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® Gas-free conditions
® Broad substrate scope
® High yields

ABSTRACT: A palladium-catalyzed C-H carbonylation of benzylamines for the synthesis of isoindolinone scaffolds has been developed.
This protocol is conducted under gas-free conditions by using benzene-1,3,5-triyl triformate (TFBen) as a convenient CO surrogate,
furnishing a variety of isoindolinone derivatives in moderate to high yields (up to 95%).

Introduction

Isoindolinone scaffold is a class of important motif frequently
found in pharmaceuticals and bioactive natural products (Scheme
1).! For instance, Lenalidomide is one of the novel drug agents
used to treat multiple myeloma.? Pazinaclone shows excellent
sedative and anxiolytic properties by acting as a partial agonist at
GABA-A benzodiazepine receptors.’ Nuevamine, a representative
example of natural isoindolinone alkaloids, whose analogues
possess potential and promising biological activities such as anti-
inflammatory, anti-microbial, anti-tumoral and so on.* Due to the
potent applications, many procedures have been developed for
their construction. The achieved methods include lactamization of
o-(aminomethyl)benzoic acids,> monoreduction of phthalimides,’
Bischler-Napieralski-type  cyclization ~of carbamates from
benzylamines,” and metal-catalyzed carbonylation of benzylamine
derivatives.®13

Benzylamine is an attractive precursor to the establishment of
the isoindolinone core via carbonylation with carbon monoxide
(CO) or its surrogates in the presence of metal catalysts (Scheme
2). Over the past decades, tremendous work on metal-catalyzed
carbonylation of 2-aminomethylaryl halides or 2-aminomethylaryl
tosylates have been reported (Scheme 2, eq a).>'° Recently, metal-
catalyzed direct C-H carbonylation of benzylamines have been
realized as well.!'"'$ Zhao and Shi disclosed a Ru(II)-catalyzed C-H
carbonylation of benzylamines with isocyanate as a CO source
(Scheme 2, eq b).!! In this reaction, oxalyl amide as a directing
group was required in the coordination of the Ru center and
activation of ortho-C-H of a benzylamine. Orito and co-workers
developed a synthetic protocol to the isoindolinone ring systems

via C-H carbonylation of benzylamines using Pd(OAc), and
Cu(OAc), in an atmosphere of CO gas containing air (Scheme 2,
eq c).!? Very recently, Wang, Li and their co-workers developed a
palladium-catalyzed carbonylation of  a,a-disubstituted
benzylamine to synthesis the corresponding sterically hindered
benzolactams under atmospheric pressure of CO.1%.

Scheme 1. Representative Pharmaceuticals and Natural
Products of Isoindolinones.
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To avoid the use of flammable CO gas in carbonylative
reactions, various CO surrogates have been developed.!®* Among
them, TFBen, developed by our group,'” is a solid, safe and
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convenient CO source. Herein, we report a Pd-catalyzed C-H
carbonylation of benzylamines with TFBen as the CO source,
producing a series of isoindolinones.

Scheme 2. Carbonylative Synthesis of Isoindolinones from
Benzylamines.
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Results and Discussion

Initially, benzylamine 1a was chosen as a substrate for the model
reaction.!® After extensive study of the reaction conditions, the
desired isoindolinone product 2a was obtained in 83% yield in the
presence of PdCl,. The reaction employed TFBen as the CO
source and Cu(OAc), as the oxidant (Table 1, entry 1). The use of
other Pd catalysts instead of PdCl, gave similar results (Table 1,
entries 2-5). Et;N and PivOH were likely to tune the acidity of the
reaction system and promote the activation of C-H bond. Without
the addition of Et;N and PivOH, the yield was remarkably
decreased to 47% (Table 1, entry 6). When toluene or DMSO was
used instead of their mixed solvent system, reduced yields of the
product 2a were achieved (Table 1, entry 7 and 8). Moreover, a
series of other oxidants were examined and the reaction gave much
lower yields or no product (Table 1, entries 9-12). Finally, using
other CO surrogates instead of TFBen decreased the reaction yield
(Table 1, entry 13 and 14). Here 2 equivalents of TFBen is needed
to maintain the CO concentration in the reaction media.

