1999 Vol. 1, No. 3 499–502

A New Enantioselective Total Synthesis of Al-77-B

Hiyoshizo Kotsuki,* Tomohiro Araki, Aya Miyazaki, Mitsuhiro Iwasaki, and Probal K. Datta

Department of Material Science, Faculty of Science, Kochi University, Akebono-cho, Kochi 780-8520, Japan

kotsuki@cc.kochi-u.ac.jp

Received May 24, 1999

ABSTRACT

An enantioselective total synthesis of Al-77-B (1), a gastroprotective substance isolated from a culture broth of *Bacillus pumilus* Al-77, was performed in high overall yield. In this synthesis, the dihydroisocoumarin part 14 and the dihydroxyamino acid part 20 were both assembled from p-ribose as the common chiral source. For the construction of 14 a bromobenzofuran derivative was used as a novel salicylic acid synthon. Finally, DEPC-mediated condensation of 14 and 20 yielded Al-77-B (1).

The AI-77s are a group of 3,4-dihydroisocoumarin antibiotics that have been isolated from a culture broth of *Bacillus pumilus* AI-77.^{1,2} The major component, AI-77-B (1), has been found to exhibit potent gastroprotective activity without anticholinergic, antihistaminergic, or central suppressive effects.³ Due to its unique structure and its characteristic biological activity, AI-77-B (1) has attracted a great deal of attention from synthetic chemists. To date, four syntheses of this compound have been reported by Hamada/Shioiri,⁴ Thomas,⁵ Procter,⁶ and Vogel.⁷ Several approaches to the partial synthesis of 1 have also been reported.⁸

Our own enantioselective synthesis of **1** uses two segments, the dihydroisocoumarin (part A) and the dihydroxyamino acid (part B), which were both assembled from D-ribose as the common chiral source. ⁹ To construct part A,

compound **14**, our earlier approach relied on novel carbon—carbon bond-forming reactions¹⁰ of triflate **9** with an aryl Grignard reagent and subsequent regioselective metalation/

^{*} To whom correspondence should be addressed. Tel: +81-888-44-8298. Fax: +81-888-44-8360.

^{(1) (}a) Shimojima, Y.; Hayashi, H.; Ooka, T.; Shibukawa, M. Agric. Biol. Chem. 1982, 46, 1823. (b) Shimojima, Y.; Hayashi, H.; Ooka, T.; Shibukawa, M.; Iitaka, Y. Tetrahedron Lett. 1982, 23, 5435. (c) Shimojima, Y.; Hayashi, H.; Ooka, T.; Shibukawa, M. Iitaka, Y. Tetrahedron 1984, 40, 2519.

⁽²⁾ Okazaki, H.; Kishi, T.; Beppu, T.; Arima, K. J. Antibiot. 1975, 28, 717. Itoh, J.; Omoto, S.; Shomura, T.; Nishizawa, N.; Miyado, S.; Yuda, Y.; Shibata, U.; Inoue, S. J. Antibiot. 1981, 34, 611. Itoh, J.; Shomura, T.; Omoto, S.; Miyado, S.; Yuda, Y.; Shibata, U.; Inouye, S. Agric. Biol. Chem. 1982, 46, 1255. Itoh, J.; Omoto, S.; Nishizawa, N.; Kodama, Y.; Inouye, S. Agric. Biol. Chem. 1982, 46, 2659.

⁽³⁾ Shimojima, Y.; Hayashi, H. *J. Med. Chem.* **1983**, 26, 1370. Shimojima, Y.; Shirai, T.; Baba, T.; Hayashi, H. *J. Med. Chem.* **1985**, 28, 3. Inouye, S.; Kondo, S. In *Novel Microbial Products for Medicine and Agriculture*; Demain, A. L., Somkuti, G. A., Hunter-Cevera, J. C., Rossmoore, H. W., Eds.; Elsevier: Amsterdam, 1989; Chapter 21.

^{(4) (}a) Hamada, Y.; Kawai, A.; Kohno, Y.; Hara, O.; Shioiri, T. *J. Am. Chem. Soc.* **1989**, *111*, 1524. (b) Hamada, Y.; Hara, O.; Kawai, A.; Kohno, Y.; Shioiri, T. *Tetrahedron* **1991**, *47*, 8635.

