₄, $R^3 = Ph$), **6o** ($R^1 = Ph$, $R^3 = p$ -anisyl), **6s** ($R^1 = Ph$, $R^3 = p$ -NCC₆H₄), **6v** ($R^1 = p$ -anisyl, $R^3 = p$ -anisyl), and **6x** ($R^1 = p$ -NCC₆H₄, $R^3 = p$ -anisyl) the Stokes shifts $\Delta \tilde{\nu}$ and the fluorescence quantum yields Φ_j , were compared (Figure 5). While the placement of *p*-cyanophenyl acceptors leads to an increase in the Stokes shifts compared to the all phenyl-substituted reference chromophore **6a** (Figure 5a). Interestingly the fluorescence quantum yields Φ_j are

consistently higher for the donor systems in comparison to the acceptor chromophores, while the electroneutral reference chromophore **6a** adopts the intermediate position (Figure 5b).

Figure 5. Qualitative comparison of a) Stokes shifts $\Delta \tilde{\nu}$ and b) fluorescence quantum yields Φ_f of compounds **6a** (R¹ = Ph, R³ = Ph), **6b** (R¹ = *p*-anisyl, R³ = Ph), **6e** (R¹ = *p*-NCC₆H₄, R³ = Ph), **6o** (R¹ = Ph, R³ = *p*-anisyl), **6s** (R¹ = Ph, R³ = *p*-NCC₆H₄), **6v** (R¹ = *p*-anisyl, R³ = *p*-anisyl), and **6x** (R¹ = *p*-NCC₆H₄, R³ = *p*-anisyl) with donor (*p*-anisyl) and/or acceptor substituents (*p*-cyanophenyl) (the data were taken from Table 3).

Therefore, it was reasoned that the fluorescence quantum yield Φ_f might correlate with the Stokes shift $\Delta \tilde{\nu}$. Indeed, a good linear correlation was found ($\Phi_f = -0.0092 \cdot \Delta \tilde{\nu}^* + 54.858$ [%]; R² = 0.84311; * $\tilde{\nu}$ is normalized to a dimensionless value), indicating that increased changes in the electronic structure, reflected by the considerable charge transfer in the vibrationally relaxed excited singlet state with increased polarity by enhanced donor-acceptor substitution, causes a decrease in the fluorescence quantum yield (Figure 6). This finding is in agreement with the energy gap law [20], i. e. the nonradiative decay of the excited state with increasing redshift of the emission bands.

Figure 6. Linear correlation plot of the fluorescence quantum yields Φ_f against the Stokes shifts $\Delta \tilde{\nu}$ (normalized) of compounds **6a** (R¹ = Ph, R³ = Ph), **6b** (R¹ = *p*-anisyl, R³ = Ph), **6e** (R¹ = *p*-NCC₆H₄, R³ = Ph), **6o** (R¹ = Ph, R³ = *p*-anisyl), **6s** (R¹ = Ph, R³ = *p*-NCC₆H₄), **6v** (R¹ = *p*-anisyl, R³ = *p*-anisyl), and **6x** (R¹ = *p*-NCC₆H₄, R³ = *p*-anisyl).

2.3. Calculated electronic structure

Since computations of solid state absorption properties are particularly difficult due to the combination of intermolecular interaction, crystal packing and ultimately aggregation, a qualitative understanding of the photophysical behavior of difluoro oxazaborinines in solution was sought in elucidating the electronic structure by calculating UV/vis absorption spectra at the TD DFT level of theory employing

Gaussian09 [21] (B3LYP functional [22] and Pople 6-311+G(d,p) basis set [23]). The computations were performed on the DFT optimized structures of compounds **6a** ($R^1 = R^2 = R^3 = Ph$), **6c** ($R^1 = p$ -tolyl, $R^2 = R^3 = Ph$), and **6o** ($R^1 = R^2 = Ph$, $R^3 = p$ -anisyl,) where experimental absorption spectra were recorded, in the electronic ground state applying the PCM model [24] with dichloromethane as a dielectric to model the solvent influence (Table 4).

Table 4. Experimental and TD-DFT calculated (B3LYP/6-311+G(d,p)) UV/Vis absorption maxima of the structures **6a**, **6c**, and **6o**, applying PCM with dichloromethane as a solvent.

	$\lambda_{ m max,abs}$ [nm]	$\lambda_{max,calcd}$ [nm]	Most dominant contributions	Oscillator strength
	$(\mathcal{E}[\mathrm{L} \mathrm{mol}^{-1} \mathrm{cm}^{-1}])^{[a]}$			
6a	253		Ć	
	360	368	HOMO \rightarrow LUMO (97 %)	0.6336
6c	367	371	HOMO \rightarrow LUMO (98 %)	0.8009
60	255 (10000)			
	345 (23000)	336	HOMO-1 \rightarrow LUMO (96 %)	0.6219
	363 (24000)	413	HOMO \rightarrow LUMO (99 %)	0.3723
			5	

[a] Recorded in dichloromethane, T = 293 K, $c(6) = 10^{-5}$ M.

The calculated spectra qualitatively reproduce the experimental data and as can be seen the longest wavelength absorption maxima are represented by HOMO-LUMO transitions, with the exception of structure **60**, where the experimentally determined longest wavelength band consists of a HOMO-1 to LUMO transition. The calculated longest wavelength maximum is found at 413 as a HOMO-LUMO transition. A closer inspection of the frontier molecular orbitals of structure **6a** reveals that the coefficient density in the HOMO is aligned the heuristically assigned chromophore axis (vide supra), i.e. including on the R¹ and R³ substituents (Figure 7). Interestingly, the substituent R² does not bear coefficient density in the HOMO, but in the LUMO. Therefore, a Franck-Condon transition can be assumed that leads to the S₁ state after relaxation the HOMO-LUMO transition in this mother system accounts for a partial charge transfer proceeding into this appending substituent.

Figure 7. DFT calculated HOMO (bottom) and LUMO (top) of structure 6a.

The qualitative substituent effect on the FMO energies of the selected difluoro oxazaborinines **6** was determined computationally by considering the HOMO-LUMO gap $\Delta E_{HOMO-LUMO}$ and the differences of the HOMO $\Delta E_{HOMO}(\mathbf{6a} - \mathbf{6})$ and LUMO energies $\Delta E_{LUMO}(\mathbf{6a} - \mathbf{6})$ to the mother chromophore **6a**. In detail the FMO energies of the *p*-anisyl donors **6b** (R¹ = *p*-anisyl, R² = R³ = Ph), **6h** (R¹ = R³ = Ph, R² = *p*-anisyl) and **6o** (R¹ = R² = Ph, R³ = *p*-anisyl), of the reference **6a** (R¹ = R² = R³ = Ph), of the *p*-cyanophenyl acceptors **6e** (R¹ = *p*-NCC₆H₄, R² = R³ = Ph), **6k** (R¹ = R³ = Ph, R² = *p*-NCC₆H₄), and **6s** (R¹ = R² = Ph, R³ = *p*-NCC₆H₄), as well as the donor-acceptor chromophore **6x** (R¹ = *p*-NCC₆H₄, R² = Ph, R³ = *p*-anisyl) were calculated (Table 5, Supp Inf Figure S1).

As can be seen by comparing the FMOs of the three *p*-anisyl donor chromophores **6b** ($\mathbb{R}^1 = p$ -anisyl), **6h** ($\mathbb{R}^2 = p$ -anisyl) and **6o** ($\mathbb{R}^3 = p$ -anisyl) with the mother system **6a** the donor rises the HOMO most when positioned at \mathbb{R}^3 , followed by \mathbb{R}^1 and only to a minor extend when positioned at \mathbb{R}^2 (Table 5, entries 1-3). The LUMO is risen most when the donor is positioned at \mathbb{R}^1 and only slightly at the two other positions.

Table 5. DFT calculated HOMO and LUMO energies, HOMO-LUMO gap $\Delta E_{HOMO-LUMO}$ and differences of the HOMO $\Delta E_{HOMO}(6a - 6)$ and LUMO energies $\Delta E_{LUMO}(6a - 6)$ of the difluoro oxazaborinines 6b, 6h, 6o, 6a, 6e, 6k, 6s, and 6x.

entry	structure	E _{HOMO}	E _{LUMO}	$\Delta E_{HOMO-LUMO}$	$\Delta E_{HOMO}(6a-6)$	$\Delta E_{LUMO}(6a-6)$
		[eV]	[eV]	[eV]	[eV]	[eV]
1	6b ($\mathbf{R}^1 = p$ -anisyl)	-6.067	-2.328	3.739	+0.265	+0.164
2	6h ($\mathbf{R}^2 = p$ -anisyl)	-6.249	-2.394	3.855	+0.083	+0.098
3	60 ($\mathbb{R}^3 = p$ -anisyl)	-5.909	-2.415	3.494	+0.423	+0.077
4	6a ($\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{P}\mathbf{h}$)	-6.332	-2.492	3.840	0	0
5	6e ($\mathbf{R}^1 = p$ -NCC ₆ H ₄),	-6.653	-3.002	3.651	- 0.321	- 0.510
6	6k ($R^2 = p$ -NCC ₆ H ₄)	-6.591	-2.892	3.699	- 0.259	- 0.400
7	6s ($R^3 = p$ -NCC ₆ H ₄)	-6.667	-2.856	4.081	- 0.335	- 0.364
8	6x ($\mathbf{R}^1 = p$ -NCC ₆ H ₄ , \mathbf{R}^3	-6.144	-2.933	3.211	+0.188	- 0.441
	= <i>p</i> -anisyl)					, 7

The HOMO-LUMO gap $\Delta E_{HOMO-LUMO}$ largely affected by the positioning of the HOMO, and, therefore, in this consanguineous series the donor placed at R^3 in structure **60** gives with 3.494 eV the smallest HOMO-LUMO gap. For the *p*-cyano phenyl acceptor the chromophores **6e** ($R^1 = p$ -NCC₆H₄), **6k** ($R^1 = R^3 = Ph$, $R^2 = p$ -NCC₆H₄), and **6s** ($R^3 = p$ -NCC₆H₄) the HOMO is lowered by 0.26 and 0.34 eV, i.e. in a narrow range (Table 5, entries 5-7). However, the effect on the LUMO spans a range from -0.36 to -0.51 eV upon variation the substituent position from R^1 over R^2 to R^3 . In this consanguineous series the LUMO energy determines the $\Delta E_{HOMO-LUMO}$ and here positioning at R¹ in structure **6e** causes the most redshifted gap. Hence, the positioning of the donor at R^3 and the acceptor at R^1 in structure 6x consequently leads to the lowest $\Delta E_{HOMO-LUMO}$ with 3.211eV (Table 5, entry 8). The considerable charge transfer character along the chromophore main axis of this computationally modelled HOMO-LUMO transition is additionally underlined by the electronic structure, where the coefficient density in the HOMO is localized in the central difluoro oxazaborinine core and the *p*-anisyl substituent at \mathbb{R}^3 . In contrast, the LUMO bears the coefficient density in the central difluoro oxazaborinine core and the pcyanophenyl moiety at R^1 (Figure 8). In essence the increase in polarity upon HOMO-LUMO excitation, representing the S_1 state, is also supported by the solid state emission spectrum, where compound 6x displays the most redshifted emission maximum of all synthesized compounds 6. Therefore, this semiempirical computational approach allows qualitatively predicting the photonic properties of trisubstituted difluoro oxazaborinines 6.

Figure 8. DFT calculated HOMO (bottom) and LUMO (top) of structure 6x.

Indeed, expanding the π -conjugation of the difluoro oxazaborinine can be easily accomplished by Sonogashira coupling of the iodide **6q** with phenylacetylene (**2a**) to give π -expanded difluoro oxazaborinine **6ad** in 92% yield (Scheme 3). The solid state fluorescence spectrum of compound **6ad** shows a maximum 595 nm with a solid state fluorescence quantum yield Φ_f of 3% with an excitation maximum of 433 nm. This allows now for redshifting the emission maximum even to orange and red solid state luminescence without further decreasing the solid state fluorescence quantum yield.

Scheme 3. Sonogashira coupling of 2,2-difluoro-3-(4-iodophenyl)-4,6-diphenyl-2*H*-1,3 λ^4 ,2 λ^4 -oxazaborinine (**6q**) with phenylacetylene (**2a**) furnishing the π -expanded difluoro oxazaborinine **6ad**.

3. Conclusion

In summary we have developed a novel diversity-oriented one-pot approach to trisubstituted difluoro oxazaborinines in the sense of a consecutive four-component synthesis starting from (hetero)aroylchlorides, terminal alkynes, anilines, and boron trifluoride etherate. In contrast to 1,3-dicarbonyl based syntheses of difluoro oxazaborinines this alkynylation-amination-cyclization is completely regioselective and allows the preparation of unsymmetrically decorated difluoro oxazaborinines. All representatives show only luminescence in the solid state, but not in solution. Therefore, photophysical and physical organic investigations were elaborated to give a general rationale of relevant transitions in the absorption spectra and the polar nature of the difluoro oxazaborinine core was correlated with the substitution pattern. In addition first DFT and TD DFT calculations guide the way to lower the HOMO-LUMO gap and thereby also the emission characteristics. Further studies to redshift the solid state emissions of these unusual solid state emitters by expanding the methodology are currently underway.