Table 1. Study on Reaction Conditions.?

PdCl, (10 mol %)
.Bu
gﬂ + TFBen
(2.0 equiv)

Cu(OAc), (1.5 equiv)
Et3N (2.0 equiv)

PivOH (2.0 equiv)

@QHU

toluene/DMSO (10:1) (2.2 mL) o
1a 110 °C, 20 h 2n
entry  variations from the standard conditions  yield (%)”
1 none 83 (81¢)
2 Pd(PPh;),Cl; as catalyst 63
3 Pd(OACc); as catalyst 78
4 Pd(cinnamyl)Cl, as catalyst 68
5 PdBr;, as catalyst 81
6 without Et;N and PivOH 47
7 toluene instead of mixed solvent 75
8 DMSO instead of mixed solvent 71
9 CuO as oxidant 25
10 Ag,0 as oxidant 16
11 BQ as oxidant 10
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12 KzSzOg as oxidant 0
134 Mo(CO)gas CO source 57
14¢ HCOOH/Ac,0 as CO source 67

“Reaction conditions: 1a (0.5 mmol), TFBen (2.0 equiv), catalyst
(10 mol %), oxidant (1.5 equiv), Et;N (2.0 equiv), PivOH (2.0
equiv), solvent (2.2 mL), 110 °C, 20 h. *Yields were determined by
GC with dodecane as an internal standard. “Isolated yield.
4Mo(CO)s (1.0 equiv), DBU (2.0 equiv). ‘HCOOH (2.0 equiv),
Ac,0 (2.0 equiv), Et;N (2.0 equiv).

With the optimal reaction conditions in hand, we began
exploring the scope of C-H carbonylation of benzylamines. First,
various substituted benzylamines were tested and the results were
summarized in Scheme 3. Benzylamines with electron-donating
substituents could undergo the reaction smoothly to give the
desired products 2b-2d in excellent yields (86-93%). It was found
that para-Me substituted benzylamine 1c¢ gave the products 2¢ and
2¢’ with a ratio of 1:2.6. The observed regioselectivity could be
attributed to the steric hindrance of C-H activation site. Other
tested functional groups including methoxy, fluoro and chloro can
be well tolerated as well and gave the corresponding products in
good vyields 2e-2g. The reaction with electron-withdrawing
substituted benzylamines also afforded moderate to good yields
(51-86%) of products 2h-2j. Similar to Ic, the reaction with di-
substituted benzylamines provided two regiomers. A ratio of 1:3.7
in 89% yield was observed for the products 2k and 2k’ in the
reaction with di-Me substituted benzylamine. Di-OMe substituted
benzylamine gave the expected products 21 and 2I’ in 95% yield
with a ratio of 1:3.3. For compound 1m, the reaction proceeded
well to produce the regiomers 2m and 2m’ with 1:1.4 ratio in 92%
yield. Additionally, thiophene and pyridine analogue of amines
were tested as well, but very low yield of the desired products were
obtained. In the case of free benzylamine, mainly N-
benzylformamide was formed.

Scheme 3. Scope of Substituted Benzylamines.”
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“Reaction conditions: 1 (0.5 mmol), TFBen (2.0 equiv), PdCl, (10
mol %), Cu(OAc), (1.5 equiv), Et;N (2.0 equiv), PivOH (2.0
equiv), toluene/DMSO (10:1) (2.2 mL), 110 °C, 20 h, isolated

yield. 2 mmol scale.

Next, we turned our attention to the scope of a-substituted
benzylamines (Scheme 4). These compounds were prepared via
the condensation of ketones and amines and subsequent reduction
with NaBH,. For compounds bearing linear alkyl a-substituents,
the reaction afforded the corresponding products 2n and 20 in
excellent yields. The reaction with a compound having the
carbocycle unit gave the desired product 2p in 86% yield.
Interestingly, the substrate containing a tetrahydronaphthalene
system could undergo the C-H carbonylation to generate the
polycyclic product 2q in 52% yield. Additionally, a high yield of the
product 2r was obtained when benzylamines with aryl a-
substituent was subjected to the same condition.