⁽⁵⁾ Broady, S. D.; Rexhausen, J. E.; Thomas, E. J. J. Chem. Soc., Chem. Commun. 1991, 708.

^{(6) (}a) Ward, R. A.; Procter, G. Tetrahedron Lett. **1992**, 33, 3359. (b) Ward, R. A.; Procter, G. Tetrahedron **1995**, 51, 12301.

⁽⁷⁾ Durgnat, J.-M.; Vogel, P. Helv. Chim. Acta 1993, 76, 222.

carboxylation. ^{9a} However, the latter step did not prepare enough of the product, and we elected to adopt a completely different strategy using benzofuran **5** for the Grignard partner as a novel salicylic acid synthon, such as **6**. The requisite **5** was prepared by CsF-mediated rearrangement¹¹ of *m*-bromophenyl propargyl ether (**2**) in good regioselectivity (Scheme 1). Since **3** and **4** were inseparable at this stage, ¹² the corresponding Grignard reagent was prepared as a mixture.

An efficient copper-catalyzed coupling reaction of the triflate 9 derived from 7¹³ with the Grignard reagent 5 was achieved at room temperature to afford 10 in 93% yield (Scheme 2). Ozonolysis of 10 followed by hydrolysis of the resulting acetate gave the salicylaldehyde 11 (82.7% for two steps). ¹⁴ At this stage, it became possible to chromatographically separate 11 from its regioisomer originating from 4.

(8) Kawai, A.; Hara, O.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1988, 29, 6331. Ikota, N.; Hanaki, A. Chem. Pharm. Bull. 1989, 37, 1087. Gesson, J. P.; Jacquesy, J. C.; Mondon, M. Tetrahedron Lett. 1989, 30, 6503. Hamada, Y.; Kawai, A.; Matsui, T.; Hara, O.; Shioiri, T. Tetrahedron 1990, 46, 4823. Bertelli, L.; Fiaschi, R.; Napolitano, E. Gazz. Chim. Ital. 1993, 123, 669. Ward, R.; Procter, G. Tetrahedron 1995, 51, 12821. Shinozaki, K.; Mizuno, K.; Masaki, Y. Heterocycles 1996, 43, 11. Superchi, S.; Minutolo, F.; Pini, D.; Salvadori, P. J. Org. Chem. 1996, 61, 3183. Shinozaki, K.; Mizuno, K.; Wakamatsu, H.; Masaki, Y. Chem. Pharm. Bull. 1996, 44, 1823. Mukai, C.; Miyakawa, M.; Hanaoka, M. J. Chem. Soc., Perkin Trans. 1 1997, 913. Ghosh, A. K.; Cappiello, J. Tetrahedron Lett. 1998, 39, 8803.

(9) (a) Kotsuki, H.; Miyazaki, A.; Ochi, M. *Chem. Lett.* **1992**, 1255. (b) Kotsuki, H.; Iwasaki, M.; Nishizawa, H. *Tetrahedron Lett.* **1992**, *33*, 4945. (c) Kotsuki, H.; Iwasaki, M.; Ochi, M. *Heterocycles* **1994**, *38*, 17.

(10) Review: Kotsuki, H. J. Synth. Org. Chem. Jpn. 1999, 57, 334.

(11) Ishii, H.; Ishikawa, T.; Takeda, S.; Ueki, S.; Suzuki, M. *Chem. Pharm. Bull.* **1992**, *40*, 1148. Ishikawa, T.; Nagai, K.; Ohkubo, N.; Ishii, H. *Heterocycles* **1994**, *39*, 371. Ishikawa, T.; Mizutani, A.; Miwa, C.; Oku, Y.; Komano, N.; Takami, A.; Watanabe, T. *Heterocycles* **1997**, *45*, 2261. (12) These isomers could be separated by JAI Recycling Preparative

(12) These isomers could be separated by JAI Recycling Preparative HPLC LC-908, and each structure was determined unambiguously by $^1\mathrm{H}$ NMR (400 MHz). 3: δ 2.46 (3H, s), 6.42 (1H, t, J=1.0 Hz), 7.06 (1H, t,J=8.1 Hz), 7.32 (2, 7.34 (each 1H, dd, J=8.1, 1.0 Hz). 4: δ 2.42 (3H, s), 6.32 (1H, d, J=0.7 Hz), 7.28 (1H, ddd, J=8.3, 1.4, 0.7 Hz), 7.30 (1H, d, J=8.3 Hz), 7.55 (1H, dd, J=1.4, 0.7 Hz).