4. Experimental

4.1. General considerations

Reagents, catalysts, and solvents were purchased in reagent grade and used without further purification. Anhydrous 1,4-dioxane was obtained from a drying system (*MBraun system MB*-SPS-800). The reaction progress and the purification process were observed qualitatively by using TLC silica gel 60 F_{254} sheets obtained by *Merck* KGaA. The spots were detected with UV light at 254 and 365 nm and with aqueous potassium permanganate solution. Chemical shifts δ in the ¹H NMR and ¹³C NMR spectra are reported relative to CDCl₃ or d₆-DMSO. The assignments of quaternary C, CH, CH₂, and CH₃ signals were made by using DEPT-135 spectra. IR spectra were recorded with neat compounds under attenuated total reflection (ATR) and the intensities were characterized as strong (s), middle (m), and weak (w).

4.2. General procedure (GP) for the Four-component Synthesis of 2,2-Difluoro-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinines 6.

PdCl₂ (2.0 mg, 10 µmol) were placed in an oven-dried Schlenk tube with a magnetic stir bar under nitrogen, and 1,4-dioxane (2mL), acid chloride **1** (1.00 mmol), terminal alkyne **2** (1.00 mmol) and triethylamine (0.14 mL, 1.00 mmol) were successively added (for experimental details, see Table 6). The reaction mixture was stirred at room temp under nitrogen until complete conversion (monitored by TLC). Then, BF₃·OEt₂ (0.26 mL, 2.00 mmol) and primary amine **3** (2.00 mmol) was added to the reaction mixture, which was then stirred under nitrogen at 100 °C for 3 h. After cooling to room temp the mixture was poured into cold methanol (150 mL, cooled by an external NaCl/ice bath) and stirred for 15 min. If no precipitate was formed ice water was added to the solution until no further precipitate formed. The solid was collected by filtration and dried in vacuo overnight to give analytical pure 2,2difluoro-2*H*-1,3 λ^4 ,2 λ^4 -oxazaborinines **6** as yellow to brown solids.

Table	6.	Experimental	details	of	the	four-component s	synthesis	of	2,2-difluoro-2 <i>H</i> -1,3 λ^4 ,2 λ^4 -
oxazał	orini	nes 6 .							

entry	acid chloride 1	alkyne 2	primary amine 3	2,2-difluoro-2H-
				1,3λ ⁴ ,2λ ⁴ -
				oxazaborinines 5
				(yield)
1	115 µL (1.00 mmol)	112 μL (1.00 mmol)	183 µL (2.00 mmol)	253 mg (73%) of 6a
	of benzoyl chloride	of phenylacetylene	of aniline (3a)	
	(1a)	(2a)		
2^{a}	1.35 mL (10.0 mmol)	1.12 mL (10.0	1.83 mL (20.0 mmol)	2.42 g (64%) of 6b
	of <i>p</i> -methoxybenzoyl	mmol) of	of aniline (3a)	
	chloride (1b)	phenylacetylene (2a)		
3	132 µL (1.00 mmol)	112 µL (1.00 mmol)	183 µL (2.00 mmol)	224 mg (62%) of 6c
	of <i>p</i> -toluoyl chloride	of phenylacetylene	of aniline (3a)	
	(1c)	(2a)		
4	110 µL (1.00 mmol)	112 µL (1.00 mmol)	183 µL (2.00 mmol)	261 mg (74%) of 6d
	of 2-thienoyl chloride	of phenylacetylene	of aniline (3a)	
	(1d)	(2a)		
$5^{\rm a}$	1.66 g (10.0 mmol)	1.12 mL (10.0	1.83 mL (20.0 mmol)	0.98 g (26%) of 6e
	of <i>p</i> -cyanobenzoyl	mmol) of	of aniline (3a)	
	chloride (1e)	phenylacetylene (2a)		
6	186 mg (1.00 mmol)	112 µL (1.00 mmol)	183 µL (2.00 mmol)	204 mg (52%) of 6f
	of <i>p</i> -nitrobenzoyl	of phenylacetylene	of aniline (3a)	
	chloride (1f)	(2a)		
7	119 µL (1.00 mmol)	112 µL (1.00 mmol)	183 µL (2.00 mmol)	270 mg (74%) of 6g
	of o-fluorobenzoyl	of phenylacetylene	of aniline (3a)	
	chloride (1g)	(2a)		
8^{a}	1.15 mL (10.0 mmol)	1.32 g (10.0 mmol)	1.83 mL (20.0 mmol)	1.75 g (46%) of 6h
	of benzoyl chloride	of <i>p</i> -methoxy-	of aniline (3a)	

	(1a)	phenylacetylene (2b)		
9 ^a	1.15 mL (10.0 mmol)	1.27 mL (10.0	1.83 mL (20.0 mmol)	1.82 g (50%) of 6i
	of benzoyl chloride	mmol) of <i>p</i> -	of aniline (3a)	-
	$(\mathbf{1a})$	tolylacetylene (2c)		
10^{a}	1.15 mL (10.0 mmol)	0.95 mL (10.0	1.83 mL (20.0 mmol)	1.98 g (56%) of 6j
	of benzoyl chloride	mmol) of 2-	of aniline (3a)	
	$(\mathbf{\hat{1}a})$	thiophenvl-acetylene		
	()	(2d)		
11 ^a	1 15 mL (10.0 mmol)	1.27 g (10.0 mmol)	1.83 mL (20.0 mmol)	1 80 g (48%) of 6k
	of benzovl chloride	of <i>n</i> -cyano-	of aniline (3a)	
	(1a)	phenylacetylene (2e)	or unitile (eu)	
12	(10)	115 µL (1.00 mmol)	183 uL (2.00 mmol)	131 mg (40%) of 6
12	of bargovi ablarida	of here 1 $\text{vrs}(2f)$	of apiling $(3a)$	151 mg (4070) 01 01
		01 mex-1-yne (21)	of annue (3a)	
12	(1a)	115 u (1.00 mm 1)	102 ··· I (2.00 ········1)	150 mg (110/) of
15	$132 \mu L (1.00 \text{mmol})$	115 μ L (1.00 mmol)	$183 \mu\text{L} (2.00 \text{mmol})$	150 mg (44%) 01
	of <i>p</i> -toluoyl chloride	of hex-1-yne $(2f)$	of aniline (3a)	om
	(Ic)			
14"	1.15 mL (10.0 mmol)	1.12 mL (10.0	2.72 g (20.0 mmol)	195 mg (5%) of 6n
	of benzoyl chloride	mmol) of	of <i>p</i> - <i>N</i> , <i>N</i> -dimethyl	
	(1a)	phenylacetylene (2a)	phenylene diamine	
			(3b)	
15	115 μL (1.00 mmol)	112 μL (1.00 mmol)	246 mg (2.00 mmol)	230 mg (61%) of 60
	of benzoyl chloride	of phenylacetylene	of <i>p</i> -methoxyaniline	
	(1a)	(2a)	(3c)	
16^{a}	1.15 mL (10.0 mmol)	1.12 mL (10.0	2.55 g (20.0 mmol)	2.71 g (71%) of 6p
	of benzoyl chloride	mmol) of	of <i>p</i> -chloroaniline	
	(1a)	phenylacetylene (2a)	(3d)	
17^{a}	1.15 mL (10.0 mmol)	1.12 mL (10.0	4.38 g (20.0 mmol)	3.47 g (73%) of 6q
	of benzoyl chloride	mmol) of	of <i>p</i> -iodoaniline (3e)	
	(1a)	phenylacetylene (2a)	•	
18^{a}	1.15 mL (10.0 mmol)	1.12 mL (10.0	2.76 g (20.0 mmol)	1.07 g (27%) of 6r
	of benzoyl chloride	mmol) of	of <i>m</i> -nitroaniline (3f)	
	(1a)	phenylacetylene (2a)		
19 ^a	1.15 mL (10.0 mmol)	1.12 mL (10.0	2.36 g (20.0 mmol)	1.35 g (36%) of 6s
	of benzoyl chloride	mmol) of	of <i>p</i> -cyanoaniline	
	(1a)	phenylacetylene (2a)	(3 g)	
20^{a}	1.15 mL (10.0 mmol)	1.12 mL (10.0	2.46 mL (20.0 mmol)	1.92 g (51%) of 6t
	of benzovl chloride	mmol) of	of 2.6-	8 (11)
	(1a)	phenylacetylene (2a)	dimethylaniline (3h)	
21 ^a	1.15 mL (10.0 mmol)	1.12 mL (10.0	2.86 g (20.0 mmol)	2.88 g (73%) of 6u
	of benzovl chloride	mmol) of	of 1-naphthylamine	8 (111)
	(1a)	phenylacetylene (2a)	(3i)	
22^{a}	1.35 mL (10.0 mmol)	1.12 mL (10.0)	2.46 g (20.0 mmol)	2.82 g (69%) of 6v
	of <i>p</i> -methoxybenzoyl	mmol) of	of <i>p</i> -methoxyaniline	2102 8 (0) /0) 01 01
	chloride (1b)	nhenvlacetylene (2a)	(3c)	
23 ^a	1.10 mL (10.0 mmol)	1.12 mL (10.0)	2.46 g (20.0 mmol)	1 80 g (47%) of 6w
25	of 2-thienovl chloride	mmol) of	of <i>n</i> -methoxyaniline	1.00 g (1770) 01 0
	(1 d)	nhenvlacetvlene (2 9)		
24^{a}	(10.0 mmol)	1.12 mL (10.0)	2.46 g (20.0 mmol)	$1.85 \sigma (46\%)$ of 6 v
<i>4</i> 7	of <i>n</i> -cyanobenzovl	mmol) of	of <i>n</i> -methoxyaniline	1.05 g (+0/0) 01 UX
	chloride (1_0)	nhenvlacetvlene (? 9)	(3 e)	
25 ^a	1.15 mJ (10.0 mmol)	1 32 σ (10.0 mmol)	2.46 g (20.0 mmol)	$3.41 \text{ g} (8.4\%) \text{ of } 6_{\mathbf{W}}$
45	of henzovl chloride	of $n_{\rm rmethovy}$	$2.70 \pm (20.0 \text{ minor})$	J. TI 5 (07/0) 01 Uy
		nhenvlacetylena (7 b)		
	(1a)	phonylacetylelle (20)	(JU)	

26 ^a	1.10 mL (10.0 mmol)	0.95 mL (10.0	2.46 g (20.0 mmol)	2.39 g (66%) of 6z
	of 2-thienoyl chloride	mmol) of 2-thio-	of <i>p</i> -methoxyaniline	
	(1d)	phenylacetylene (2d)	(3c)	
27 ^b	1.15 mL (10.0 mmol)	1.12 mL (10.0	2.18 mL (20.0 mmol)	2.65 g (73%) of 6aa
	of benzoyl chloride	mmol) of	of benzylamine (3j)	
	(1a)	phenylacetylene (2a)		
28^{b}	1.15 mL (10.0 mmol)	1.12 mL (10.0	1.64 mL (20.0 mmol)	1.12 g (36%) of 6ab
	of benzoyl chloride	mmol) of	of <i>i</i> -propylamine (3k)	
	(1a)	phenylacetylene (2a)		
29 ^b	1.32 mL (10.0 mmol)	1.12 mL (10.0	2.18 mL (20.0 mmol)	2.79 g (74%) of 6ac
	of <i>p</i> -toluoyl chloride	mmol) of	of benzylamine (3j)	
	(1c)	phenylacetylene $(2a)$		

^aPerformed on 10 mmol scale with Pd(PPh₃)₂Cl₂ (14 mg, 20 µmol), CuI (7.0 mg, 40 µmol), THF (7 mL), triethylamine (1.40 mL, 10.0 mmol) (alkynylation step: room temp, 2 d); BF₃·OEt₂ (2.56 mL, 20.0 mmol) (amination-cyclization step: 65 °C, 3 h). ^bPerformed on 10 mmol scale with Pd(PPh₃)₂Cl₂ (14 mg, 20 µmol), CuI (7.0 mg, 40 µmol), THF (7 mL), triethylamine (1.40 mL, 10.0 mmol) (alkynylation step: room temp, 2 d); amination step: 65 °C, 3 h; BF₃·OEt₂ (2.56 mL, 20.0 mmol) (cyclization step: 65 °C, 3 h).

4.2.1. 2,2-Difluoro-3,4,6-triphenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6a)

According to the GP compound **6a** (253 mg, 73%) was obtained as a yellow solid, Mp 195 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.39 (s, 1 H), 7.11-7.22 (m, 5 H), 7.22-7.36 (m, 5 H), 7.43-7.60 (m, 3 H), 8.01-8.06 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 96,8 (CH), 126.9 (CH), 127.3 (CH), 127.7 (CH), 128.4 (CH), 128.6 (CH), 128.7, (CH), 128.7 (CH), 130.4 (CH), 132.8 (CH), 133.1 (C_{quat}), 134.9 (C_{quat}), 140.5 (C_{quat}), 170.6 (C_{quat}), 172.2 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -134.15 (q, ¹*J_{F-B}* = 14.2 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.46 (t, ¹*J_{B-F}* = 15.1 Hz). EI MS (*m*/*z* (%)): 347 ((M)⁺, 44), 180 ((C₁₃H₁₀N)⁺, 5), 105 ((C₇H₅O)⁺, 21), 77 ((C₆H₅)⁺, 28), 51 ((C₃H₂N)⁺, 8). IR: $\tilde{\nu}$ [cm⁻¹] = 1595 (w), 1568 (m), 1558 (m), 1476 (s), 1454 (m), 1443 (m), 1402 (m), 1358 (m), 1312 (w), 1287 (w), 1233 (w), 1153 (w), 1109 (s), 1076 (w), 1057 (m), 1022 (s), 997 (s), 976 (m), 930 (w), 912 (w), 868 (w), 839 (w), 806 (w), 779 (s), 762 (s), 727 (w), 691 (s), 658 (w), 631 (m), 619 (w). Anal. calcd. for C₂₁H₁₆BF₂NO (347.2): C 72.65, H 4.65, N 4.03; Found: C 72.68, H 4.76, N 3.90.

