

Synthetic Communications An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: https://www.tandfonline.com/loi/lsyc20

Transition metal- and oxidant-free sulfonylation of 1-sulfonyl-1*H*-1,2,3-triazoles to enols for the synthesis of sulfonate derivatives

Xinwei He, Yuhao Wu, Youpeng Zuo, Mengqing Xie, Ruxue Li & Yongjia Shang

To cite this article: Xinwei He, Yuhao Wu, Youpeng Zuo, Mengqing Xie, Ruxue Li & Yongjia Shang (2019): Transition metal- and oxidant-free sulfonylation of 1-sulfonyl-1*H*-1,2,3-triazoles to enols for the synthesis of sulfonate derivatives, Synthetic Communications, DOI: 10.1080/00397911.2019.1582065

To link to this article: https://doi.org/10.1080/00397911.2019.1582065

View supplementary material 🗹

đ	1	0

Published online: 08 Mar 2019.

🖉 Submit your article to this journal 🕑

View Crossmark data 🗹

Check for updates

Transition metal- and oxidant-free sulfonylation of 1-sulfonyl-1*H*-1,2,3-triazoles to enols for the synthesis of sulfonate derivatives

Xinwei He (b), Yuhao Wu, Youpeng Zuo, Mengqing Xie, Ruxue Li, and Yongjia Shang (b)

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, P.R. China

ABSTRACT

A novel and convenient protocol for the synthesis of sulfonate derivatives via DABCO-catalyzed direct sulfonylation of 1-sulfonyl-1,2,3-triazoles to different enols has been established. This synthetic route could effectively avoid the use of transition metal catalysts and extra oxidants, and the target products could be obtained in good to excellent yields (75–86%) with wide substrate scope under mild conditions at low-catalyst loadings, which would provide a facile and practical access to enol sulfonates. Furthermore, the use of the resulting enol sulfonates for the C–C bond formation has been demonstrated via Suzuki-Miyaura, Sonogashira, and Heck cross-coupling reaction.

ARTICLE HISTORY

Received 4 January 2019

KEYWORDS

1,4-Diazabicyclo[2.2.2] octane; 1-sulfonyl-1,2,3triazoles; enols; sulfonates; sulfonylation

GRAPHIC ABSTRACT

Introduction

Enol esters and their derivatives are valuable synthetic intermediates in organic synthesis.^[1] Many natural products containing the enol ester moiety exhibit useful biological activities.^[2] Among them, enol sulfonates play an important role in the fields of organic reactions,^[3] especially in various cross-coupling reactions,^[4] such as Suzuki–Miyaura,^[5]

• Supplemental data for this article is available online at on the publisher's website.

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsyc. © 2019 Taylor & Francis Group, LLC

CONTACT Xinwei He 🐼 xinweihe@mail.ahnu.edu.cn 💽 Anhui Normal University, College of Chemistry and Materials Science, No. 1 Beijing East Road, Wuhu 241000, China.

Scheme 1. Chemistry of N-tosyl-1,2,3-triazoles.

Negishi,^[6] Stille,^[7] Kumada,^[8] and Buchwald–Hartwig couplings,^[9] serving as effective equivalents of vinyl halides. The most conventional synthetic route to enol sulfonates is the sulfonylation of enols and sulfonyl halides. More recently, several sulfonyl precursors including sulfonyl halides,^[10] sulfonyl hydrazides,^[11] sodium sulfinates,^[12] sulfinic acids,^[13] sulfonyl azides,^[14] sulfonyl isocyanides,^[15] sulfoxides,^[16] and DABCO·(SO₂)₂ (named: DABSO),^[17] were employed in the sulfonylation reaction to access organosulfone compounds. Therefore, the development of general methods for the synthesis of enol sulfonates by utilizing new sulfonyl precursors is consequently an important goal in organic chemistry.

In recent years, the chemistry of 1-tosyl-4-aryl/alkyl-1,2,3-triazoles has attracted much attention from synthetic chemists since its initial discovery by the groups of Fokin and Gevorgyan. These compounds are highly useful building blocks and have been abundantly used as precursors of ketenimine and α -imino rhodium carbenes.^[18] N-tosyl α -diazo imine could be converted into 1-tosyl ketenimine via denitrogenation and rearrangement and subsequently derived into various heterocycles and carbocycles.^[19] On the other hand, these compounds are capable of acting as convenient precursors to generate reactive α -imino metal carbenoid species and undergo subsequent reactions, such as cyclization,^[20] transannulation,^[21] denitrogenative reaction,^[22] cyclopropanation,^[23] arylation,^[24] and X-H insertions (X=C, N, O).^[25] Beside of these two fates, other reactions were seldom reported based on the fragile 1-tosyl-1,2,3-triazole except for the direct desulfonylation by using magnesium in methanol,^[26] the N2-selective alkylation in the presence of Au-catalyst or DABCO (1,4-diazabicyclo[2.2.2]octane),^[27] and the nucleophilicity of 1-sulfonyl-1,2,3-triazoles in the presence of Lewis acid.^[28] Here we would like to report an unprecedented and general approach to enol sulfonates through the direct sulfonylation of 1-sulfonyl-1,2,3-triazoles to enols in the presence of DABCO (Scheme 1).

Results and discussion

We initially started our investigation by choosing 4-phenyl-1-(tosylsulfonyl)-1H-1,2,3-triazole (1c) to react with 4-hydroxy-2H-chromen-2-one (2a) in the presence of

CH3

	0 H₃C	N≥N Ph + O 2a	otatalyst (2 mol%) Cosolvent		
Entry	Catalyst	Solvent	Temp. (°C)	Time (h)	Yield (%) ^b
1	DBU	DCE	90	5	70
2	TEA ^f	DCE	90	5	60
3	DABCO	DCE	90	5	81
4	NaOH	DCE	90	5	Trace
5	NaHCO ₃	DCE	90	5	Trace
6	KHCO3	DCE	90	5	Trace
7	NaOAc	DCE	90	5	Trace
8	NH₄OAc	DCE	90	5	Trace
9	CsOAc	DCE	90	5	50
10	-	DCE	90	5	NR ^g
11 ^c	DABCO	DCE	90	5	52
12 ^d	DABCO	DCE	90	5	82
13 ^e	DABCO	DCE	90	5	83
14	DABCO	Toluene	90	5	69
15	DABCO	DMF	90	5	NR ^g
16	DABCO	MeCN	90	5	72
17	DABCO	EtOH	90	5	70
18	DABCO	DMSO	90	5	NR ^g
19	DABCO	H ₂ O	90	5	NR ^g
20	DABCO	DCE	25	5	Trace
21	DABCO	DCE	50	5	Trace
22	DABCO	DCE	70	5	70
23	DABCO	DCE	110	5	83
24	DABCO	DCE	90	2	65
25	DABCO	DCE	90	7	82

Table 1. Optimization of the reaction conditions for the model reaction.^a

^aReaction conditions: 4-phenyl-1-(tosylsulfonyl)-1*H*-1,2,3-triazole **1c** (0.5 mmol), 4-hydroxy-2*H*-chromen-2-one **2a** (0.5 mmol), solvent (2 mL), catalyst (2 mol%).

^bIsolated yields.

^cThe amount of catalyst was 1 mol%.