(13) Kotsuki, H.; Miyazaki, A.; Ochi, M. Tetrahedron Lett. 1991, 32, 4503.

(14) Ishii, H.; Ohta, S.; Nishioka, H.; Hayashida, N.; Harayama, T. *Chem. Pharm. Bull.* **1993**, *41*, 1166.

Conversion of **11** to **14** was straightforward. ^{9a} Thus, protection of **11** as its benzyl ether followed by deprotection of an acetonide function gave a diol (present as a form of hemiacetal), which was further oxidized with NaClO₂/NaHSO₃/30% H₂O₂ under carefully controlled conditions¹⁵ to afford hydroxylactone **12**. Compound **12** was then transformed to **14**, $[\alpha]^{22}_D = -55.4^\circ$ (c 1.01, MeOH) (lit. ^{6b} $[\alpha]_D = -55.6^\circ$ (c 1.08, MeOH)) and mp 203–205 °C (lit. ^{6b} mp 209–212 °C), via azidation with S_N2 inversion and catalytic hydrogenation (three steps, 96% overall yield).

As illustrated in Scheme 3, the optically pure **20** (part B) was also assembled from D-ribose. Treatment of **15**¹⁷ with *p*-methoxybenzylamine followed by acetylation gave lactam **16**. Stereoselective alkylation of **16** with allyltrimethylsilane by the assistance of BF₃·OEt₂ proceeded quantitatively to afford **17** via a well-known *N*-acylpyrrolidinium ion intermediate. Deprotection of the PMB group in **17** by CAN-oxidation produced **18** (57%) along with its *p*-methoxybenzoyl derivative (38%); the latter compound could be hydrolyzed smoothly to **18** under basic conditions, and hence **18** was obtained in an overall yield of 85%. Reprotection of **18** with Boc₂O/cat. DMAP gave the *N*-Boc lactam **19**, $[\alpha]^{25}_D = +89.5^{\circ}$ (*c* 0.98, CHCl₃) and mp 65.5–67 °C, quantitatively.

The final steps of our AI-77-B (1) synthesis are shown in Scheme 4. Since our initial attempts to realize the uncatalyzed condensation of **14** with **19** at high pressure were all unsuccessful due to the undesired isomerization of **14**, 9b,c,19 we applied Hamada's conditions. Accordingly, DEPC-mediated condensation of **14** with **20** at 0 °C (DMF, Et₃N, 12 h) was achieved in 77% yield. In situ generation of acid **20** from **19** and also gradual addition of Et₃N were essential to increase the yield of this step. Oxidative cleavage of the terminal double bond with RuCl₃ and NaIO₄²⁰ followed by deprotection of an acetonide as well as an *N*-Boc function under mildly acidic conditions (3% HCl in MeOH) yielded AI-77-B (1) (two steps, 85% overall yield), $[\alpha]^{23}_D = -76.1^\circ$ (*c* 0.09, MeOH) (lit. $[\alpha]^{22}_D = -78.2^\circ$ (*c* 0.08, MeOH)) and mp 147.5–148.0 °C (lit. Ic mp 139.5–140.0 °C). The

(20) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.

500 Org. Lett., Vol. 1, No. 3, 1999

⁽¹⁵⁾ NaClO $_2$ oxidation was best achieved by using $\rm H_2O_2$ as the HOCl scavenger. When the oxidation was performed in the absence of $\rm H_2O_2$, 12 was obtained in only 50% yield, along with 48% of the aromatic chlorinated compounds.

⁽¹⁶⁾ Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567. See also: Hase, T.; Wähälä, K. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 7, p 4533. (17) Ali, S. M.; Ramesh, K.; Borchardt, R. T. Tetrahedron Lett. 1990, 31, 1509.