4.2.2. 2,2-Difluoro-6-(4-methoxyphenyl)-3,4-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6b)

According to the GP compound **6b** (2.42 g, 64%) was obtained as a yellow solid, Mp 191 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.89 (s, 3 H), 6.31 (s, 1 H), 6.94-7.00 (m, 2 H), 7.11-7.22 (m, 5 H), 7.22-7.37 (m, 5 H), 7.99-8.06 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 55.2 (CH₃), 95.8 (CH), 114.1 (CH), 125.4 (C_{quat}), 127.0 (CH), 127.1 (CH), 128.4 (CH), 128.6 (CH), 128.6 (CH), 129.9 (CH), 130.2 (CH), 135.2 (C_{quat}), 140.7 (C_{quat}), 163.6 (C_{quat}), 170.1 (C_{quat}), 172.0 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -

134.66 (q, ${}^{I}J_{F\cdot B} = 15.2$ Hz). ¹¹B NMR (CDCl₃, 96 MHz): $\delta 1.43$ (t, ${}^{I}J_{B\cdot F} = 15.4$ Hz). EI MS (*m*/*z* (%)): 377 ((M)⁺, 51), 362 ((M-CH₃)⁺, 6), 333 (6), 312 ((M-BF₂O)⁺, 5), 135 ((C₈H₇O₂)⁺, 28), 107 ((C₇H₇O)⁺, 5), 77 ((C₆H₅)⁺, 16). IR: $\tilde{\nu}$ [cm⁻¹] = 2995 (w), 2961 (w), 2945 (w), 2914 (w), 2849 (w), 1603 (m), 1393 (s), 1362 (m), 1308 (m), 1265 (s), 1234 (s), 1175 (s), 1152 (m), 1136 (m), 1117 (s), 1101 (s), 1072 (m), 1051 (m), 1018 (s), 997 (s), 974 (m), 947 (m), 928 (m), 912 (w), 858 (s), 841 (m), 822 (m), 798 (s), 764 (s), 723 (m), 721 (m), 692 (s), 675 (m), 637 (m), 617 (m). Anal. calcd. C₂₂H₁₈BF₂NO₂ (377.2): C 70.05, H 4.81, N 3.71; Found: C 69.96, H 4.84, N 3.64.

4.2.3. 2,2-Difluoro-3,4-diphenyl-6-(*p*-tolyl)-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6c)

According to the GP compound **6c** (224 mg, 62%) was obtained as a yellow solid, Mp 214 °C. ¹H NMR (CDCl₃, 600 MHz): δ 2.42 (s, 3 H), 6.36 (s, 1 H), 7.12-7.18 (m, 3 H), 7.18-7.21 (m, 2 H), 7.21-7.23 (m, 1 H), 7.24 (m, 2 H), 7.25-7.29 (m, 3 H), 7.30-7.33 (m, 1 H), 7.92-7.95 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 21.8 (CH₃), 96.6 (CH), 127.1 (CH), 127.3 (CH), 127.9 (CH), 128.6 (CH), 128.7 (CH), 128.8 (CH), 129.7 (CH), 130.5 (CH), 130.5 (C_{quar}), 135.2 (C_{quar}), 140.8 (C_{quar}), 143.9 (C_{quar}), 170.6 (C_{quar}), 172.5 (C_{quar}). ¹⁹F NMR (CDCl₃, 565 MHz): δ -134.26 (q, ^{*I*}*J*_{*F*-*B*} = 14.7 Hz). ¹¹B NMR (CDCl₃, 193 MHz): δ 1.46 (t, ^{*I*}*J*_{*B*-*F*} = 15.2 Hz). EI MS (*m*/*z* (%)): 361 ((M)⁺, 55), 119 ((C₈H₇O)⁺, 10), 91 ((C₇H₇)⁺, 5), 77 ((C₆H₅)⁺, 5), 40 ((C₃H₄)⁺, 5). R: $\tilde{\nu}$ [cm⁻¹] = 1603 (w), 1589 (w), 1491 (s), 1452 (m), 1425 (m), 1391 (m), 1364 (m), 1315 (w), 1296 (w), 1248 (w), 1231 (w), 1215 (w), 1192 (m), 1152 (w), 1099 (m), 1074 (w), 1057 (m), 1018 (s), 970 (m), 957 (w), 916 (w), 887 (w), 862 (w), 835 (m), 795 (s), 764 (s), 731 (w), 694 (s), 665 (w). Calcd. for C₂₂H₁₈BF₂NO (361.2): C 73.16, H 5.02, N 3.88; Found: C 72.98, H 5.01, N 3.73.

4.2.4. 2,2-Difluoro-3,4-diphenyl-6-(thiophen-2-yl)-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6d)

According to the GP and after recrystallization compound **6d** (261 mg, 74%) was obtained as a yellow solid, Mp 268 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.23 (s, 1 H), 7.09-7.13 (m, 1 H), 7.14 (s, 1 H), 7.15-7.18 (m, 1 H), 7.18-7.20 (m, 1 H), 7.20-7.36 (m, 7 H), 7.64 (dd, J = 5.0 Hz, J = 1.2 Hz, 1 H), 7.86 (dd, J = 3.8 Hz, J = 1.2 Hz, 1 H). ¹³C NMR (CDCl₃, 75 MHz): δ 96.2 (CH), 127.0 (CH), 127.2 (CH), 128.4 (CH), 128.6 (CH), 128.6 (CH), 128.7 (CH), 130.4 (CH), 131.4 (CH), 132.8 (CH), 137.9 (C_{quat}), 140.6 (C_{quat}), 154.6 (C_{quat}), 166.9 (C_{quat}), 170.2 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -134.96 (q, ¹ J_{F-B}

= 15.2 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.23 (t, ¹*J*_{*B-F*} = 15.1 Hz). EI MS (*m*/*z* (%)): 353 ((M)⁺, 47), 288 ((M-BF₂O)⁺, 100), 180 ((C₁₃H₁₀N)⁺, 6), 111 ((C₅H₃OS)⁺, 46), 97 (12), 83 ((C₄H₃S)⁺, 11), 77 ((C₆H₅)⁺, 23), 71 ((C₃H₃S)⁺, 10), 57 (13), 55 (8). IR: $\tilde{\nu}$ [cm⁻¹] = 3109 (w), 3096 (w), 2990 (w), 2963 (w), 2901 (w), 1601 (w), 1543 (w), 1526 (m), 1491 (s), 1477 (m), 1443 (m), 1412 (m), 1377 (m), 1329 (m), 1314 (m), 1285 (m), 1261 (w), 1229 (m), 1153 (m), 1136 (m), 1121 (m), 1074 (s), 1055 (s), 1015 (s), 998 (s), 978 (m), 916 (m), 903 (w), 880 (w), 862 (m), 851 (m), 841 (m), 797 (s), 785 (m), 762 (s), 748 (m), 726 (s), 696 (s), 681 (m), 654 (m), 619 (w). Anal. calcd. for C₁₉H₁₄BF₂NOS (353.2): C 64.61, H 4.00, N 3.97, S 9.08; Found: C 64.32, H 4.08, N 3.86, S 8.92.

4.2.5. 4-(2,2-Difluoro-3,4-diphenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinin-6-yl)benzonitrile (6e)

According to the GP and after recrystallization compound **6e** (1.06 g, 34%) was obtained as a yellow solid, Mp 244 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.44 (s, 1 H), 7.06-7.44 (m, 10 H), 7.72-7.84 (m, 2 H), 8.07-8.20 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 98.2 (CH), 115.7 (C_{quat}), 118.0 (C_{quat}), 126.7 (CH), 127.7 (CH), 127.9 (CH), 128.5 (CH), 128.6 (CH), 128.8 (CH), 130.9 (CH), 132.4 (CH), 134.3 (C_{quat}), 137.2 (C_{quat}), 140.1 (C_{quat}), 169.0 (C_{quat}), 171.1 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -133.71 (q, ^{*i*}J_{*F*·B} = 13.9 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.37 (t, ^{*i*}J_{*B*·F} = 14.4 Hz). EI MS (*m*/*z* (%)): 372 ((M)⁺, 50), 130 ((C₈H₄NO)⁺, 22), 77 ((C₆H₅)⁺, 14). IR: $\tilde{\nu}$ [cm⁻¹] = 3127 (w), 3065 (w), 2230 (m), 1601 (m), 1578 (m), 1558 (m), 1487 (s), 1476 (s), 1435 (m), 1393 (m), 1373 (w), 1352 (m), 1323 (m), 1308 (w), 1290 (w), 1236 (m), 1221 (w), 1179 (m), 1140 (m), 1101 (m), 1063 (m), 1026 (s), 1015 (m), 997 (m), 972 (m), 957 (w), 937 (w), 918 (w), 907 (w), 868 (w), 853 (m), 810 (s), 768 (s), 756 (s), 741 (m), 723 (m), 696 (s), 667 (m), 646 (m), 615 (m). Anal. calcd. for C₂₂H₁₅BF₂N₂O (372.2): C 71.00, H 4.06, N 7.53; Found: C 71.18, H 4.03, N 7.54.

4.2.6. 2,2-Difluoro-6-(4-nitrophenyl)-3,4-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6f)

According to the GP and after recrystallization compound **6f** (204 mg, 52%) was obtained as a brown solid, Mp 247 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.47 (s, 1 H), 7.15 (dd, J = 7.7 Hz, J = 2.1 Hz, 2 H), 7.19-7.28 (m, 6 H), 7.28-7.33 (m, 1 H), 7.33-7.40 (m, 1 H), 8.15-8.23 (m, 2 H), 8.29-8.36 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 98.6 (CH), 123.9 (CH), 126.7 (CH), 127.8 (CH), 128.5 (CH), 128.5 (CH), 128.7 (CH), 128.9 (CH), 130.9 (CH), 134.3 (C_{quat}), 138.9 (C_{quat}), 140.1 (C_{quat}), 150.0 (C_{quat}),

168.6 (C_{quat}), 171.2 (C_{quat}).¹⁹F NMR (CDCl₃, 282 MHz): δ -133.63 (q, ¹*J*_{*F*-B} = 13.7 Hz).¹¹B NMR (CDCl₃, 96 MHz): δ 1.39 (t, ¹*J*_{*B*-F} = 14.4 Hz). EI MS (*m*/*z* (%)): 392 ((M)⁺, 68), 375 (8), 346 ((M-NO₂)⁺, 16), 180 ((C₁₃H₁₀N)⁺, 12), 150 ((C₇H₄NO₃)⁺, 21), 104 ((C₇H₄O)⁺, 16), 77 ((C₆H₅)⁺, 29). IR: $\tilde{\nu}$ [cm⁻¹] = 2918 (w), 2857 (w), 1587 (m), 1574 (m), 1558 (m), 1522 (s), 1501 (s), 1481 (s), 1466 (s), 1456 (m), 1437 (m), 1420 (w), 1391 (w), 1341 (s), 1321 (m), 1298 (w), 1240 (w), 1229 (w), 1144 (m), 1128 (m), 1099 (m), 1076 (w), 1061 (m), 1024 (s), 997 (m), 972 (m), 962 (w), 937 (w), 920 (w), 908 (w), 849 (m), 812 (m), 802 (m), 758 (s), 733 (m), 714 (m), 698 (s), 669 (w), 658 (w), 635 (w). Anal. calcd. for C₂₁H₁₅BF₂N₂O₃ (392.2): C 64.32, H 3.86, N 7.14; Found: C 64.24, H 3.92, N 7.10.