^dThe amount of catalyst was 5 mol%.

^eThe amount of catalyst was 10 mol%.

 f TEA = Triethylamine.

^gNo reaction.

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in 1,2-dichloroethene (DCE) at 90 °C for 5 h, and to our delight the desired product **3c** was harvested in 70% yield as shown in Table 1 (entry 1). Subsequently, various bases such as organic (e.g., DBU, TEA, DABCO) and inorganic bases (e.g., NaOH, NaHCO₃, KHCO₃, NaOAc, NH₄OAc, CsOAc) were tested as the catalysts, organic bases were proved to be the best choice (Table 1, entries 1–3), and the target product **3c** was obtained in the highest yield (81%) when 1,4-diazabicyclo[2.2.2]octane (DABCO) was chosen as catalyst for this reaction (Table 1, entry 3). Also, among the solvents tested, DCE, toluene, MeCN, and EtOH were shown to be more effective than the others such as DMF (*N*,*N*-dimethylformamide), DMSO (dimethyl sulfoxide), and H₂O (Table 1, entries 14–19), and DCE was proved to be the best choice (Table 1, entry 3). Moreover, no conversion was observed when the reaction was performed in the absence of catalyst (Table 1, entry 10). In addition, the yield could not be obvious promoted by increasing or decreasing amount of catalyst (Table 1, entries 11–13). Furthermore, the effects of the temperature and

	$\begin{array}{c} O \\ R^{1}-S-N \\ O \\ 0 \\ 1 \\ Ph \\ 2 \end{array} \xrightarrow{P_{h}} \left(\begin{array}{c} O \\ D \\ Ph \\ 2 \end{array} \right) \xrightarrow{P_{h}} \left(\begin{array}{c} O \\ D \\ D \\ D \\ D \\ CE, 90 \\ O \\ C, 5h \end{array} \right) \xrightarrow{R^{1}} \left(\begin{array}{c} O \\ O \\ O \\ O \\ CE, 90 \\ O \\ CE, 90 \\ O \\ $				
Entry	R ¹	R ²	Product	Yield (%) ^b	
1	CH ₃ (1a)	H (2a)	3a	80	
2	C ₆ H ₅ (1b)	2a	3b	80	
3	$4-CH_{3}C_{6}H_{4}$ (1c)	2a	3c	83	
4	4-FC ₆ H ₄ (1d)	2a	3d	80	
5	4-BrC ₆ H ₄ (1e)	2a	3e	80	
6	2,4,6- ^{<i>i</i>} PrC ₆ H ₂ (1f)	2a	3f	81	
7	$4-CH_3OC_6H_4$ (1g)	2a	-	NR ^c	
8	$4-CH_3CONHC_6H_4$ (1h)	2a	-	NR ^c	
9	CH ₃ (1a)	CH ₃ (2b)	3g	81	
10	C_6H_5 (1b)	2b	3ĥ	83	
11	$4-CH_{3}C_{6}H_{5}$ (1c)	2b	3i	85	
12	$4-FC_6H_5$ (1d)	2b	3j	78	
13	$4-BrC_6H_5$ (1e)	2b	3k	81	
14	2,4,6- ⁱ PrC ₆ H ₂ (1f)	2b	31	83	
15	CH ₃ (1a)	CH ₃ O (2c)	3m	83	
16	$4-FC_6H_5$ (1d)	2c	3n	77	
17	$2,4,6^{-i}PrC_6H_2$ (1f)	2c	30	80	
18	$2,4,6^{-i} PrC_6 H_2$ (1f)	F (2d)	3р	80	
19	$2,4,6^{-i} PrC_6 H_2$ (1f)	Cl (2e)	3q	78	
20	2,4,6- ^{<i>i</i>} PrC ₆ H ₂ (1f)	Br (2f)	3r	75	

 Table 2. DABCO-catalyzed direct O-H bond sulfonylation of N-sulfonyl-1,2,3-triazoles with 4-hydroxy-2H-chromen-2-ones.^a

0 -1

^aReaction conditions: 4-phenyl-1-sulfonyl-1*H*-1,2,3-triazole **1** (0.5 mmol), 4-hydroxy-2*H*-chromen-2-one **2** (0.5 mmol), DCE (2 mL), DABCO (2 mol%), 90 °C for 5 h.

^bIsolated yields.

^cNo reaction.

reaction time were also investigated (Table 1, entries 20–25). It was found that neither decreasing nor increasing the reaction temperature or time could improve the yield. Therefore, the optimal reaction conditions were found to be 2 mol% DABCO as catalyst with DCE as the solvent at 90 $^{\circ}$ C for 5 h (Table 1, entry 3).

Having identified this acceptable optimization, we then turned to evaluate the scope of the DABCO-catalyzed direct sulfonylation by utilizing different *N*-sulfonyl-1,2,3-triazoles and 4-hydroxy-2*H*-chromen-2-ones, and the results are summarized in Table 2. A series of 2-oxo-2*H*-chromen-4-yl-4-sulfonate derivatives were obtained in good yields (75–85%). For *N*-sulfonyl-1,2,3-triazoles 1, a set of substrates with aliphatic or aromatic sulfonyl group could be efficiently sulfonated with 4-hydroxy-2*H*-chromen-2-one (**2a**) to deliver the desired products **3a–3f** in good yields (80–83%). Reactions of 4-phenyl-1-arylsulfonyl-1*H*-1,2,3-triazoles, which bearing with electron-donating (e.g. –CH₃) or electron-withdrawing groups (e.g. –F, –Br) on the aromatic ring of aryl group (Table 2, entries 3–5), proceeded well, and almost equal yields were achieved. Notably, substrate bearing with three sterically demanding isopropyl groups at the 2,4,6-positions of the benzene ring (**1f**) was also tolerated to give the corresponding products in 75–83% yields (Table 2, entries 6, 14, 17–20), the results showed that the steric hindrance did not influence this reaction obviously. When 4-phenyl-1-arylsulfonyl-1*H*-1,2,3-triazoles with a strong electron-donating group (e.g. –OCH₃, –NHCOCH₃) were subjected to

Scheme 2. DABCO-catalyzed sulfonylation of 4-phenyl-1-sulfonyl-1H-1,2,3-triazole with other enols.

this reaction, the corresponding products were not obtained (Table 2, entries 7, 8). 4-Hydroxy-2*H*-chromen-2-ones possessing either electorn-donating (**2b**, **2c**) or electronwithdrawing substituents (**2d**-**2f**) were well tolerated in this sulfonylation (Table 2, entries 9–20), affording the desired products in good yields (75–85%). This protocol was tolerant of synthetically valuable functional groups on the phenyl moiety (e.g., methoxyl, fluoro, chloro, and bromo groups), which could allow an opportunity for further transformations. In addition, all of the products were characterized by IR, ¹H NMR, and ¹³C NMR spectroscopy and HRMS analysis, and the structures of products **3c** was also unambiguously confirmed by X-ray crystallographic analysis (see Supporting Information, Figure S1).