⁽¹⁸⁾ Zaugg, H. E. *Synthesis* **1984**, 85, 181. Speckamp, W. N.; Hiemstra, H. *Tetrahedron* **1985**, 41, 4367. Hiemstra, H.; Speckamp, W. N. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon Press: Oxford, U.K., 1991; Vol. 2, pp 1047–1082.

⁽¹⁹⁾ As mentioned by Shimojima et al., ^{1c} the free amine of **14** was readily isomerized to the corresponding seven-membered lactam **14a**. This tendency significantly decreased the product yield when the condensation of **14** with **20** was conducted *at room temperature*.

Scheme 2a

^a Legend: (a) (i) (CH₃)₂C=PPh₃, THF, −30 °C to room temperature, 96%, (ii) H₂, 10% Pd/C, K₂CO₃, AcOEt, quantitative; (b) Tf₂O, pyridine, CH₂Cl₂, −15 °C, quantitative; (c) CuBr (0.3 equiv), THF, 0 °C to room temperature, 12 h, 93%; (d) (i) O₃, CH₂Cl₂, −78 °C, then Me₂S, 88%, (ii) aqueous K₂CO₃, MeOH, 94%; (e) (i) BnBr, K₂CO₃, acetone, reflux, 94%, (ii) 60% HClO₄ (cat.), aqueous CH₃CN, 0 °C, 96%, (iii) NaClO₂, NaHSO₃, 30% H₂O₂, KH₂PO₄, aqueous CH₃CN, 95%; (f) (i) MsCl, Et₃N, CH₂Cl₂, (ii) NaN₃ (10 equiv), 18-crown-6, DMF, 80 °C, 22 h, 98% in two steps; (g) H₂, 10% Pd(OH)₂/C, 3% HCl in MeOH, 98%.

Scheme 3^a

^a Legend: (h) 4-MeOC₆H₄CH₂NH₂, EtOH, 0 °C, 1 h, then Ac₂O, pyridine, DMAP, quantitative; (i) CH₂=CHCH₂SiMe₃, BF₃·OEt₂, CH₂Cl₂, 0 °C to room temperature, quantitative; (j) (i) CAN, aqueous CH₃CN, 0 °C, (ii) 0.23 M KOH, THF/H₂O (5:4), room temperature, overall 85%; (k) Boc₂O, cat. DMAP, THF, room temperature, quantitative; (l) 1.0 M LiOH, aqueous THF.

Scheme 4a

^a Legend: (m) DEPC, Et₃N, DMF, 0 °C, 12 h, 77%; (n) RuCl₃, NaIO₄, CCl₄/CH₃CN/H₂O (2:2:3), room temperature, 3 h; (o) (i) 3% HCl in MeOH, 11 h, (ii) 0.1 M NaOH (pH 9), 3 h, (iii) 0.1 M HCl (pH 6.5), 85% from **21**.

spectroscopic data of the synthesized product were identical in all respects with those provided for the natural substance.²¹

In conclusion, an efficient, enantioselective total synthesis of AI-77-B (1) has been accomplished using a 12-step

(21) Our synthetic 1 was consistent with the published data. ^{1c} We also thank Professor Y. Hamada (Chiba University) for providing proton and carbon NMR spectra of authentic 1.

sequence from chiral triflate **9**, with an overall yield of 41.5%. The average yield per step is 93%, and this constitutes the most efficient synthesis to date. In addition, this route provides a new rapid entry to an 8-hydroxydihydroisocoumarin framework using bromobenzofuran **3** as the salicylic acid synthon. This may be useful for deriving a wide variety of dihydroisocoumarin families of natural products.

Org. Lett., Vol. 1, No. 3, 1999

Acknowledgment. This work was supported in part by Scientific Research Grants from the Ministry of Education, Science, Sports and Culture of Japan and a Grant-in-Aid for Special Scientific Research from Kochi University. We are grateful to Prof. Y. Fukuyama of Tokushima Bunri University for the MS/HRMS measurements. We also thank Central Glass Co., Ltd., for generously supplying Tf₂O.

Supporting Information Available: Text giving experimental procedures and figures giving NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL990102Y

502 Org. Lett., Vol. 1, No. 3, 1999