4.2.7. 2,2-Difluoro-6-(2-fluorophenyl)-3,4-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6g)

According to the GP compound **6g** (270 mg, 74%) was obtained as a yellow solid, Mp 177 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.64 (s,1H), 7.11-7.24 (m, 6 H), 7.24-7.28 (m, 4 H), 7.28-7.37 (m, 2 H), 7.51 (m, 1 H), 8.21 (td, J = 7.9 Hz, J = 1.9 Hz, 1 H). ¹³C NMR (CDCl₃, 151 MHz): δ 101.9 (d, ⁴ $J_{C-F} = 17.6$ Hz, CH), 116.5 (d, ² $J_{C-F} = 23.4$ Hz, CH), 121.8 (d, ² $J_{C-F} = 10.3$ Hz, C_{quat}), 124.8 (d, ⁴ $J_{C-F} = 3.5$ Hz, CH), 126.9 (CH), 127.5 (CH), 128.5 (CH), 128.8 (CH), 128.8 (CH), 128.8 (CH), 130.7 (d, ³ $J_{C-F} = 32.7$ Hz, CH), 134.0 (d, ³ $J_{C-F} = 9.4$ Hz, CH), 134.7 (C_{quat}), 140.4 (C_{quat}), 161.7 (d, ¹ $J_{C-F} = 256.2$ Hz, C_{quat}), 166.8 (d, ⁵ $J_{C-F} = 3.5$ Hz, C_{quat}), 171.1 (C_{quat}). ¹⁹F NMR (CDCl₃, 565 MHz): δ -134.27 (q, ¹ $J_{F-B} = 14.6$ Hz), -108.77 (s). ¹¹B NMR (CDCl₃, 193 MHz): δ 1.33 (t, ¹ $J_{E-F} = 14.7$ Hz). EI MS (m/z (%)): 365 ((M)⁴, 64), 346 ((C₂₁H₁₅BF₂NO)⁴, 100), 297 (15), 269 ((C₆H₄F)⁺, 17), 180 ((C₁₂H₁₀N)⁺, 11), 172 ((C₆H₄BF₃O)⁺, 11), 139 (19), 123 ((C₇H₄FO)⁺, 75), 77 ((C₆H₄S)⁺, 32), 51 ((C₃HN)⁺, 19). IR: $\tilde{\nu}$ [cm⁻¹] = 1597 (m), 1572 (m), 1555 (w), 1516 (s), 1506 (s), 1489 (s), 1443 (w), 1435 (w), 1412 (m), 1387 (w), 1352 (m), 1318 (w), 1302 (w), 1267 (w), 1229 (w), 821 (w), 824 (w), 814 (w), 766 (s), 746 (m), 723 (w), 692 (s), 667 (m), 650 (w), 633 (w). Anal. calcd. for C₂₁H₁₅BF₃NO (365.2): C 69.07, H 4.14, N 3.84; Found: C 68.89, H 3.96, N 3.72.

4.2.8. 2,2-Difluoro-4-(4-methoxyphenyl)-3,6-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6h)

According to the GP compound **6h** (1.75 g, 46%) was obtained as a yellow solid, Mp 150 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.77 (s, 3 H), 6.39 (s, 1 H), 6.70-6.83 (m, 2 H), 7.10-7.30 (m, 8 H), 7.42-

7.60 (m, 2 H), 7.97-8.10 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 55.3 (CH₃), 96.9 (CH), 113.9 (CH), 126.9 (CH), 126.9 (C_{quat}), 127.1 (CH), 127.6 (CH), 128.7 (CH), 128.8 (CH), 130.8 (CH), 132.6 (CH), 133.3 (C_{quat}), 140.9 (C_{quat}), 161.3 (C_{quat}), 169.9 (C_{quat}), 171.6 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -134.73 (q, ¹*J*_{*F*-*B*} = 15.2 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.47 (t, ¹*J*_{*B*-*F*} = 15.2 Hz). EI MS (*m*/*z* (%)): 378 ((M+H)⁺, 10), 377 ((M)⁺, 54), 105 ((C₇H₅O)⁺, 16), 77 ((C₆H₅)⁺, 16). IR: $\tilde{\nu}$ [cm⁻¹] = 1597 (m), 1558 (m), 1501 (m), 1483 (s), 1460 (m), 1418 (m), 1400 (m), 1391 (m), 1358 (m), 1304 (m), 1261 (m), 1240 (m), 1231 (m), 1177 (m), 1138 (m), 1117 (s), 1101 (m), 1078 (m), 1001 (m), 976 (m), 957 (w), 928 (m), 864 (w), 839 (m), 802 (m), 775 (s), 754 (m), 721 (m), 689 (s), 669 (m), 640 (m). Anal. calcd. for C₂₂H₁₈BF₂NO₂ (377.2): C 70.05, H 4.81, N 3.71; Found: C 70.07, H 4.89, N 3.60.

4.2.9. 2,2-Difluoro-3,6-diphenyl-4-(*p*-tolyl)-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6i)

According to the GP compound **6i** (1.82 g, 50%) was obtained as a yellow solid, Mp 212 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.32 (s, 3 H), 6.41 (s, 1 H), 7.01-7.12 (m, 2 H), 7.11-7.33 (m, 7 H), 7.41-7.63 (m, 3 H), 7.96-8.12 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 21.4 (CH₃), 96.9 (CH), 126.9 (CH), 127.2 (CH), 127.6 (CH), 128.7 (CH), 128.7 (CH), 128.7 (CH), 129.1 (CH), 132.0 (C_{qual}), 132.6 (CH), 133.2 (C_{qual}), 140.7 (C_{qual}), 141.1 (C_{qual}), 170.6 (C_{qual}), 171.8 (C_{qual}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -134.43 (q, ¹*J_{F-B}* = 15.2 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.46 (t, ¹*J_{B-F}* = 15.2 Hz). EI MS (*m*/*z* (%)): 361 ((M)⁺, 50), 360 ((M-H)⁺, 100), 313 (15), 298 (15), 236 (17), 208 ((C₁₀H₉BF₂NO)⁺, 41), 193 ((C₉H₆BF₂NO)⁺, 9), 105 ((C₇H₅O)⁺, 26), 77((C₆H₃)⁺, 26). IR: $\tilde{\nu}$ [cm⁻¹] = 1593 (m), 1566 (m), 1485 (s), 1470 (m), 1452 (m), 1404 (m), 1358 (m), 1309 (w), 1138 (m), 1117 (m), 1105 (m), 1053 (m), 1022 (s), 1001 (m), 974 (m), 775 (s), 756 (s), 691 (s). Anal. calcd. for C₂₂H₁₈BF₂NO (361.2): C 73.16, H 5.02, N 3.88; Found: C 73.27, H 5.19, N 3.93.

4.2.10. 2,2-Difluoro-3,6-diphenyl-4-(thiophen-2-yl)-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6j)

According to the GP compound **6j** (1.98 g, 56%) was obtained as a brown solid, Mp 192 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.63 (s, 1 H), 6.97 (dd, J = 5.0 Hz, J = 3.9 Hz, 1 H), 7.20-7.60 (m, 10 H), 8.00-8.08 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 95.3 (CH), 127.3 (CH), 127.5 (CH), 127.5 (CH), 128.4 (CH), 128.7 (CH), 129.4 (CH), 132.6 (CH), 133.4 (CH), 133.4 (C_{quat}), 134.1 (CH), 135.1 (C_{quat}), 140.4 (C_{quat}), 161.9 (C_{quat}), 171.4 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -135.80 (q, ¹ $J_{F-B} = 14.4$ Hz). ¹¹B

NMR (CDCl₃, 96 MHz): $\delta 1.33$ (t, ${}^{1}J_{B-F} = 14.6$ Hz). EI MS (m/z (%)): 354 ((M+H)⁺, 14), 353 ((M)⁺, 57), 105 ((C₇H₅)⁺, 19), 77 ((C₆H₅)⁺, 24). IR: $\tilde{\nu}$ [cm⁻¹] = 1605 (w), 1593 (w), 1570 (w), 1518 (m), 1489 (m), 1449 (w), 1400 (w), 1373 (w), 1352 (w), 1340 (w), 1309 (w), 1292 (w), 1244 (w), 1204 (w), 1178 (w), 1157 (w), 1096 (m), 1080 (m), 1072 (m), 1059 (m), 1018 (m), 1001 (m), 972 (w), 910 (w), 895 (w), 885 (w), 858 (w), 797 (w), 779 (w), 762 (m), 731 (m), 694 (s), 658 (w), 642 (w). Anal. calcd. for C₁₉H₁₄BF₂NOS (353.2): C 64.61, H 4.00, N 3.97, S 9.08; Found: C 64.39, H 3.99, N 3.83, S 9.08.

4.2.11. 4-(2,2-Difluoro-3,6-diphenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinin-4-yl)benzonitrile (6k)

According to the GP compound **6k** (1.80 g, 48%) was obtained as a yellow solid, Mp 242 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.35 (s, 1 H), 7.13 (dd, J = 7.7 Hz, J = 2.1 Hz, 2 H), 7.20-7.29 (m, 3 H), 7.35-7.42 (m, 2 H), 7.47-7.55 (m, 2 H), 7.56-7.64 (m, 3 H), 8.00-8.08 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 96.2 (CH), 114.1 (C_{quat}), 117.5 (C_{quat}), 126.8 (CH), 127.9 (CH), 127.9 (CH), 128.9 (CH), 129.0 (CH), 129.2 (CH), 132.2 (CH), 132.6 (C_{quat}), 133.4 (CH), 139.2 (C_{quat}), 139.8 (C_{quat}), 168.6 (C_{quat}), 173.6(C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -133.57 (q, ^{*I*}*J_{F-B}* = 13.7 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.36 (t, ^{*I*}*J_{B-F}* = 14.4 Hz). MALDI (*m*/*z* (%)): 353 ((M-F)⁺). IR: $\tilde{\nu}$ [cm⁻¹] = 3132 (w), 3102 (w), 3071 (w), 2228 (m), 1614 (m), 1601 (m), 1574 (m), 1558 (m), 1508 (s), 1487 (m), 1476 (m), 1456 (m), 1404 (m), 1358 (m), 1344 (m), 1314 (m), 1294 (m), 961 (m), 924 (m), 908 (w), 835 (m), 822 (m), 808 (m), 768 (s), 721 (m), 706 (m), 691 (s), 673 (m), 635 (m), 621 (m). Anal. calcd. for C₂₂H₁₅BF₂N₂O (372.2): C 71.00, H 4.06, N 7.53; Found: C 70.87, H 3.90, N 7.40.

4.2.12. 4-Butyl-2,2-difluoro-3,6-diphenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (61)

According to the GP compound **6I** (131 mg, 40%) was obtained as a beige solid, Mp 127 °C. ¹H NMR (CDCl₃, 300 MHz): δ 0.81 (t, *J* = 7.3 Hz, 3 H), 1.19-1.33 (m, 2 H), 1.47-1.62 (m, 2 H), 2.21-2.42 (m, 2 H), 6.23 (s, 1 H), 7.23-7.33 (m, 2 H), 7.36-7.58 (m, 6 H), 7.94-8.06 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 13.5 (CH₃), 22.4 (CH₂), 29.9 (CH₂), 33.7 (CH₂), 94.2 (CH), 126.4 (CH), 127.4 (CH), 128.1 (CH), 128.6 (CH), 129.2 (CH), 132.3 (CH), 133.3 (C_{quat}), 139.4 (C_{quat}), 170.9 (C_{quat}), 175.4 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -134.91 (q, ^{*I*}*J*_{*F-B*} = 14.8 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.08 (t, ^{*I*}*J*_{*B-F*} = 15.0 Hz). EI MS (*m*/*z* (%)): 327 ((M)⁺, 23), 284 ((M-C₃H₇)⁺, 100), 262 (9), 220 (8), 105 ((C₇H₅O)⁺,

57), 77 ((C_6H_5)⁺, 22). IR: $\tilde{\nu}$ [cm⁻¹] = 2963 (w), 2934 (w), 2866 (w), 1607 (w), 1574 (w), 1514 (s), 1487 (s), 1456 (m), 1410 (m), 1350 (w), 1312 (w), 1287 (w), 1260 (w), 1221 (w), 1184 (w), 1121 (m), 1069 (m), 1045 (m), 1026 (m), 999 (m), 978 (m), 966 (w), 932 (w), 907 (w), 897 (w), 876 (w), 860 (w), 851 (w), 833 (w), 808 (w), 773 (m), 764 (m), 708 (m), 696 (s), 667 (w), 640 (w). Anal. calcd. for $C_{19}H_{20}BF_2NO$ (327.2): C 69.75, H 6.16, N 4.28; Found: C 69.79, H 6.24, N 4.27.

4.2.13. 4-*n*-Butyl-2,2-difluoro-3-phenyl-6-(*p*-tolyl)-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6m)

According to the GP compound **6m** (150 mg, 44%) was obtained as a colorless solid, Mp 135 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta 0.80$ (t, J = 7.3 Hz, 3 H), 1.26 (dt, J = 14.8 Hz, J = 7.4 Hz, 2 H), 1.45-1.68 (m, 2 H), 2.22-2.38 (m, 2 H), 2.42 (s, 3 H), 6.20 (s, 1 H), 7.20-7.34 (m, 4 H), 7.33-7.56 (m, 3 H), 7.85-7.97 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): $\delta 13.5$ (CH₃), 21.6 (CH₃), 22.4 (CH₂), 30.0 (CH₂), 33.7 (CH₂), 93.7 (CH), 126.5 (CH), 127.4 (CH), 128.1 (CH), 129.1 (CH), 129.4 (CH), 130.5 (C_{quat}), 139.5 (C_{quat}), 143.1 (C_{quat}), 171.1 (C_{quat}), 175.1 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): $\delta -135.04$ (q, ${}^{I}J_{F.B} = 14.6$ Hz). ¹¹B NMR (CDCl₃, 96 MHz): $\delta 1.08$ (t, ${}^{I}J_{B\cdot F} = 15.2$ Hz). EI MS (m/z (%)): 341 ((M)⁺, 24), 298 ((M-C₃H₇)⁺, 100), 284 ((M-C₄H₉)⁺, 20), 119 ((C₈H₇O)⁺, 68), 91 ((C₆H₅N)⁺, 29), 77 ((C₆H₅)⁺, 14). IR: $\tilde{\nu}$ [cm⁻¹] = 2955 (w), 2930 (w), 2874 (w), 2864 (w), 1609 (m), 1570 (w), 1494 (s), 1491 (s), 1466 (m), 1542 (m), 1431 (m), 1395 (m), 1354 (m), 1315 (w), 1283 (w), 1261 (w), 1227 (m), 1200 (m), 1190 (m), 1117 (s), 1070 (s), 1028 (s), 1020 (s), 982 (s), 958 (m), 924 (m), 910 (m), 902 (m), 881 (m), 839 (m), 816 (s), 764 (m), 748 (m), 735 (m), 694 (s), 669 (m). Anal. calcd. for C₂₀H₂₂BF₂NO (341.2): C 70.40, H 6.50, N 4.11; Found: C 70.20, H 6.61, N 4.03.