Next, to further demonstrate the utility of this newly developed protocol, different enols and ketones containing active methylene were examined (Scheme 2). Gratifyingly, the reaction worked well with 4-hydroxy-2H-thiochromen-2-one (2g) to provide the corresponding products 3 s, 3t, and 3 u in 80%, 83%, and 86% yields, respectively (Scheme 2, Eq (1)). Likewise, reaction of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (2h) with different 4-phenyl-1-sulfonyl-1H-1,2,3-triazoles were also compatible and gave the desired products 3v, 3w, and 3x in 85%, 81%, and 81% yields, respectively (Scheme 2, Eq (2)). It is worth noting that the reaction using 1-(2-hydroxyphenyl)-3-phenylpropane-1,3-dione (2i) with 4-phenyl-1-tosyl-1H-1,2,3-triazole (1c) proceeded well and gave the desired enol sulfonate product 3y in 78% yield after prolonging the reaction time to 24 h (Scheme 2, Eq (3)). These results suggested that this direct sulfonylation would provide a convenient and practical method for the synthesis of a series of sulfonate 4-phenyl-1-sulfonyl-1H-1,2,3-triazoles enol derivatives by using as sulfonyl precursors.

Moreover, the sulfonylation process also occurred well with 4-aryl-1-(tosylsulfonyl)-1H-1,2,3-triazoles (**1g**-**1j**) and 4-hydroxy-2*H*-chromen-2-one (**2a**), affording the desired products **3c** in 84%, 80%, 81%, and 78% yields, respectively (Scheme 3). It should be noted that the electronic and steric nature of the Ar group did not show obvious effects on the yields of product **3c**.

Scheme 3. DABCO-catalyzed Sulfonylation of 4-Aryl-1-(tosylsulfonyl)-1*H*-1,2,3-triazoles and 4-Hydroxy-2*H*-chromen-2-one.

Scheme 5. The cross-coupling transformation of 2-oxo-2H-chromen-4-yl 4-methylbenzenesulfonate 3c.

In addition, we carried out a gram-scale reaction of 4-phenyl-1-(tosylsulfonyl)-1H-1,2,3-triazole (1c, 5 mmol) to react with 4-hydroxy-2H-chromen-2-one (2a, 5 mmol) under the standard conditions, and the product 3c was isolated in 80% (1.52 g) yield (Scheme 4), which showed promise for this synthetic method as a useful tool in practical synthetic contexts.

Having demonstrated the preparation of the $2-\infty - 2H$ -chromen-4-yl-4-sulfonate compounds, their reactivity of Pd-catalyzed cross-coupling reactions was then investigated, such as Suzuki-Miyaura, Sonogashira, and Heck coupling reaction. As revealed from the results depicted in Scheme 5, the generated 2-oxo-2*H*-chromen-4-yl 4-methylbenzenesulfonate (**3c**) smoothly reacted with phenylboronic acid, phenylacetylene, and

Scheme 6. Proposed mechanism for the synthesis of enol sulfonate derivatives 3.

styrene to obtain the corresponding products in 91%, 90%, and 78% yield, respectively. Therefore, the generated 2-oxo-2*H*-chromen-4-yl-4-arylsulfonate compounds from 4-aryl-1-(tosylsulfonyl)-1*H*-1,2,3-triazoles and 4-hydroxy-2*H*-chromen-2-one would be of profound interest for C–C bond formation, leading to numerous applications in organic chemistry.

On the basis of the experimental results obtained above, a plausible mechanism was proposed and described in Scheme 6. Initially, DABCO as a base obtained a proton from 4-hydroxy-2*H*-chromen-2-one (2a) to form the intermediate **A**. Subsequently, the desired products **3** resulted from nucleophilic substitution of intermediate **A** as a nucleophile with *N*-sulfonyl-1,2,3-triazoles **1**. Meanwhile, 4-phenyl-1,2,3-triazole was released as the byproduct.

Experimental section

General procedure for the synthesis of 2-oxo-2H-chromen-4-yl-4-sulfonates 3

To a stirred solution of *N*-sulfonyl-1,2,3-triazoles 1 (0.5 mmol), 4-hydroxy-2*H*-chromen-2-one 2 (0.5 mmol) in DCE (2 mL), DABCO (0.01 mmol) was added. The reaction mixture was heated in an oil bath at 90 °C for 5 h. After the reaction completed, the mixture was cooled to room temperature, extracted with CH_2Cl_2 (3 × 10 mL), and washed with water. The organic layers were combined, dried over Na₂SO₄, filtered, and evaporated under vacuum. The residue was further purified by flash column chromatography on silica gel (200-300 mesh) with ethyl acetate and petroleum ether (1:4/1:6, v/v) as the elution solvent to give the desired product **3**.

2 -Oxo-2H-chromen-4-yl methanesulfonate (3a)

This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1:6) to afford a white solid in 80% yield; mp 98–99 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.40–7.33 (m, 2H), 6.54 (s, 1H), 3.38 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 160.5, 157.2, 153.5, 133.5, 124.7, 122.9, 117.1, 114.6, 103.4, 39.1; IR (KBr) ν 3070, 3034, 1729, 1629, 1606, 1372, 1187, 1175, 1065, 898, 870, 796, 772, 746, 718 cm⁻¹; HRMS (ESI) Calcd for [C₁₀H₈O₅S + H]⁺ 241.0165, Found 241.0165.

General procedure for the synthesis of 4-Phenyl-2H-chromen-2-one 4

To a solution of phenylboronic acid (0.6 mmol), 2-oxo-2*H*-chromen-4-yl 4-methylbenzenesulfonate (0.5 mmol), and potassium carbonate (1 mmol) in degassed THF (4 mL) was added freshly prepared degassed aqueous solution of PdCl₂ (2.5 mol%) and 1,1'bis(diphenylphosphino)ferrocene (dppf) (2.5 mol%). The mixture was stirred at 50 °C under nitrogen atmosphere for 10 h. Upon completion of the reaction, the mixture was cooled to room temperature, and solvent was removed under reduced pressure. Water (10 mL) was added to the mixture, and extracted with EtOAc (3 × 10 mL). The combined organic layer was dried with anhydrous Na₂SO₄ and the solvent was concentrated in vacuum. The crude residue was purified by chromatography on silica gel (*n*-Hexane/ Ethyl Acetate: 9/1) to afford the corresponding product 4 in 91% yield.

4 -Phenyl-2H-chromen-2-one (4)^[29]

White solid; mp 99–100 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.56–7.52 (m, 4H), 7.50 (d, J = 7.5 Hz, 1H), 7.46–7.45 (m, 2H), 7.42 (d, J = 10.5 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 155.8, 154.3, 135.3, 132.0, 129.8, 129.0, 128.5, 127.1, 124.3, 119.1, 117.4, 115.3; HRMS (APCI): [M + H]⁺ Calcd for C₁₅H₁₁O₂ 223.0759; Found 223.0760.

General procedure for the synthesis of 4-(phenylethynyl)-2H-chromen-2-one 5

To a solution of phenylacetylene (0.6 mmol), 2-oxo-2*H*-chromen-4-yl 4-methylbenzenesulfonate (0.5 mmol), CuI (5 mol%) and triethylamine (0.75 mmol) in degassed acetonitrile (4 mL) was added freshly prepared degassed aqueous solution of PdCl₂ (3 mol%) and triphenylphosphine (3 mol%) under nitrogen atmosphere. The mixture was stirred at 80 °C under nitrogen atmosphere for 8 h. Upon completion of the reaction, the mixture was cooled to room temperature, and solvent was removed under reduced pressure. Water (10 mL) was added to the mixture, and extracted with EtOAc (3 × 10 mL). The combined organic layer was dried with anhydrous Na₂SO₄ and the solvent was concentrated in vacuum. The crude residue was purified by chromatography on silica gel (*n*-Hexane/Ethyl Acetate: 10/1) to afford the corresponding product 5 in 90% yield.