4.2.14. 4-(2,2-Difluoro-4,6-diphenyl-2*H*-1,3λ⁴,2λ⁴-oxazaborinin-3-yl)-*N*,*N*-dimethylaniline (6n) According to the GP and after three recrystallizations and hot filtration compound 6n (195 mg, 5%) was obtained as an orange solid, Mp 260 °C (dec.). ¹H NMR ((CD₃)₂SO, 600 MHz, 353 K): δ 2.86 (s, 6 H), 6.52-6.61 (m, 2 H), 6.63 (s, 1 H), 6.89-6.98 (m, 2 H), 7.30-7.43 (m, 5 H), 7.56 (q, *J* = 7.8 Hz, *J* = 6.4 Hz, 2 H), 7.59-7.66 (m, 1 H), 8.05-8.14 (m, 2 H). ¹³C NMR ((CD₃)₂SO, 151 MHz, 353 K): δ 96.8 (CH), 111.3 (CH₃), 126.5 (CH), 126.8 (CH), 126.9 (CH), 127.9 (CH), 128.2 (CH), 128.5 (CH), 128.8 (C_{quat}), 129.8 (CH), 132.2 (CH), 132.6 (C_{quat}), 134.6 (C_{quat}), 148.8 (C_{quat}), 169.4 (C_{quat}), 169.8 (C_{quat}). ¹⁹F NMR ((CD₃)₂SO, 565 MHz): δ -132.27 (q, ¹*J*_{*F*:*B*} = 17.7 Hz). ¹¹B NMR ((CD₃)₂SO, 193 MHz): δ

1.27 (t, ${}^{1}J_{B-F} = 15.0 \text{ Hz}$). EI MS (*m*/*z* (%)): 390 ((M⁺), 100), 342 (19), 105 ((C₇H₅O)⁺, 35), 77 ((C₆H₅)⁺, 16). IR: $\tilde{\nu}$ [cm⁻¹] = 3003 (w), 2889 (w), 2806 (w), 1697 (w), 1608 (m), 1574 (m), 1508 (m), 1479 (m), 1445 (m), 1410 (m), 1398 (m), 1344 (m), 1312 (m), 1288 (m), 1236 (m), 1225 (m), 1192 (m), 1163 (m), 1101 (s), 1074 (m), 1045 (s), 1013 (m), 999 (m), 976 (m), 926 (m), 912 (m), 851 (m), 822 (m), 808 (m), 795 (m), 773 (s), 756 (m), 735 (m), 719 (m), 694 (s), 681 (m), 667 (m), 627 (m). Anal. calcd. for C₂₃H₂₁BF₂N₂O (390.2): C 70.79, H 5.42, N 7.18; Found: C 71.08, H 5.59, N 7.28.

4.2.15. 2,2-Difluoro-3-(4-methoxyphenyl)-4,6-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (60)

According to the GP compound **60** (230 mg, 61%) was obtained as a yellow solid, Mp 258 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.73 (s, 3 H), 6.37 (s, 1 H), 6.68-6.76 (m, 2 H), 7.02-7.11 (m, 2 H), 7.21-7.37 (m, 5 H), 7.40-7.60 (m, 3 H), 7.99-8.08 (m, 2 H). ¹³C NMR (CDCl₃, 150 MHz): δ 55.3 (CH₃), 96.8 (CH), 114.0 (CH), 127.6 (CH), 127.9 (CH), 128.5 (CH), 128.6 (CH), 128.7 (CH), 130.3 (CH), 132.7 (CH), 133.2 (C_{quat}), 133.4 (C_{quat}), 135.1 (C_{quat}), 158.5 (C_{quat}), 170.4 (C_{quat}), 171.8 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -134.55 (q, ¹*J_{F-B}* = 14.8 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.42 (t, ¹*J_{B-F}* = 15.0 Hz). EI MS (*m*/*z* (%)): 377 ((M)⁺, 66), 105 ((C₇H₅O⁺, 31), 77 ((C₆H₅)⁺, 13). IR: $\tilde{\nu}$ [cm⁻¹] = 3013 (w), 2970 (w), 2936 (w), 2841 (w), 1609 (m), 1574 (m), 1560 (s), 1512 (s), 1506 (s), 1483 (s), 1460 (m), 1447 (m), 1410 (m), 1352 (m), 1314 (m), 1294 (m), 1248 (s), 1229 (m), 1159 (m), 1140 (m), 1107 (s), 1101 (s), 1065 (s), 1026 (s), 1015 (m), 1001 (m), 976 (m), 918 (m), 868 (m), 837 (m), 818 (m), 793 (m), 783 (m), 768 (s), 721 (m), 689 (s), 629 (m), 617 (m). Anal. calcd. for C₂₂H₁₈BF₂NO₂ (377.2): C 70.05, H 4.81, N 3.71; Found: C 69.78, H 4.80, N 3.58.

4.2.16. 3-(4-Chlorophenyl)-2,2-difluoro-4,6-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6p)

According to the GP compound **6p** (2.71 g, 71%) was obtained as a beige solid, Mp 257 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.42 (s, 1 H), 7.06-7.14 (m, 2 H), 7.17-7.42 (m, 7 H), 7.45-7.54 (m, 2 H), 7.54-7.62 (m, 1 H), 8.02-8.10 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 97.0 (CH), 127.8 (CH), 128.2 (CH), 128.5 (CH), 128.7 (CH), 128.8 (CH), 128.9 (CH), 130.7 (CH), 132.9 (C_{quat}), 133.0 (CH), 133.2 (C_{quat}), 134.6 (C_{quat}), 139.1 (C_{quat}), 170.8 (C_{quat}), 172.7 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -133.99 (q, ¹*J_{F-B}* = 14.8 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.39 (t, ¹*J_{B-F}* = 15.1 Hz). EI MS (*m*/*z* (%)): 381 ((³⁷Cl-M)⁺, 58), 379 ((³⁵Cl-M)⁺, 23) 105 ((C₇H₅O)⁺, 27), 77 ((C₆H₅)⁺, 13). IR: $\tilde{\nu}$ [cm⁻¹] = 3130 (w), 1608 (m), 1572

(m), 1510 (s), 1489 (s), 1458 (m), 1447 (m), 1416 (w), 1402 (w), 1354 (m), 1314 (w), 1296 (w), 1234
(w), 1186 (w), 1186 (w), 1109 (m), 1090 (m), 1067 (m), 1038 (m), 1018 (m), 1001 (m), 978 (m), 970
(w), 951 (w), 914 (w), 837 (m), 795 (w), 781 (m), 768 (s), 745 (w), 714 (m), 692 (s), 664 (m), 615
(m). Anal. calcd. for C₂₁H₁₅BClF₂NO (381.6): C 66.09, H 3.96, N 3.67; Found: C 65.90, H 4.21, N 3.52.

4.2.17. 2,2-Difluoro-3-(4-iodophenyl)-4,6-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6q)

According to the GP compound **6q** (3.47 g, 73%) was obtained as a green solid, Mp 230 °C. ¹H NMR (CDCl₃, 600 MHz): δ 6.43 (s, 1 H), 6.87-6.97 (m, 2 H), 7.21-7.45 (m, 5 H), 7.45-7.63 (m, 5 H), 8.01-8.12 (m, 2 H). ¹³C NMR (CDCl₃, 151 MHz): δ 92.7 (C_{quat}), 97.1 (CH), 97.1 (CH), 127.8 (CH), 128.6 (CH), 128.7 (CH), 128.8 (CH), 130.8 (CH), 132.9 (C_{quat}), 133.0 (CH), 134.6 (C_{quat}), 137.9 (CH), 140.4 (C_{quat}), 170.6 (C_{quat}), 172.8 (C_{quat}). ¹⁹F NMR (CDCl₃, 565 MHz): δ -134.00 (q, ^{*I*}*J*_{*F*-*B*} = 14.8 Hz). ¹¹B NMR (CDCl₃, 193 MHz): δ 1.36 (t, ^{*I*}*J*_{*B*-*F*} = 15.0 Hz). EI MS (*m*/*z* (%)): 473 ((M)⁺, 64), 345 ((C₂₁H₁₆BF₂NO)⁺, 17), 105 ((C₇H₅O)⁺, 17). IR: $\tilde{\nu}$ [cm⁻¹] = 3067 (w), 2990 (w), 2972 (w), 2901 (w), 2884 (w), 1614 (w), 1601 (w), 1574 (w), 1558 (w), 1508 (m), 1487 (m), 1450 (m), 1406 (m), 1395 (m), 1358 (m), 1342 (w), 1314 (w), 1294 (w), 978 (m), 961 (w), 934 (w), 924 (w), 908 (w), 860 (w), 835 (m), 808 (m), 768 (m), 706 (m), 691 (s), 669 (w), 635 (w), 621 (m). Anal. calcd. for C₂₁H₁₅BF₂INO (473.1): C 53.32, H 3.20, N 2.96 Found: C 53.37, H 3.14, N 2.85.

4.2.18. 2,2-Difluoro-3-(3-nitrophenyl)-4,6-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6r)

According to the GP compound **6r** (1.07 g, 27%) was obtained as a yellow solid, Mp 164 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.48 (s, 1 H), 7.20-7.63 (m, 10 H), 7.98 (t, J = 2.1 Hz, 1 H), 8.01-8.12 (m, 3 H). ¹³C NMR (CDCl₃, 75 MHz): δ 97.2 (CH), 122.1 (CH), 122.3 (CH), 128.0 (CH), 128.6 (CH), 128.9 (CH), 128.9 (CH), 129.6 (CH), 131.1 (CH), 132.6 (C_{quat}), 133.1 (CH), 133.4 (CH), 134.0 (C_{quat}), 141.8 (C_{quat}), 148.1 (C_{quat}), 171.4 (C_{quat}), 173.9 (C_{quat}). ¹⁹F NMR (CDCl₃, 565 MHz, 243 K): δ -132.50 (d, ^{*1*} J_F . $_B = 579.1$ Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.40 (t, ^{*1*} $J_{B-F} = 15.1$ Hz). EI MS (m/z (%)): 406 (10), 392 ((M)⁺, 44), 391 ((M+H)⁺, 100), 344 ((C₂₁H₁₆N₂O₃)⁺, 10), 155 (14), 105 ((C₇H₅O)⁺, 27), 77 ((C₆H₅)⁺, 14). IR: $\tilde{\nu}$ [cm⁻¹] = 3084 (w), 2988 (w), 2860 (w), 1593 (m), 1570 (m), 1555 (w), 1526 (m), 1503 (s), 1481 (s), 1456 (m), 1443 (m), 1395 (m), 1346 (s), 1314 (m), 1236 (w), 1186 (w), 1101 (m), 1069 (m), 1038 (m), 1026 (m), 997 (m), 970 (w), 918 (w), 903 (w), 885 (w), 843 (w), 814 (w), 799 (w), 785 (m), 770 (s), 752 (m), 733 (m), 721 (m), 687 (s), 671 (m), 654 (w). Anal. calcd. for C₂₁H₁₅BF₂N₂O₃ (392.2): C 64.32, H 3.86, N 7.14; Found: C 64.31, H 3.82, N 7.02.

4.2.19. 4-(2,2-Difluoro-4,6-diphenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinin-3-yl)benzonitrile (6s)

According to the GP compound **6s** (1.12 g, 36%) was obtained as a yellow solid, Mp 249 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.46 (s, 1 H), 7.20-7.26 (m, 3 H), 7.27-7.35 (m, 3 H), 7.36-7.44 (m, 1 H), 7.45-7.56 (m, 4 H), 7.56-7.65 (m, 1 H), 8.06 (dd, J = 8.4 Hz, J = 1.4 Hz, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 97.2 (CH), 111.0 (C_{quat}), 118.0 (C_{quat}), 127.9 (CH), 127.9 (CH), 128.6 (CH), 128.9 (CH), 128.9 (CH), 131.1 (CH), 132.6 (CH), 132.6 (C_{quat}), 133.4 (CH), 134.2 (C_{quat}), 144.8 (C_{quat}), 170.9 (C_{quat}), 173.9 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -133.51 (q, ¹ $J_{F.B} = 19.4$ Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.37 (t, ¹ $J_{B.F} = 15.2$ Hz). EI MS (m/z (%)): 372 ((M)⁺, 48), 205 ((C₁₄H₉N₂)⁺, 4), 118 (10), 105 ((C₇H₅O)⁺, 16), 77 ((C₆H₅)⁺, 13). IR: $\tilde{\nu}$ [cm⁻¹] = 3096 (w), 3078 (w), 3038 (w), 2228 (w), 1591 (m), 1568 (m), 1501 (s), 1479 (s), 1456 (m), 1443 (m), 1396 (m), 1358 (m), 1315 (w), 1302 (w), 1279 (w), 1238 (w), 1182 (w), 1125 (s), 1103 (s), 1063 (m), 1034 (s), 1026 (s), 1001 (m), 976 (m), 962 (w), 930 (w), 914 (w), 868 (w), 851 (m), 841 (w), 814 (w), 800 (w), 779 (m), 764 (s), 721 (m), 689 (s), 667 (w), 652 (w), 631 (m). Anal. calcd. for C₂₂H₁₅BF₂N₂O (372.2): C 71.00, H 4.06, N 7.53; Found: C 71.04, H 4.24, N 7.32.

4.2.20. 3-(2,6-Dimethylphenyl)-2,2-difluoro-4,6-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6t)

According to the GP compound **6t** (1.92 g, 51%) was obtained as a beige solid, Mp 178 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.24 (s, 6 H), 6.44 (s, 1 H), 6.90-7.06 (m, 3 H), 7.22-7.29 (m, 4 H), 7.29-7.39 (m, 1 H), 7.43-7.59 (m, 3 H), 8.02-8.10 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 18.8 (CH₃), 96.8 (CH), 127.4 (CH), 127.6 (CH), 127.7 (CH), 128.2 (CH), 128.3 (CH), 128.7 (CH), 130.8 (CH), 132.7 (CH), 133.2 (C_{quat}), 134.6 (C_{quat}), 134.7 (C_{quat}), 138.5 (C_{quat}), 171.6 (C_{quat}), 172.1 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -138.73 (q, ¹*J*_{*F*·*B*} = 19.3 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.29 (t, ¹*J*_{*B*·*F*} = 15.1 Hz). EI MS (*m*/*z* (%)): 375 ((M)⁺, 48), 355 (17), 278 (46), 208 ((C₁₅H₁₄N)⁺, 18), 105 ((C₇H₅O)⁺, 34), 77 ((C₆H₅)⁺, 21). IR: $\tilde{\nu}$ [cm⁻¹] = 3063 (w), 2963 (w), 2914 (w), 1589 (w), 1570 (m), 1508 (s), 1481 (s),

1452 (m), 1439 (m), 1408 (w), 1377 (w), 1354 (m), 1315 (w), 1288 (w), 1269 (w), 1233 (w), 1215 (w), 1196 (w), 1146 (m), 1125 (w), 1098 (m), 1057 (m), 1022 (s), 999 (m), 970 (m), 926 (w), 901 (w), 862 (w), 841 (w), 816 (w), 770 (s), 727 (m), 692 (s), 667 (w), 627 (w), 617 (w). Anal. calcd. for C₂₃H₂₀BF₂NO (375.2): C 73.62, H 5.37, N 3.73; Found: C 73.41, H 5.39, N 3.58.

4.2.21. 2,2-Difluoro-3-(naphthalen-1-yl)-4,6-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6u)

According to the GP compound **6u** (2.88 g, 73%) was obtained as a yellow solid, Mp 202 °C. ¹H NMR (CDCl₃, 300 MHz): δ 6.41 (s, 1 H), 6.91-7.01 (m, 2 H), 7.00-7.08 (m, 1 H), 7.08-7.19 (m, 2 H), 7.24-7.34 (m, 2 H), 7.35-7.46 (m, 4 H), 7.46-7.54 (m, 1 H), 7.63 (ddt, J = 1.2 Hz, 6.5 Hz, 8.2 Hz, 2 H), 7.6-7.83 (m, 1 H), 7.98-8.05 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 96.6 (CH), 123.4 (CH), 123.4 (CH), 124.8 (CH), 125.5 (CH), 126.2 (CH), 126.7 (CH), 127.5 (CH), 127.8 (CH), 128.0 (CH), 128.0 (CH), 128.3 (CH), 128.8 (CH), 129.6 (Cquat), 130.4 (CH), 132.9 (CH), 133.1 (Cquat), 133.8 (Cquat), 134.9 (Cquat), 136.9 (Cquat), 172.6 (Cquat), 172.6 (Cquat). ¹⁹F NMR (CDCl₃, 282 MHz): δ -133.09 (dq, ² $J_{F-F} = 89.3$ Hz, ¹ $J_{F-B} = 16.6$ Hz), -138.42 (dq, ² $J_{F-F} = 91.4$ Hz, ¹ $J_{F-B} = 11.5$ Hz, 1F). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.56 (dd, ¹ $J_{B-F} = 14.1$ Hz, ¹ $J_{B-F} = 12.2$ Hz), MALDI (m/z (%))): 398 ((M+H)⁺), 378 ((M – F)⁺), 350 ((M – BF₂)⁺). IR: $\tilde{\nu}$ [cm⁻¹] = 3130 (w), 3065 (w), 3003 (w), 2968 (w), 2874 (w), 1605 (m), 1593 (w), 1572 (m), 1558 (w), 1265 (w), 1250 (w), 1236 (w), 1223 (w), 1182 (w), 1159 (w), 1109 (m), 1090 (m), 1072 (m), 1057 (m), 1042 (s), 1018 (m), 991 (w), 953 (w), 808 (m), 795 (m), 775 (s), 764 (s), 750 (w), 725 (m), 685 (m), 667 (w), 650 (w). Anal. calcd. for C₂₅H₁₈BF₂NO [397.2]: C 75.59, H 4.57, N 3.53; Found: C 75.34, H 4.41, N 3.45.

4.2.22. 2,2-Difluoro-3,6-bis(4-methoxyphenyl)-4-phenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6v)

According to the GP compound **6v** (2.82 g, 69%) was obtained as a yellow solid, Mp 207 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.73 (s, 3 H), 3.88 (s, 3 H), 6.29 (s, 1 H), 6.68-6.77 (m, 2 H), 6.93-7.00 (m, 2 H), 7.02-7.09 (m, 2 H), 7.21-7.38 (m, 5 H), 8.01 (d, J = 8.9 Hz, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 55.3 (CH₃), 55.5 (CH₃), 95.7 (CH), 113.9 (CH), 114.1 (CH), 125.5 (C_{quat}), 127.9 (CH), 128.4 (CH), 128.5 (CH), 129.8 (CH), 130.1 (CH), 133.5 (C_{quat}), 135.3 (C_{quat}), 158.3 (C_{quat}), 163.4 (C_{quat}), 169.9 (C_{quat}), 171.6 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -134.95 (q, ¹J_{F-B} = 19.7 Hz). ¹¹B NMR (CDCl₃, 193

MHz): $\delta 1.42$ (t, ${}^{1}J_{B-F} = 15.3$ Hz). EI MS (m/z (%)): 407 ((M)⁺, 83), 230 (18), 210 ((C₁₄H₁₂NO)⁺, 3), 135 ((C₈H₇O₂)⁺ 48), 77 ((C₆H₅)⁺, 8). IR: $\tilde{\nu}$ [cm⁻¹] = 3117 (w), 2976 (w), 2934 (w), 2835 (w), 1603 (m), 1591 (m), 1458 (s), 1437 (s), 1420 (m), 1391 (s), 1364 (m), 1339 (w), 1308 (m), 1292 (m), 1269 (m), 1250 (s), 1238 (s), 1229 (m), 1171 (s), 1132 (m), 1117 (m), 1103 (m), 1063 (m), 1013 (s), 997 (m), 972 (m), 957 (m), 930 (m), 912 (w), 891 (w), 868 (w), 845 (m), 824 (m), 808 (m), 795 (m), 768 (m), 753 (m), 731 (m), 719 (m), 702 (m), 669 (m). Anal. calcd. for C₂₃H₂₀BF₂NO₃ (407.2): C 67.84, H 4.95, N 3.44; Found: C 68.10, H 5.06, N 3.34.

4.2.23. 2,2-Difluoro-3-(4-methoxyphenyl)-4-phenyl-6-(thiophen-2-yl)-2H-1, $3\lambda^4$, $2\lambda^4$ -

oxazaborinine (6w)

According to the GP compound **6w** (1.80 g, 47%) was obtained as a yellow solid, Mp 235 °C. ¹H NMR (CDCl₃, 600 MHz): δ 3.71 (s, 3 H), 6.19 (s, 1 H), 6.66-6.74 (m, 2 H), 6.98-7.07 (m, 2 H), 7.14 (dd, J = 5.0 Hz, J = 3.8 Hz, 1 H), 7.20-7.24 (m, 2 H), 7.26 (ddd, J = 8.3 Hz, J = 6.9 Hz, J = 1.3 Hz, 2 H), 7.29-7.33 (m, 1 H), 7.60 (dd, J = 5.0 Hz, J = 1.2 Hz, 1 H), 7.82 (dd, J = 3.8 Hz, J = 1.2 Hz, 1 H). ¹³C NMR (CDCl₃, 151 MHz): δ 55.3 (CH₃), 96.2 (CH), 113.9 (CH), 127.9 (CH), 128.5 (CH), 128.5 (CH), 128.6 (CH), 130.3 (CH), 131.2 (CH), 132.6 (CH), 133.4 (Cquat), 134.9 (Cquat), 138.0 (Cquat), 158.4 (Cquat), 166.5 (Cquat), 170.0 (Cquat). ¹⁹F NMR (CDCl₃, 565 MHz): δ -135.25 (q, ¹ $_{F,B} = 19.7$ Hz). ¹¹B NMR (CDCl₃, 193 MHz): δ 1.20 (t, ¹ $_{J_{B,F}} = 15.2$ Hz). EI MS (m/z (%)): 383 ((M)⁺, 86), 318 ((M-BF₂O)⁺, 100), 210 ((Cl₄H₁₂NO)⁺, 4), 111 ((CsH₃OS)⁺, 52), 77 ((C6H₅)⁺, 6). IR: $\tilde{\nu}$ [cm⁻¹] = 3107 (w), 3065 (w), 3019 (w), 2970 (w), 2934 (w), 2901 (w), 2841 (w), 1605 (m), 1593 (m), 1574 (m), 1497 (s), 1487 (s), 1460 (s), 1445 (s), 1416 (m), 1368 (m), 1327 (m), 1312 (m), 1296 (m), 1246 (s), 1227 (m), 1182 (m), 1171 (m), 1138 (m), 1107 (s), 1072 (s), 1055 (s), 1013 (s), 1001 (s), 976 (m), 935 (w), 920 (w), 912 (w), 864 (w), 847 (w), 831 (m), 806 (m), 795 (w), 766 (s), 746 (s), 727 (s), 689 (s), 664 (w), 650 (w), 608 (w). Anal. calcd. for C₂₀H₁₆BF₂NO₂S (383.2): C 62.68, H 4.21, N 3.66, S 8.37; Found: C 62.86, H 4.32, N 3.62, S 8.28.

4.2.24. 4-(2,2-Difluoro-3-(4-methoxyphenyl)-4-phenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinin-6-

yl)benzonitrile (6x)

According to the GP compound **6x** (1.85 g, 46%) was obtained as a yellow solid, Mp 226 °C. ¹H NMR (CDCl₃, 300 MHz): δ 3.73 (s, 3 H), 6.40 (s, 1 H), 6.69-6.77 (m, 2 H), 7.00-7.07 (m, 2 H), 7.20-7.40 (m, 5 H), 7.70-7.79 (m, 2 H), 8.06-8.15 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 55.4 (CH₃), 98.2 (CH), 114.1 (CH), 115.6 (C_{quat}), 118.0 (C_{quat}), 127.7 (CH), 127.9 (CH), 128.5 (CH), 128.7 (CH), 130.8 (CH), 132.4 (CH), 133.0 (C_{quat}), 134.5 (C_{quat}), 137.3 (C_{quat}), 158.8 (C_{quat}), 168.6 (C_{quat}), 170.8 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -134.18 (q, ^{*I*}*J*_{*F*-*B*} = 13.4 Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.34 (t, ^{*I*}*J*_{*B*-*F*} = 14.5 Hz). EI MS (*m*/z (%)): 402 ((M)⁺, 60), 338 (10), 130 ((C₈H₄NO)⁺, 44), 102 ((C₇H₄N)⁺, 16). IR: $\tilde{\nu}$ [cm⁻¹] = 3107 (w), 3061 (w), 3011 (w), 2961 (w), 2930 (w), 2907 (w), 2891 (w), 2837 (w), 2228 (w), 1603 (m), 1578 (w), 1558 (w), 1508 (s), 1491 (s), 1460 (m), 1439 (m), 1420 (w), 1395 (w), 1348 (m), 1396 (m), 1246 (s), 1231 (m), 1202 (w), 1173 (m), 1101 (m), 1069 (m), 1036 (s), 1015 (m), 1001 (m), 976 (m), 943 (w), 853 (m), 837 (m), 822 (m), 806 (w), 795 (w), 772 (s), 754 (w), 743 (w), 719 (m), 692 (m), 667 (w), 642 (w). Anal. calcd. for C₂₃H₁₇BF₂N₂O₂ (402.2): C 68.68, H 4.26, N 6.97; Found: C 68.71, H 4.23, N 6.82.