4 -(Phenylethynyl)-2H-chromen-2-one (5)^[30]

White solid; mp 132–133 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 8.0 Hz, 1H), 7.47–7.42 (m, 3H), 7.36 (t, J = 7.5 Hz, 2H), 6.63 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 153.7, 137.4, 132.4, 130.3, 128.8, 126.8, 124.6, 121.3, 118.5, 117.2, 102.3, 82.9; HRMS (APCI): [M + H]⁺ Calcd for C₁₇H₁₁O₂ 247.0754; Found 247.0756.

General procedure for the synthesis of (E)-4-styryl-2H-chromen-2-one 6

To a solution of styrene (1.5 mmol), 2-oxo-2*H*-chromen-4-yl 4-methylbenzenesulfonate (0.5 mmol), and triethylamine (0.75 mmol) in degassed 1,4-dioxane (4 mL) was added freshly prepared degassed aqueous solution of $Pd(OAc)_2$ (2.5 mol%) and 1,3-bis(diphe-nylphosphino) propane (dppp) (2.5 mol%) under nitrogen atmosphere. The mixture was stirred at 85 °C under nitrogen atmosphere for 20 h. Upon completion of the reaction, the mixture was cooled to room temperature, and solvent was removed under reduced pressure. Water (10 mL) was added to the mixture, and extracted with EtOAc (3 × 10 mL). The combined organic layer was dried with anhydrous Na₂SO₄ and the solvent was concentrated in vacuum. The crude residue was purified by chromatography on silica gel (*n*-Hexane/Ethyl Acetate: 10/1) to afford the corresponding product **6** in 78% yield.

(E)-4-Styryl-2H-chromen-2-one (6)^[31]

White solid; mp 89–90 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.0 Hz, 2H), 7.56 (t, *J* = 8.0 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 8.0 Hz, 1H), 6.60 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 161.2, 153.9, 150.4, 137.8, 135.6, 131.9, 129.6, 129.0, 127.5, 124.4, 124.2, 120.3, 118.7, 117.5, 110.5; HRMS (APCI): [M + H]⁺ Calcd for C₁₇H₁₃O₂ 249.0916; Found 249.0918.

Conclusions

In conclusion, a novel and efficient base-catalyzed sulfonylation of N-sulfonyl-1,2,3-triazoles and 4-hydroxy-2H-chromen-2-ones for the synthesis of 2-oxo-2H-chromen-4-yl-4arylsulfonates in good yields has been developed. Notably, this is the first example of the sulfonylation utilizing N-sulfonyl-1,2,3-triazoles as sulfonyl precursors. This metal and oxidant-free synthetic process works well with a wide range of substrates and can be safely conducted on a gram scale. The features such as generality, high efficiency (low catalyst loading), and mild reaction conditions make this method an attractive alternative for the preparation of organosulfone compounds. Furthermore, this new reaction can enrich the chemistry of N-sulfonyl-1,2,3-triazole compounds.

Full experimental detail, ¹H and ¹³C NMR spectra. This material can be found via the "Supplementary Content" section of this article's webpage.

Funding

The work was partially supported by the National Natural Science Foundation of China [Nos. 21772001, 21702003], the Anhui Provincial Natural Science Foundation [No. 1808085MB41], the Natural Science Foundation of Education Administration of Anhui Province [No. KJ2016A267], the Special and Excellent Research Fund of Anhui Normal University, and the Doctoral Scientific Research Foundation of Anhui Normal University [No. 2016XJJ110].

ORCID

Xinwei He (http://orcid.org/0000-0002-1974-2464 Yongjia Shang (http://orcid.org/0000-0001-9873-9150 10 🕢 X. HE ET AL.

References

- [1] (a) Kleman, P.; González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A. Asymmetric Hydrogenation of 1-Alkyl and 1-Aryl Vinyl Benzoates: A Broad Scope Procedure for the Highly Enantioselective Synthesis of 1-Substituted Ethyl Benzoates. ACS Catal. 2014, 4, 4398-4408. DOI: 10.1021/cs501402z. (b) Lindsay, V. N. G.; Murphy, R. A.; Sarpong, R. Effect of Protic Additives in Cu-Catalysed Asymmetric Diels-Alder Cycloadditions of Doubly Activated Dienophiles: Towards the Synthesis of Magellanine-Type Lycopodium Alkaloids. Chem. Commun. 2017, 53, 10291-10294. DOI: 10.1039/ C7CC06367A. (c) Schröder, H.; Strohmeier, G. A.; Leypold, M.; Nuijens, T.; Quaedflieg, P. J. L. M.; Breinbauer, R. Racemization-Free Chemoenzymatic Peptide Synthesis Enabled by the Ruthenium-Catalyzed Synthesis of Peptide Enol Esters via Alkyne-Addition and Subsequent Conversion Using Alcalase-Cross-Linked Enzyme Aggregates. Adv. Synth. Catal. 2013, 355, 1799-1807. DOI: 10.1002/adsc.201200423. (d) Xie, L.; Ma, H.; Li, J.; Yu, Y.; Qin, Z.; Fu, B. Ni(II)-Catalyzed Enantioselective Mukaiyama-Mannich Reaction between Silyl Enol Ethers and Cyclic N-Sulfonyl α-Ketiminoesters. Org. Chem. Front. 2017, 4, 1858-1862. DOI: 10.1039/C7QO00370F. (e) Kraus, G. A.; Wang, S. Synthesis of Isophthalates from Methyl Coumalate. RSC Adv. 2017, 7, 56760-56763. DOI: 10.1039/ C7RA12935A.
- [2] (a) Wang, G.-C.; Li, T.; Deng, F.-Y.; Li, Y.-L.; Ye, W.-C. Five New Phenolic Glycosides from Hedyotis scandens. *Bioorg. Med. Chem. Lett.* 2013, 23, 1379–1382. DOI: 10.1016/ j.bmcl.2012.12.077. (b) Yu, S.; Li, F.; Kim, S. (*E*)- and (*Z*)-Stereodefined Enol Sulfate Esters Derived from α-Aryl Aldehydes: Stereocomplementary Synthesis of Styryl Sulfate Natural Products. *J. Org. Chem.* 2017, 82, 6992–6999. DOI: 10.1021/acs.joc.7b00868. (c) Iliopoulou, D.; Vagias, C.; Harvala, C.; Roussis, V.; Udoteal, B. A New Linear Diterpenoid from the Green Alga *Udotea Petiolate. Nat. Prod. Lett.* 2000, 14, 373–378. DOI: 10.1080/ 10575630008043770.
- [3] (a) Pfennig, T.; Carraher, J. M.; Chemburkar, A.; Johnson, R. L.; Anderson, A. T.; Tessonnier, J.-P.; Neurock, M.; Shanks, B. H. A New Selective Route towards Benzoic Acid and Derivatives from Biomass-Derived Coumalic Acid. *Green Chem.* 2017, 19, 4879–4888. DOI: 10.1039/C7GC02041D. (b) Kotek, V.; Dvořáková, H.; Tobrman, T. Modular and Highly Stereoselective Approach to All-Carbon Tetrasubstituted Alkenes. Org. Lett. 2015, 17, 608–611. DOI: 10.1021/ol503624v. (c) Xu, X.-H.; Wang, X.; Liu, G.-K.; Tokunaga, E.; Shibata, N. Regioselective Synthesis of Heteroaryl Triflones by LDA (Lithium Diisopropylamide)-Mediated Anionic Thia-Fries Rearrangement. Org. Lett. 2012, 14, 2544–2547. DOI: 10.1021/ol300842d. (d) Xie, L.; Zhen, X.; Huang, S.; Su, X.; Lin, M.; Li, Y. Photoinduced Rearrangement of Vinyl Tosylates to β-Ketosulfones. Green Chem. 2017, 19, 3530–3534. DOI: 10.1039/C7GC01467H.
- [4] (a) Florentino, L.; Aznar, F.; Valdés, C. Synthesis of Polysubstituted Isoquinolines through Cross-Coupling Reactions with α-Alkoxytosylhydrazones. Org. Lett. 2012, 14, 2323-2325. DOI: 10.1021/ol300810p. (b) Gøgsig, T. M.; Lindhardt, A. T.; Skrydstrup, T. Heteroaromatic Sulfonates and Phosphates as Electrophiles in Iron-Catalyzed Cross-Couplings. Org. Lett. 2009, 11, 4886-4888. DOI: 10.1021/ol901975u. (c) Gui, Y.-Y.; Liao, L.-L.; Sun, L.; Zhang, Z.; Ye, J.-H.; Shen, G.; Lu, Z.-P.; Zhou, W.-J.; Yu, D.-G. Coupling of C(sp3)-H bonds with C(sp2)-O electrophiles: mild, general and selective . Chem. Commun. (Camb.) 2017, 53, 1192-1195. DOI: 10.1039/C6CC09685A. (d) Liao, L.-L.; Gui, Y.-Y.; Zhang, X.-B.; Shen, G.; Liu, H.-D.; Zhou, W.-J.; Li, J.; Yu, D.-G. Phosphorylation of Alkenyl and Aryl C-O Bonds via Photoredox/Nickel Dual Catalysis . Org. Lett. 2017, 19, 3735-3738. DOI: 10.1021/acs.orglett.7b01561. (e) Wu, Y.; Fu, W. C.; Chiang, C.-W.; Choy, P. Y.; Kwong, F. Y.; Lei, A. Palladium-Catalysed Mono-α-alkenylation of Ketones with Alkenyl Tosylates. Chem. Commun. (Camb.) 2017, 53, 952-955. DOI: 10.1039/c6cc08392g.