4.2.25. 2,2-Difluoro-3,4-bis(4-methoxyphenyl)-6-phenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6y)

According to the GP compound **6y** (3.41 g, 84%) was obtained as a yellow solid, Mp 213 °C. ¹H NMR (CDCl₃, 600 MHz): δ 3.87 (s, 3 H), 3.90 (s, 3 H), 6.48 (s, 1 H), 6.82-6.93 (m, 4 H), 7.16-7.21 (m, 2 H), 7.31-7.35 (m, 2 H), 7.58 (dd, J = 8.4 Hz, 7.0 Hz, 2 H), 7.62-7.68 (m, 1 H), 8.12-8.17 (m, 2 H). ¹³C NMR (CDCl₃, 151 MHz): δ 55.3 (CH₃), 55.3 (CH₃), 96.8 (CH), 113.9 (CH), 114.0 (CH), 127.0 (C_{quat}), 127.5 (CH), 127.8 (CH), 128.7 (CH), 130.8 (CH), 132.5 (CH), 133.4 (C_{quat}), 133.8 (C_{quat}), 158.4 (C_{quat}), 161.2 (C_{quat}), 169.7 (C_{quat}), 171.2 (C_{quat}). ¹⁹F NMR (CDCl₃, 565 MHz): δ -135.00 (q, ¹*J*_{*F*-*B*} = 15.0 Hz). ¹¹B NMR (CDCl₃, 193 MHz): δ 1.42 (t, ¹*J*_{*B*-*F*} = 15.2 Hz). EI MS (*m*/*z* (%)): 407 ((M)⁺, 61), 298 ((C₁₅H₁₄BF₂NO₂)⁺, 14), 105((C₇H₅O)⁺, 40), 77 ((C₆H₅)⁺, 18). IR: $\tilde{\nu}$ [cm⁻¹] = 3005 (w), 2972 (w), 2901 (w), 2839 (w), 1605 (m), 1574 (m), 1504 (s), 1487 (m), 1456 (m), 1441 (m), 1408 (m), 1358 (m), 1296 (m), 1248 (m), 1238 (m), 1171 (m), 1159 (m), 1144 (m), 1101 (s), 1065 (m), 1022 (s), 1001 (m), 978 (m), 959 (m), 916 (w), 866 (w), 833 (m), 810 (m), 795 (m), 775 (s), 758 (w), 743 (w), 696 (s), 679

(m), 671 (w), 646 (w). Anal. calcd. for $C_{23}H_{20}BF_2NO_3$ (407.2): C 67.84, H 4.95, N 3.44 Found: C 67.58, H 5.10, N 3.26.

4.2.26. 2,2-Difluoro-3-(4-methoxyphenyl)-4,6-di(thiophen-2-yl)-2*H*-1,3 λ^4 ,2 λ^4 -oxazaborinine (6z) According to the GP compound 6z (2.39 g, 66%) was obtained as a brown solid, Mp 255 °C. ¹H NMR ((CD₃)₂SO 600 MHz) δ 3.80 (s, 3 H), 7.02 (d, *J* = 8.8 Hz, 2 H), 7.07 (s, 1 H), 7.15-7.22 (m, 3 H), 7.33 (dd, *J* = 5.0 Hz, *J* = 3.8 Hz, 1 H), 8.00 (dd, *J* = 5.0 Hz, *J* = 1.2 Hz, 1 H), 8.03 (dd, *J* = 5.0 Hz, *J* = 1.1 Hz, 1 H), 8.14 (dd, *J* = 4.0 Hz, *J* = 1.3 Hz, 1 H), 8.28 (dd, *J* = 3.8 Hz, *J* = 1.2 Hz, 1 H). ¹³C NMR ((CD₃)₂SO, 151 MHz): δ 55.4 (CH₃), 93.4 (CH), 114.7 (CH), 127.3 (CH), 128.7 (CH), 129.2 (CH), 131.7 (CH), 132.4 (C_{quat}), 133.7 (C_{quat}), 133.7 (CH), 137.0 (CH), 137.2 (CH), 137.8 (C_{quat}), 159.4 (C_{quat}), 161.6 (C_{quat}), 164.2 (C_{quat}). ¹⁹F NMR ((CD₃)₂SO 565 MHz) δ -134.40 (q, ^{*I*}*J_{F-B}* = 13.7 Hz). ¹¹B NMR ((CD₃)₂SO, 193 MHz) δ 0.86 (t, ^{*I*}*J_{B-F}* = 14.4 Hz). EI MS (*m*/*z* (%)): 389 ((M)⁺, 56), 324 (100), 110 ((C₃H₃OS)⁺, 51). IR: $\tilde{\nu}$ [cm⁻¹] = 3098 (w), 2839 (w), 1582 (m), 1506 (s), 1489 (m), 1472 (m), 1456 (w), 1406 (m), 1387 (w), 1373 (w), 1346 (w), 1325 (w), 1298 (w), 1242 (s), 1233 (m), 1184 (w), 1171 (m), 1134 (m), 1096 (m), 1070 (m), 1051 (s), 1028 (m), 1003 (m), 974 (m), 934 (w), 908 (m), 829 (m), 808 (m), 789 (m), 719 (s), 712 (m), 667 (m), 658 (w), 636 (w). Anal. calcd. for C₁₈H₁₄BF₂NO₂S₂ (389.2): C 55.54, H 3.63, N 3.60, S 16.47; Found: C 55.79, H 3.83, N 3.57, S 16.28.

4.2.27. 3-Benzyl-2,2-difluoro-4,6-diphenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6aa)

According to the GP compound **6aa** (2.65 g, 73%) was obtained as a yellow solid, Mp 131 °C. ¹H NMR (CDCl₃, 300 MHz): δ 4.75-4.86 (m, 2 H), 6.18 (s, 1 H), 7.01-7.08 (m, 2 H), 7.17 (d, J = 1.6 Hz, 1 H), 7.18-7.24 (m, 4 H), 7.36-7.41 (m, 1 H), 7.43 (t, J = 1.0 Hz, 1 H), 7.44-7.52 (m, 3 H), 7.52-7.59 (m, 1 H), 7.98-8.00 (m, 1 H), 8.01 (dd, J = 1.9 Hz, J = 0.9 Hz, 1 H). ¹³C NMR (CDCl₃, 75 MHz): δ 50.6 (CH₂), 96.8 (CH), 126.5 (CH), 127.1 (CH), 127.5 (CH), 127.6 (CH), 128.2 (CH), 128.7 (CH), 128.7 (CH), 130.2 (CH), 132.0 (CH), 133.1 (C_{quat}), 134.6 (C_{quat}), 137.5 (C_{quat}), 170.6 (C_{quat}), 173.3 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -136.97 (q, ¹ $J_{F\cdot B} = 17.0$ Hz). ¹¹B NMR (CDCl₃, 96 MHz): δ 1.50 (t, ¹ $J_{B\cdot F} = 16.9$ Hz). EI MS (m/z (%)): 361 ((M)⁺, 90), 341 (21), 349 (73), 297 (14), 296 (57), 270 ((C₁sH₁₁BF₂NO)⁺, 23), 193 ((C₉H₇BF₂NO)⁺, 36), 192 ((C₁sH₁₂)⁺, 11), 191 ((C₁sH₁₁)⁺, 8), 165 ((C₈H₈BF₂O)⁺, 11), 105 ((C₇H₅O)⁺, 31), 91 ((C₇H₇)⁺, 100), 77 ((C₆H₅)⁺, 25), 65 (13). IR: $\tilde{\nu}$ [cm⁻¹] =

3570 (w), 3067 (w), 2926 (w), 2839 (w), 1601 (m), 1593 (w), 1574 (m), 1508 (s), 1483 (m), 1460 (m), 1450 (m), 1439 (m), 1408 (m), 1400 (w), 1348 (m), 1333 (w), 1309 (w), 1279 (w), 1236 (w), 1213 (w), 1155 (w), 1126 (m), 1112 (m), 1092 (m), 1058 (m), 1024 (s), 999 (m), 981 (m), 928 (w), 893 (w), 843 (w), 808 (w), 756 (m), 731 (s), 719 (m), 688 (s), 657 (w), 650 (w), 615 (m). Anal. calcd. for $C_{22}H_{18}BF_{2}NO$ (361.2): C 73.16, H 5.02, N 3.88; Found: C 72.90, H 5.06, N 3.77.

4.2.28. 2,2-Difluoro-3-isopropyl-4,6-diphenyl-2*H*-1, $3\lambda^4$, $2\lambda^4$ -oxazaborinine (6ab)

According to the GP and after work up with deionized water until no further precipitation was formed, after filtration and drying overnight compound **6ab** (1.12 g, 36%) was obtained as a yellow solid, Mp 125 °C. ¹H NMR (CDCl₃, 600 MHz): δ 1.45 (dt, J = 6.9 Hz, J = 1.3 Hz, 6 H), 4.10 (hd, J = 6.7 Hz, J = 2.9 Hz, 1 H), 6.08 (s, 1 H), 7.38 (ddd, J = 6.2 Hz, J = 3.0 Hz, J = 1.6 Hz, 2 H), 7.46 (dd, J = 8.4 Hz, J = 7.0 Hz, 2 H), 7.50-7.59 (m, 4 H), 7.95-8.00 (m, 2 H). ¹³C NMR (CDCl₃, 151 MHz): δ 22.1 (t, J = 2.8 Hz, CH₃), 52.9 (CH), 95.8-97.6 (d, J = 2.8 Hz, CH), 126.1 (CH), 127.3 (CH), 128.6 (CH), 129.1 (CH), 129.9 (CH), 132.1 (CH), 133.1 (d, J = 3.5 Hz, Cq_{uat}), 135.6 (C_{quat}), 169.2 (C_{quat}), 171.1 (C_{quat}). ¹⁹F NMR (CDCl₃, 565 MHz): δ -134.90 (q, ¹ $J_{F.B} = 19.5$ Hz). ¹¹B NMR (CDCl₃, 193 MHz): δ 1.21-1.64 (m). EI MS (m/z (%)): 313 ([M]⁺, 26), 298 ((C₁₇H₁₅BF₂NO)⁺, 100), 277 ((C₁₈H₂₀BNO)⁺, 14), 105 ((C₇H₅O)⁺, 39), 77 ((C₆H₅)⁺, 20). IR: $\tilde{\nu}$ [cm⁻¹] = 2970 (w), 2943 (w), 2922 (w), 2891 (w), 2864 (w), 2826 (w), 1666 (w), 1599 (w), 1574 (w), 1551 (w), 1510 (m), 1485 (s), 1460 (m), 1445 (w), 1422 (m), 1389 (w), 1368 (w), 1341 (m), 1310 (w), 1300(w), 1281 (w), 1248 (m), 1221 (m), 1182 (w), 1163 (w), 1132 (m), 1109 (w), 1092 (m), 1063 (m), 1045 (s), 997 (s), 927 (w), 912 (w), 883 (w), 858 (w), 849 (w), 799 (w), 762 (s), 743 (m), 679 (m), 660 (w), 642 (w), 625 (m). Anal. calcd. for C₂₂H₁₈BF₂NO₂ (377.2): C 70.05, H 4.81, N 3.71; Found: C 70.07, H 4.89, N 3.60.

4.2.29. 3-Benzyl-2,2-difluoro-4-phenyl-6-(p-tolyl)-2*H*-1,3 λ^4 ,2 λ^4 -oxazaborinine (6ac)

According to the GP compound **6ac** (2.79 g, 74%) was obtained as a colorless solid, Mp 153 °C. ¹H NMR (CDCl₃, 300 MHz): δ 2.31 (s, 3 H), 4.66 (s, 2 H), 6.01 (s, 1 H), 6.87-6.95 (m, 2 H), 7.00-7.10 (m, 5 H), 7.10-7.18 (m, 2 H), 7.21-7.38 (m, 3 H), 7.74-7.80 (m, 2 H). ¹³C NMR (CDCl₃, 75 MHz): δ 21.6 (CH₃), 50.5 (CH₂), 96.3 (CH), 126.5 (CH), 127.1 (CH), 127.5 (CH), 127.6 (CH), 128.2 (CH), 128.7 (CH), 129.4 (CH), 130.1 (CH), 130.3 (C_{quat}), 134.7 (C_{quat}), 137.6 (C_{quat}), 143.3 (C_{quat}), 170.7 (C_{quat}), 173.1 (C_{quat}). ¹⁹F NMR (CDCl₃, 282 MHz): δ -137.07 (q, ¹*J*_{F-B} = 17.2 Hz). ¹¹B NMR (CDCl₃, 282 MHz): δ

96 MHz): $\delta 1.51$ (t, ${}^{1}J_{B-F} = 17.1$ Hz). ESI (*m*/*z* (%)): 376 ((M+H)⁺). IR: $\tilde{\nu}$ [cm⁻¹] = 1609 (m), 1599 (w), 1574 (w), 1522 (s), 1497 (s), 1456 (m), 1443 (m), 1433 (m), 1396 (w), 1362 (m), 1346 (m), 1335 (w), 1310 (w), 1292 (w), 1242 (w), 1215 (w), 1204 (w), 1190 (w), 1151 (w), 1105 (m), 1018 (m), 1057 (m), 1028 (m), 1016 (m), 1001 (m), 989 (w), 955 (m), 910 (w), 893 (w), 845 (w), 827 (w), 802 (m), 779 (m), 756 (s), 736 (w), 719 (m), 696 (m), 671 (w), 650 (w). Anal. calcd. for C₂₃H₂₀BF₂NO (375.2): C 73.62, H 5.37, N 3.73; Found: C 73.34, H 5.21, N 3.67.