- [5] (a) Ashida, Y.; Sato, Y.; Suzuki, T.; Ueno, K.; Kai, K.; Nakatsuji, H.; Tanabe, Y. (E)-,(Z)-Parallel Preparative Methods for Stereodefined β,β-Diaryl- and α,β-Diaryl-α,β-unsaturated Esters: Application to the Stereocomplementary Concise Synthesis of Zimelidine. *Chem. Eur. J.* 2015, 21, 5934–5945. DOI: 10.1002/chem.201405150. (b) Molinaro, C.; Scott, J. P.; Shevlin, M.; Wise, C.; Ménard, A.; Gibb, A.; Junker, E. M.; Lieberman, D. Catalytic, Asymmetric, and Stereodivergent Synthesis of Non-Symmetric β,β-Diaryl-α-Amino Acids. *J. Am. Chem. Soc.* 2015, 137, 999–1006. DOI: 10.1021/ja511872a. (c) Wong, P. Y.; Chow, W. K.; Chung, K. H.; So, C. M.; Lau, C. P.; Kwong, F. Y. A Versatile Palladium Catalyst System for Suzuki-Miyaura Coupling of Alkenyl Tosylates and Mesylates. *Chem. Commun. (Camb.)* 2011, 47, 8328–8330. DOI: 10.1039/c1cc12240a.
- [6] (a) Li, H.; Mazet, C. Catalyst-Directed Diastereoselective Isomerization of Allylic Alcohols for the Stereoselective Construction of C(20) in Steroid Side Chains: Scope and Topological Diversification. J. Am. Chem. Soc. 2015, 137, 10720–10727. DOI: 10.1021/ jacs.5b06281. (b) Nakatsuji, H.; Ueno, K.; Misaki, T.; Tanabe, Y. General, Robust, and Stereocomplementary Preparation of β-Ketoester Enol Tosylates as Cross-Coupling Partners Utilizing TsCl-N-Methylimidazole Agents. Org. Lett. 2008, 10, 2131–2134. DOI: 10.1021/jacs.5b06281.
- [7] Steinhuebel, D.; Baxter, J. M.; Palucki, M.; Davies, I. W. Enol Tosylates as Viable Partners in Pd-Catalyzed Cross-Coupling Reactions. J. Org. Chem. 2005, 70, 10124–10127. DOI: 10.1021/jo051590s.
- [8] Limmert, M. E.; Roy, A. H.; Hartwig, J. F. Kumada Coupling of Aryl and Vinyl Tosylates under Mild Conditions. J. Org. Chem. 2005, 70, 9364–9370. DOI: 10.1021/jo051394l.
- [9] Klapars, A.; Campos, K. R.; Chen, C.-Y.; Volante, R. P. Preparation of Enamides via Palladium-Catalyzed Amidation of Enol Tosylates. Org. Lett. 2005, 7, 1185–1188. DOI: 10.1021/ol050117y.
- [10] (a) Wei, J.; Jiang, J.; Xiao, X.; Lin, D.; Deng, Y.; Ke, Z.; Jiang, H.; Zeng, W. Copper-Catalyzed Regioselective C-H Sulfonylation of 8-Aminoquinolines. J. Org. Chem. 2016, 81, 946–955. DOI: 10.1021/acs.joc.5b02509. (b) Liu, X.; Chen, X.; Mohr, J. T. Copper-Catalyzed γ-Sulfonylation of α,β-Unsaturated Carbonyl Compounds by Means of Silyl Dienol Ethers. Org. Lett. 2015, 17, 3572–3575. DOI: 10.1021/acs.orglett.5b01675. (c) Liang, H.-W.; Jiang, K.; Ding, W.; Yuan, Y.; Shuai, L.; Chen, Y.-C.; Wei, Y. Selective Remote C-H Sulfonylation of Aminoquinolines with Arylsulfonyl Chlorides via Copper Catalysis. Chem. Commun. 2015, 51, 16928–16931. DOI: 10.1039/C5CC05527J. (d) Wang, Y.; Wang, Y.; Zhang, Q.; Li, D. Site-Selective Oxidative C-H Sulfonylation of 8-Acylaminoquinolines and Anilides under Metal-Free Conditions. Org. Chem. Front. 2017, 4, 514–518. DOI: 10.1039/C6QO00730A. (e) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. A Base-Free, Ultrasound Accelerated One-Pot Synthesis of 2-Sulfonylquinolines in Water. Green Chem. 2017, 19, 5642–5646. DOI: 10.1039/C7GC02304A.
- [11] (a) Su, Y.; Zhou, X.; He, C.; Zhang, W.; Ling, X.; Xiao, X. In Situ Generated HypoIodite Activator for the C2 Sulfonylation of Heteroaromatic N-oxides. J. Org. Chem. 2016, 81, 4981-4987. DOI: 10.1021/acs.joc.6b00475. (b) Zhu, X.-Y.; Li, M.; Han, Y.-P.; Chen, S.; Li, Y.-M. Copper-Catalyzed Oxidative Cyclization of Alkynes with X.-S.; Liang, Sulfonylhydrazides Leading to 2-Sulfonated 9H-pyrrolo[1,2-a]indol-9-Ones. J. Org. Chem. 2017, 82, 8761-8768. DOI: 10.1021/acs.joc.7b01497. (c) Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Visible-Light-Enabled Decarboxylative Sulfonylation of Cinnamic Acids with Sulfonylhydrazides under Transition-Metal-Free Conditions. Org. Lett. 2016, 18, 2990-2993. DOI: 10.1021/acs.orglett.6b01353. (d) Senadi, G. C.; Guo, B.-C.; Hu, W.-P.; Wang, J.-J. Iodine-Promoted Cyclization of N-Propynyl Amides and N-Allyl Amides via Sulfonylation and Sulfenylation. Chem. Commun. (Camb.) 2016, 52, 11410-11413. DOI: 10.1039/C6CC05138C. (e) Xu, K.; Li, L.; Yan, W.; Wu, Y.; Wang, Z.; Zhang, S. Dual Roles of Sulfonyl Hydrazides in the Catalyst-Free Sulfonylation of Unsaturated Benzylic Alcohols in Water. Green Chem. 2017, 19, 4494-4497. DOI: 10.1039/C7GC01847A.

12 🕢 X. HE ET AL.

- [12] (a) Luo, K.; Zhang, L.; Ma, J.; Sha, Q.; Wu, L. Acetic Acid Mediated Sulfonylation of Allenylphosphine Oxides: Divergent Synthesis of Bifunctionalized 1,3-Butadienes and Allenes. J. Org. Chem. 2017, 82, 6978-6985. DOI: 10.1021/acs.joc.7b00813. (b) Wu, W.; Yi, S.; Huang, W.; Luo, D.; Jiang, H. Ag-Catalyzed Oxidative Cyclization Reaction of 1,6-Enynes and Sodium Sulfinate: Access to Sulfonylated Benzofurans. Org. Lett. 2017, 19, 2825-2828. DOI: 10.1021/acs.orglett.7b00980. (c) Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G.-J. Chemoselective Cross-Coupling Reaction of Sodium Sulfinates with Phenols under Aqueous Conditions. Green Chem. 2016, 18, 1538-1546. DOI: 10.1039/ C5GC02292D. (d) Wang, L.-J.; Chen, M.; Qi, L.; Xu, Z.; Li, W. Copper-Mediated Oxysulfonylation of Alkenyl Oximes with Sodium Sulfinates: A Facile Synthesis of Isoxazolines Featuring a Sulfone Substituent. Chem. Commun. 2017, 53, 2056-2059. DOI: 10.1039/C7CC00090A. (e) Wan, Y.; Zhang, J.; Chen, Y.; Kong, L.; Luo, F.; Zhu, G. Palladium-Catalyzed Tandem Cyclization/Sulfonylation of Homoallenyl Amides with Sodium Sulfinates. Org. Biomol. Chem. 2017, 15, 7204-7211. DOI: 10.1039/C7OB01922J. (f) Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; Li, W.-F.; Cao, Z.; He, W.-M. Metal-Free Deoxygenative Sulfonvlation of Quinoline N-Oxides with Sodium Sulfinates via a Dual Radical Coupling Process. Org. Chem. Front. 2018, 5, 2604-2609. DOI: 10.1039/C8QO00661J.
- (a) Zhang, G.; Zhang, L.; Yi, H.; Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L.-Z.; Lei, A. Visible-[13] Light Induced Oxidant-Free Oxidative Cross-Coupling for Constructing Allylic Sulfones from Olefins and Sulfinic Acids. Chem. Commun. 2016, 52, 10407-10410. DOI: 10.1039/ C6CC04109D. (b) Xia, D.; Li, Y.; Miao, T.; Li, P.; Wang, L. Direct Synthesis of Sulfonated Dihydroisoquinolinones from N-Allylbenzamide and Arylsulfinic Acids via TBHP-Promoted Cascade Radical Addition and Cyclization. Chem. Commun. 2016, 52, 11559-11562. DOI: 10.1039/C6CC04983D. (c) Zhao, Y.; Wang, Y.; Gu, Z.; Wang, Z. [3,3]-Sigmatropic Rearrangement of Allenic Alcohols: Stereoselective Synthesis of 1,3-Diene-2ol Sulfonates. Org. Biomol. Chem. 2017, 15, 4014-4021. DOI: 10.1039/C7OB00578D. (d) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. Dioxygen-Triggered Oxidative Radical Reaction: Direct Aerobic Difunctionalization of Terminal Alkynes toward β -Keto Sulfones. J. Am. Chem. Soc. 2013, 135, 11481-11484. DOI: 10.1021/ja4052685. (e) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Aerobic Oxysulfonylation of Alkenes Leading to Secondary and Tertiary β -Hydroxysulfones. Angew. Chem., Int. Ed. 2013, 52, 7156-7159. DOI: 10.1039/C6CC04109D.
- [14] (a) Gu, Z.-Y.; Li, J.-H.; Wang, S.-Y.; Ji, S.-J. Cobalt(II)-Catalyzed Bis-isocyanide Insertion Reactions with Sulfonyl Azides via Nitrene Radicals: Chemoselective Synthesis of Sulfonylamidyl Amide and 3-Imine Indole Derivatives. Chem. Commun. 2017, 53, 11173–11176. DOI: 10.1039/C7CC06531K. (b) Xu, L.; Wang, L.; Feng, Y.; Li, Y.; Yang, L.; Cui, X. Iridium(III)-Catalyzed One-Pot Access to 1,2-Disubstituted Benzimidazoles Starting from Imidamides and Sulfonyl Azides. Org. Lett. 2017, 19, 4343–4346. DOI: 10.1021/acs.orglett.7b02028. (c) Lanke, V.; Prabhu, K. R. Iridium(III) Catalyzed Regioselective Amidation of Indoles at the C4-Position Using Weak Coordinating Groups. Chem. Commun. 2017, 53, 5117–5120. DOI: 10.1039/C7CC00763A. (d) Jiang, T.; Gu, Z.-Y.; Yin, L.; Wang, S.-Y.; Ji, S.-J. Cobalt(II)-Catalyzed Isocyanide Insertion Reaction with Sulfonyl Azides in Alcohols: Synthesis of Sulfonyl Isoureas. J. Org. Chem. 2017, 82, 7913–7919. DOI: 10.1021/acs.joc.7b01127.
- [15] Phanindrudu, M.; Tiwari, D. K.; Sridhar, B.; Likhar, P. R.; Tiwari, D. K. Magnetically Separable nano-Copper Catalyzed Unprecedented Stereoselective Synthesis of E-Vinyl Sulfones from Tosylmethyl Isocyanide and Alkynes: Tosmic as a Source of the Sulfonyl Group. Org. Chem. Front. 2016, 3, 795–798. DOI: 10.1039/C6QO00063K.
- [16] Shi, X.; Ren, X.; Ren, Z.; Li, J.; Wang, Y.; Yang, S.; Gu, J.; Gao, Q.; Huang, G. Iron(III)-Catalyzed Aerobic Oxidation and Cleavage/Formation of a C-S Bond. *Eur. J. Org. Chem.* 2014, 2014, 5083–5088. DOI: 10.1002/ejoc.201402377.
- [17] (a) Wang, H.; Sun, S.; Cheng, J. Copper-Catalyzed Arylsulfonylation and Cyclizative Carbonation of *N*-(Arylsulfonyl)acrylamides Involving Desulfonative Arrangement Toward