4.2.30. 2,2-Difluoro-4,6-diphenyl-3-(4-(phenylethynyl)phenyl)-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (6ad)

Pd(PPh₃)₂Cl₂, (7 mg, 10 μ mol), CuI (4 mg, 20 μ mol), and 2,2-difluoro-3-(4-iodophenyl)-4,6-diphenyl-2H-1,3 λ^4 ,2 λ^4 -oxazaborinine (**6q**) (4.73 g, 10.0 mmol) were placed in a dry Schlenk vessel with a magnetic stir bar under nitrogen. Then, THF (15 mL), phenylacetylen (**2a**) (3.3 mL, 30.0 mmol) and triethylamine (4.20 mL, 30.0 mmol) were added under nitrogen. The reaction mixture was stirred at room temp for 24 h. Then the mixture was poured into cold (with an NaCl/ice bath) methanol (150 mL) and stirred for 15 min. The precipitate was filtered and the solid was dried for 14 h to give compound **6ad** (4.11 g, 92%) as a yellow solid, Mp 153 °C.

¹H NMR (CDCl₃, 600 MHz): δ 6.43 (s, 1 H), 7.11-7.19 (m, 2 H), 7.22-7.44 (m, 10 H), 7.50 (ddd, J = 7.4 Hz, J = 5.7 Hz, J = 2.0 Hz, 4 H), 7.54-7.62 (m, 1 H), 8.04-8.09 (m, 2 H). ¹³C NMR (CDCl₃, 151 MHz): δ 88.6 (C_{quat}), 90.4 (C_{quat}), 97.1 (CH), 122.4 (C_{quat}), 122.9 (C_{quat}), 127.0 (CH), 127.8 (CH), 128.3 (CH), 128.4 (CH), 128.6 (CH), 128.7 (CH), 128.8 (CH), 130.7 (CH), 131.6 (CH), 132.0 (CH), 133.0 (C_{quat}), 134.8 (C_{quat}), 140.4 (C_{quat}), 170.6 (C_{quat}), 172.7 (C_{quat}). ¹⁹F NMR (CDCl₃, 565 MHz): δ -134.2 (q, ^{*I*}*J_{F-B}* = 14.8 Hz). ¹¹B NMR (CDCl₃, 193 MHz): δ 1.45 (t, ^{*I*}*J_{B-F}* = 15.2 Hz). EI (*m/z* (%)): 447 ((M)⁺, 66), 223 (11), 176 ((C₁₄H₈)⁺, 14), 105 ((C₇H₅O)⁺, 20), 77 ((C₆H₅)⁺, 11). IR: $\tilde{\nu}$ [cm⁻¹] = 3117 (w), 3088 (w), 3061 (w), 3042 (w), 3015 (w), 2220 (w), 1503 (m), 1483 (m), 1456 (m), 1441 (m), 1396 (m), 1354 (m), 1310 (w), 1292 (w), 1233 (w), 1200 (w), 1184 (w), 1128 (m), 1101 (m), 1063 (w), 1018 (m), 997 (m), 978 (m), 957 (w), 912 (w), 860 (w), 835 (w), 814 (w), 785 (m), 758 (s), 713 (w), 668 (s), 667 (w), 650 (w). Anal. calcd. for C₂₉H₂₀BF₂NO (447.3): C 77.87, H 4.51, N 3.13; Found: C 78.06, H 4.40, N 3.12.

5. Acknowledgements

We cordially thank Fonds der Chemischen Industrie and Deutsche Forschungsgemeinschaft (Mu 1088/9-1) for the financial support. Computational support and infrastructure was provided by the "Centre for Information and Media Technology" (ZIM) at the University of Düsseldorf (Germany).

6. References

- Macedo FP, Gwengo C, Lindeman SG, Smith MD, Gardinier JR. β-Diketonate, β-Ketoiminate, and β-Diiminate Complexes of Difluoroboron. Eur J Inorg Chem 2008; 3200–11.
- [2] Brown NMD, Bladon P. Spectroscopy and structure of (1,3-diketonato)boron difluorides and related compounds. J Chem Soc A 1969; 526–32.
- [3] (a) Singh YP, Rupani P, Singh A, Rai AK, Mehrotra RC, Rodgers RD, Atwood JL. Synthesis and IR, UV, NMR (¹H and ¹¹B), and mass spectral studies of new β -ketoamine complexes of boron: crystal an molecular structure of OC₆H₄OBOC(R)CHC(R')NR" (R = *p*-ClC₆H₄, R' = C₆H₅, R" = CH₃). Inorg Chem 1986; 25: 3076–81. (b) Itoh K, Okazaki K, Fujimoto M. The Structure of 1,3-Enaminoketonatoboron Difluorides in Solution and in the Solid State. Aust J Chem 2003; 56: 1209–14.
- [4] (a) Itoh K, Okazaki K, Sera A, Chow YL. The photoaddition of enaminoketonatoboron difluorides with *trans*-stilbene. J Chem Soc Chem Commun 1992; 1608–9. (b) Itoh K, Fujimoto M, Hashimoto M. New J Chem 2002; 26: 1070–5. (c) Itoh K, Okazaki K, Toyotomi Y. Photocycloaddition of 1,3-Diphenyl-N-methyl Enaminoketonatoboron Difluoride with Simple Olefins. Heterocycles 2002; 57: 2065–79. (d) Itoh K, Okazaki K, Chow YL. Photocycloaddition of Some Difluoro(aminoenonato)boron Complexes with Arylalkenes. Helv Chim Acta 2004; 87: 292–302.
- [5] (a) For reviews on AIE and ACQ, see e. g. Hu R, Leung NLC, Tang BZ. AIE macromolecules: syntheses, structures and functionalities. Chem Soc Rev 2014; 43: 4494–4562. (b) Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission. Chem Soc Rev 2011; 40: 5361–88. (c) Hong Y, Lam JWY, Tang BZ, Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 2009, 4332–53.
- [6] (a) Yoshii R, Suenaga K, Tanaka K, Chujo Y. Mechanofluorochromic Materials Based on Aggregation-Induced Emission-Active Boron Ketoiminates: Regulation of the Direction of the Emission Color Changes. Chem Eur J 2015; 21: 7231–37. (b) Yoshii R, Nagai A, Tanaka K, Chujo Y. Highly Emissive Boron Ketoiminate Derivatives as a New Class of Aggregation-Induced Emission Fluorophores. Chem Eur J 2013; 19: 4506–12.

- [7] Suenaga K, Tanaka K, Chujo Y. Heat-Resistant Mechanoluminescent Chromism of the Hybrid Molecule Based on Boron Ketoiminate Modified Octasubstituted Polyhedral Oligomeric Silsesquioxane. Chem Eur J 2017; 23: 1409–14.
- [8] (a) Knorr R, Weiss A. Konfigurationsstabilität und reduzierte ¹H-NMR-Verschiebungen (pseudo)tetraedrischer Nickel(II)-Bis-chelate von 1,3-Diiminen. Chem Ber 1981; 114: 2104–15. (b) Knorr R, Weiss A. Synthesen und Eigenschaften hochsubstituierter Vinamidine. Chem Ber 1982; 115: 139–60.
- [9] Zhang T, Jia YM, Yan SJ, Yu CY, Huang ZT. Synthesis of BF2 complex of 3-methylthio enaminones. ARKIVOC 2009; XIV: 156–70.
- [10] (a) Burke MD, Schreiber SL, A Planning Strategy for Diversity-Oriented Synthesis. Angew Chem Int Ed 2004; 43: 46–58. (b) Ruijter E, Scheffelaar R, Orru RVA. Multicomponent Reaction Design in the Quest for Molecular Complexity and Diversity. Angew Chem Int Ed 2011; 50: 6234–46.
- [11] Müller TJJ. Relative Reactivities of Functional Groups as the Key to Multicomponent Reactions. In Multicomponent Reactions 1, Müller TJJ, ed., Science of Synthesis, Georg Thieme Verlag, Stuttgart, 2014; pp 5–27.
- [12] (a) D'Souza DM, Müller TJJ, Diversity-oriented syntheses of functional π-systems by multicomponent and domino reactions. Pure Appl Chem 2008; 80: 609–20. (b) Levi L, Müller TJJ, Multicomponent Syntheses of Fluorophores Initiated by Metal Catalysis. Eur J Org Chem 2016; 2907–18.
- [13] (a) Levi L, Müller TJJ. Multicomponent syntheses of functional chromophores. Chem Soc Rev 2016, 45, 2825–46. (b) de Moliner F, Kielland N, Lavilla R, Vendrell M. Modern Synthetic Avenues for the Preparation of Functional Fluorophores. Angew Chem Int Ed 2017, 56, 3758–69. (c) Riva R, Moni L, Müller TJJ. Multicomponent strategies for the diversity-oriented synthesis of blue emissive heterocyclic chromophores. Targets in Heterocyclic Systems 2016, 20, 85–112. (d) Müller TJJ. Multicomponent and Domino Syntheses of AIE Chromophores. In Aggregation Induced Emission: Materials and Applications, Fujiki M, Tang BZ, Liu B, eds., ACS Symposium Series e-book, 2016; Chapter 6: pp 85–112.
- [14] (a) Gers-Panther CF, Müller TJJ. Multicomponent Syntheses of Heterocycles Initiated by Catalytic Generation of Ynones and Ynediones. Adv Heterocycl Chem 2016; 120: 67–98. (b) Müller TJJ. Palladium-Copper Catalyzed Alkyne Activation as an Entry to Multicomponent Syntheses of Heterocycles. Top Heterocycl Chem 2010; 25: 25–94. (c) Willy B, Müller TJJ. Multi-component Heterocycle Syntheses via Catalytic Generation of Alkynones. Curr Org Chem 2009; 13: 1777–90. (d) D'Souza DM, Müller TJJ. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem Soc Rev 2007; 36: 1095–108.

- [15] (a) Karpov AS, Müller TJJ. Straightforward Novel One-Pot Enaminone and Pyrimidine Syntheses by Coupling-Addition-Cyclocondensation Sequences. Synthesis 2003; 2815–26. (b) D'Souza DM, Müller TJJ. Catalytic alkynone generation by Sonogashira reaction and its application in three-component pyrimidine synthesis. Nat Protoc 2008; 3: 1660–5.
- [16] (a) Karpov AS, Oeser T, Müller TJJ. A novel one-pot four-component access to tetrahydro-β-carbolines by a coupling-amination-aza-annulation-Pictet–Spengler sequence (CAAPS). Chem Commun 2004; 1502–3. (b) Karpov AS, Rominger F, Müller TJJ. A diversity oriented four-component approach to tetrahydro-β-carbolines initiated by Sonogashira coupling. Org Biomol Chem 2005; 4382–91.
- [17] (a) Nordmann J, Müller TJJ. Anilines as Substrates in Consecutive Four-Component Synthesis of Novel 1-Aryl-5-benzoyl-6-phenyl-3,4-dihydropyridin-2(1H)-ones. Synthesis 2014; 46: 522–30. (b) Nordmann J, Breuer N, Müller TJJ. Efficient Consecutive Four-Component Synthesis of 5-Acylpyrid-2-ones Initiated by Copper-Free Alkynylation. Eur J Org Chem 2013; 4303–10.
- (a) Nordmann J, Eierhoff S, Denißen M, Mayer B, Müller TJJ. Two-Step Synthesis of Blue Luminescent (Pyrrol-3-yl)-1H-(aza)indazoles Based on a Three-Component Coupling–Cyclocondensation Sequence. Eur J Org Chem 2015; 5128–42. (b) Nordmann J, Müller TJJ. A one-pot coupling–addition–cyclocondensation sequence (CACS) to 2-substituted 3-acylpyrroles initiated by a copper-free alkynylation. Org Biomol Chem 2013; 11: 6556–61.
- [19] Hansch C, Leo A, Taft RW. A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 1991; 91: 165–95.
- [20] Lakowicz JR. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Berlin/Heidelberg, 2006; pp 687–8.
- [21] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. GAUSSIAN 09 (Revision A.02) Gaussian, Inc., Wallingford CT, 2009.
- [22] (a) Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988; 37: 785–9. (b) Becke AD. A new

mixing of Hartree–Fock and local density-functional theories. J Chem Phys 1993; 98: 1372–7. (c) Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98: 5648–52. (d) Kim K, Jordan KD. Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer. J Phys Chem 1994; 98: 10089–94. (e) Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J Phys Chem 1994; 98: 11623–7.

- [23] Krishnan R, Binkley JS, Seeger R, Pople JA. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 1980; 72: 650–4.
- [24] Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ. Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules. J Chem Phys A 2002; 106: 6102–13.

45