Sulfonated Oxindoles. Org. Lett. 2017, 19, 5844-5847. DOI: 10.1021/acs.orglett.7b02827. (b) Li, Y.; Mao, R.; Wu, J. N-Radical Initiated Aminosulfonylation of Unactivated C(sp³)-H Bond through Insertion of Sulfur Dioxide. Org. Lett. 2017, 19, 4472-4475. DOI: 10.1021/acs.orglett.7b02010. (c) An, Y.; Xia, H.; Wu, J. A Palladium-Catalyzed Coupling Reaction of Aryl Nonaflates, Sulfur Dioxide, and Hydrazines. Org. Biomol. Chem. 2016, 14, 1665-1669. DOI: 10.1039/C5OB02514A. (d) Xia, H.; An, Y.; Zeng, X.; Wu, J. A Copper-Catalyzed Sulfonylative C-H Bond Functionalization from Sulfur Dioxide and Aryldiazonium Tetrafluoroborates. Org. Chem. Front. 2018, 5, 366-370. DOI: 10.1039/ C7QO00866J. (e) Xia, H.; An, Y.; Zeng, X.; Wu, J. Palladium-Catalyzed Direct Sulfonylation of C-H bonds with the insertion of sulfur dioxide. Chem. Commun. (Camb.) 2017, 53, 12548-12551. DOI: 10.1039/C7CC07279A. (f) Liu, T.; Zheng, D.; Wu, J. Synthesis of 3-((Arylsulfonyl)methyl)indolin-2-ones via Insertion of Sulfur Dioxide Using Anilines as the Aryl Source. Org. Chem. Front. 2017, 4, 1079-1083. DOI: 10.1039/ C7QO00075H. (g) Qiu, G.; Zhou, K.; Gao, L.; Wu, J. Insertion of Sulfur Dioxide via a Radical Process: an Efficient Route to Sulfonyl Compounds. Org. Chem. Front. 2018, 5, 691-705. DOI: 10.1039/C7QO01073G.

- [18] (a) Lu, P.; Wang, Y. The Thriving Chemistry of Ketenimines. *Chem. Soc. Rev.* **2012**, *41*, 5687–5705. DOI: 10.1039/C2CS35159E. (b) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang, S. Sulfonyl and Phosphoryl Azides: Going Further beyond the Click Realm of Alkyl and Aryl Azides Sulfonyl and Phosphoryl Azides: Going Further beyond the Click Realm of Alkyl and Aryl Azides. *Chem. Asian J* **2011**, *6*, 2618–2634. DOI: 10.1002/asia.201100340. (c) Davies, H. M. L.; Alford, J. S. Reactions of Metallocarbenes Derived from *N*-Sulfonyl-1,2,3-Triazoles. *Chem. Soc. Rev.* **2014**, *43*, 5151–5162. DOI: 10.1039/C4CS00072B. (d) Jiang, Y.; Sun, R.; Tang, X.-Y.; Shi, M. Recent Advances in the Synthesis of Heterocycles and Related Substances Based on α -Imino Rhodium Carbene Complexes Derived from *N*-Sulfonyl-1,2,3-Triazoles. *Chem. Eur. J* **2016**, *22*, 17910–179224. DOI: 10.1039/c2cs35159e.
- [19] (a) Anugu, R. R.; Chegondi, R. Tunable Diastereoselective Desymmetrization of Cyclohexadienones Triggered by Copper-Catalyzed Three-Component Coupling Reaction. J. Org. Chem 2017, 82, 6786–6794. DOI: 10.1021/acs.joc.7b00936. (b) Huang, Y.; Yi, W.; Sun, Q.; Zhang, L.; Yi, F. A New and Facile Approach to 1,2-Dihydroisoquinolin-3(4H)-Imines by the Cu(I)-Catalyzed Reaction of 2-Ethynylbenzyl Methanesulfonates. Sulfonyl Azides and Amines. RSC Adv 2018, 8, 74–79. DOI: 10.1039/C7RA12412K. (c) Chauhan, D. P.; Varma, S. J.; Gudem, M.; Panigrahi, N.; Singh, K.; Hazra, A.; Talukdar, P. Intramolecular Cascade Rearrangements of Enynamine Derived Ketenimines: Access to Acyclic and Cyclic Amidines. Org. Biomol. Chem 2017, 15, 4822–4830. DOI: 10.1039/C7OB00499K. (d) Kumar, R.; Thorat, S. H.; Reddy, M. S. Cu-Catalyzed Iminative Hydroolefination of Unactivated Alkynes en Route to 4-Imino-tetrahydropyridines and 4-Aminopyridines. Chem. Commun 2016, 52, 13475–13478. DOI: 10.1039/C6CC08081B. (e) Lu, P.; Wang, Y. Strategies for Heterocyclic Synthesis via Cascade Reactions Based on Ketenimines. Synlett 2010, 2, 165–173. DOI: 10.1021/acs.joc.7b00936.
- [20] (a) Jiang, B.; Shi, M. Rhodium(II)-Catalyzed Intermolecular [3 + 2] Annulation of N-Vinyl Indoles with N-Tosyl-1,2,3-Triazoles via an Aza-Vinyl Rh Carbene. Org. Chem. Front. **2017**, 4, 2459–2464. DOI: 10.1039/C7QO00703E. (b) Ali, A.; Hao, J.; Bi, X.; Fu, J. Rh(II)-Catalyzed Tandem Cyclization of Aliphatic N-Sulfonyl-1,2,3-triazoles and Alcohols for the Synthesis of 6-Alkoxy Piperidin-3-Ones. Adv. Synth. Catal. **2017**, 359, 4057–4061. DOI: 10.1002/adsc.201700882. (c) Sun, R.; Jiang, Y.; Tang, X.-Y.; Shi, M. Rh^{II}-Catalyzed Cyclization of Ester/Thioester-Containing N-Sulfonyl-1,2,3-triazoles: Facile Synthesis of Alkylidenephthalans and Alkylidenethiophthalans. Asian J. Org. Chem **2017**, 6, 83–87. DOI: 10.1002/ajoc.201600466. (d) Miura, T.; Tanaka, T.; Hiraga, K.; Stewart, S. G.; Murakami, M. Stereoselective Synthesis of 2,3-Dihydropyrroles from Terminal Alkynes, Azides, and α,β-Unsaturated Aldehydes via N-Sulfonyl-1,2,3-Triazoles. J. Am. Chem. Soc. **2013**, 135, 13652–13655. DOI: 10.1039/C7QO00703E.
- [21] (a) Miura, T.; Yamauchi, M.; Murakami, M. Nickel-Catalysed Denitrogenative Alkyneinsertion Reactions of *N*-Sulfonyl-1,2,3-Triazoles. *Chem. Commun* **2009**, *45*,

1470–1471. DOI: 10.1039/B819162J. (b) Lei, X.; Gao, M.; Tang, Y. Rh(II)-Catalyzed Transannulation of *N*-Sulfonyl-1,2,3-Triazoles with 2,1-Benzisoxazoles or 1,2-Benzisoxazoles. *Org. Lett.* **2016**, *18*, . 4990–4993. DOI: 10.1021/acs.orglett.6b02454. (c) Zhang, L.; Sun, G.; Bi, X. Rhodium/Silver-Cocatalyzed Transannulation of *N*-Sulfonyl-1,2,3-triazoles with Vinyl Azides: Divergent Synthesis of Pyrroles and 2*H*-Pyrazines. *Chem. Asian J.* **2016**, *11*, 3018–3021. DOI: 10.1002/asia.201601164. (d) Li, Y.; Zhang, R.; Ali, A.; Zhang, J.; Bi, X.; Fu, J. Synthesis of 6-Substituted Piperidin-3-ones *via* Rh(II)-Catalyzed Transannulation of *N*-Sulfonyl-1,2,3-triazoles with Electron-Rich Aromatic Nucleophiles. *Org. Lett.* **2017**, *19*, 3087–3090. DOI: 10.1021/acs.orglett.7b01180. (e) Cheng, W.; Tang, Y.; Xu, Z.-F.; Li, C.-Y. Synthesis of Multifunctionalized 2-Carbonylpyrrole by Rhodium-Catalyzed Transannulation of 1-Sulfonyl-1,2,3-triazole with β -Diketone. *Org. Lett.* **2016**, *18*, 6168–6171. DOI: 10.1021/acs.orglett.6b03179.

- [22] (a) Pal, K.; Shukla, R. K.; Volla, C. M. R. Rh(II)-Catalyzed Denitrogenative Reaction of N-Sulfonyl-1,2,3-triazoles with Isatins for the Construction of Indigoids. *Org. Lett.* **2017**, *19*, 5764–5767. DOI: 10.1021/acs.orglett.7b02697. (b) Miura, T.; Biyajima, T.; Fujii, T.; Murakami, M. Synthesis of α -Amino Ketones from Terminal Alkynes *via* Rhodium-Catalyzed Denitrogenative Hydration of *N*-Sulfonyl-1,2,3-Triazoles. *J. Am. Chem. Soc.* **2012**, *134*, 194–196. DOI: 10.1002/chin.201224041.
- [23] Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles. J. Am. Chem. Soc. 2009, 131, 18034–18035. DOI: 10.1021/ja908075u.
- [24] Selander, N.; Worrell, B. T.; Chuprakov, S.; Velaparthi, S.; Fokin, V. V. Arylation of Rhodium(II) Azavinyl Carbenes with Boronic Acids. J. Am. Chem. Soc. 2012, 134, 14670–14673. DOI: 10.1021/ja3062453.
- [25] (a) Hein, J. E.; Fokin, V. V. Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) and beyond: New Reactivity of Copper(I) Acetylides. *Chem. Soc. Rev.* 2010, *39*, 1302–1315. DOI: 10.1039/B904091A. (b) Kubiak, R. W.; II, Mighion, J. D.; Wilkerson-Hill, S. M.; Alford, J. S.; Yoshidomi, T.; Davies, H. M. L. Enantioselective Intermolecular C-H Functionalization of Allylic and Benzylic sp³ C-H Bonds Using N-Sulfonyl-1,2,3-Triazoles. *Org. Lett.* 2016, *18*, 3118–3121. DOI: 10.1021/acs.orglett.6b01298. (c) Park, S.; Yong, W.-S.; Kim, S.; Lee, P. H. Diastereoselective N-Sulfonylaminoalkenylation of Azulenes from Terminal Alkynes and Azides via N-sulfonyl-1,2,3-triazoles. *Org. Lett.* 2014, *16*, 4468–4471. DOI: 10.1021/ol502208w. (d) Pal, K.; Volla, C. M. R. Rhodium-Catalyzed Denitrogenative Transannulation of 1,2,3-Triazolyl-Carbamates: Efficient Access to 4-Aminooxazolidinones. *Org. Chem. Front.* 2017, *4*, 1380–1384. DOI: 10.1039/C7QO00101K.
- [26] Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Copper-Catalyzed Synthesis of N-Sulfonyl-1,2,3-triazoles: Controlling Selectivity. Angew. Chem. Int. Ed. 2007, 46, 1730–1733. DOI: 10.1002/anie.200604241.
- [27] (a) Ma, T.; Sun, C.; Yuan, X.; Li, X.; Zhao, Z. N-2-Selective Gold-catalyzed Alkylation of 1-Sulfonyl-1,2,3-Trizoles. *RSC Adv.* 2017, 7, 1062–1066. DOI: 10.1039/C6RA26521A. (b) Jiang, Y.; Wang, Q.; Sun, R.; Tang, X.-Y.; Shi, M. Base-Induced Synthesis of N-Dialkylaminomethyl-2H-1,2,3-triazoles from N-Sulfonyl-1,2,3-Triazoles. *Org. Chem. Front.* 2016, 3, 744–748. DOI: 10.1039/C6QO00102E.
- [28] Huang, K.; Sheng, G.; Lu, P.; Wang, Y. From 1-Sulfonyl-4-aryl-1,2,3-triazoles to 1-Allenyl-5-aryl-1,2,3-Triazoles. J. Org. Chem. 2017, 82, 5294–5300. DOI: 10.1021/acs.joc.7b00627.
- [29] Cheval, N. P.; Dikova, A.; Blanc, A.; Weibel, J.-M.; Pale, P. Vinyl Nosylates: An Ideal Partner for Palladium-Catalyzed Cross-Coupling Reactions. *Chem. Eur. J.* 2013, 19, 8765–8768. DOI: 10.1002/chem.201300127.
- [30] (a) Moulton, B. E.; Lynam, J. M.; Duhme-Klair, A.-K.; Zheng, W.; Lin, Z.; Fairlamb, I. J. S. A Tropisomerisation in Sterically Hindered α,β-Disubstituted Cyclopentenones Derived from an Intermolecular Cobalt(0)-Mediated Pauson-Khand Reaction. Org. Biomol. Chem. 2010, 8, 5398–5403. DOI: 10.1039/C0OB00264J. (b) Pérez, J. M.; Cano, R.; McGlacken, G. P.; Ramón, D. J. Palladium(II) Oxide Impregnated on Magnetite as a

Catalyst for the Synthesis of 4-Arylcoumarins via a Heck-Arylation/Cyclization Process. RSC Adv. 2016, 6, 36932–36941. DOI: 10.1039/C6RA01731B.

[31] Waheed, M.; Ahmed, N. Pd/Indanone-Based Ligands: An Efficient Catalyst System for Ullmann-Type, Suzuki-Miyaura, and Mizoroki-Heck Cross-Coupling Reactions with Aryl Tosylates and Aryl Halides. Synthesis 2017, 49, 4372–4382. DOI: 10.1055/s-0036-1589058.