Et3N (2.0 equiv)
2n, 92% 20, 93% 2p, 86% 2q,52%  2r, 81%

Scheme 4. Scope of a-Substituted Benzylamines.*
PdCl, (10 mol %) R
©)\H/Bu + TFBen CQNBu
. PIVOH (2.0 equi
; (2.0 equiv) toluene;El)MSC() (1(33:(1“)“(\,2).2 mL) b
110°C, 20 h
“Reaction conditions: 1 (0.5 mmol), TFBen (2.0 equiv), PdCl, (10
mol %), Cu(OAc), (1.5 equiv), Et;N (2.0 equiv), PivOH (2.0
equiv), toluene/DMSO (10:1) (2.2 mL), 110 °C, 20 h, isolated

Cu(OAc), (1.5 equiv)
2
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Then, a couple of N-substituted benzylamines were investigated
(Scheme S). The reaction with N-linear alkyl substituents gave
moderate to good yields of products 2s and 2t. N-"Pr substituted
benzylamine was converted to the isoindolinone product 2u in 57%
yield. Compounds with the carbocycle unit were successfully
transformed to the expected products 2v and 2w in high yields.
Also, the reaction with N-benzyl substituted benzylamine
proceeded well in an excellent yield (2x, 95%). For substrates
containing functional groups such as methoxyl and cyano, 64% and
43% yield of products 2y and 2z were achieved, respectively.

Scheme S. Scope of N-Substituted Benzylamines.”

PdCl; (10 mol %)
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“Reaction conditions: 1 (0.5 mmol), TFBen (2.0 equiv), PdCl, (10
mol %), Cu(OAc), (1.5 equiv.), Et;N (2.0 equiv), PivOH (2.0
equiv), toluene/DMSO (10:1) (2.2 mL), 110 °C, 20 h, isolated
yield.

In order to study the reaction rate of different substrates, electron
donating group and electron withdrawing group substituted
substrates 1b and 1g were selected and combined as 1:1 ratio.
Under our standard reaction conditions, the corresponding
products were obtained in almost the same ratio (Scheme 6).

Scheme 6. Reaction rate study.
] b\/\/ \CdN 2b
0
standard \—\ 46%

v +
cl + conditions o
42%
19

1b:1g=1:1 2b:2g=1:0.9

On the basis of previous reports,'>'* a plausible mechanism is
proposed to account for the C-H carbonylation of benzylamines
(Scheme 7). Initially, the Pd(II) catalyst coordinates with
benzylamine 1 and activates ortho-C-H bond to generate the five-
palladacycle A. Then, coordination of CO, generated in-situ from
TFBen, leads to the formation of the intermediate B. Subsequently,
CO insertion of B forms the acyl Pd(II) complex C, which can
undergo reductive elimination to give the final product 2 and a
Pd(0) species. Finally, oxidation of the Pd(0) species by Cu(II) salt
regenerates the active Pd(1I) catalyst.

Scheme 7. Plausible Mechanism.
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Finally, a few functionalizations of the isoindolinone 2a have
been demonstrated as well (Scheme 8).!% Treatment of 2a with
lithium diisopropylamide (LDA) at -78 °C followed by the addition
of alkyl bromide can give the 3-substituted isoindolinones 3, an
important skeleton in biologically active compounds exhibiting
antipsychotic, antihypertensive, antiulcer and anxiolytic
properties.’® The reaction of 2a with allyl bromide and phenyl
bromide provided good yields of 3a (82%) and 3b (63%),
respectively. When 2a was treated with propargyl bromide, a lower
yield (37%) of 3¢ was obtained. Moreover, the alkyl group can be
removed easily as well.'%

Scheme 8 Functionalizations of the Isoindolinone 2a.

1) LDA (1.1 equiv), THF (2 mL)
-78 °C, 15 min
‘\—\ 2) RBr (1.5 equiv), -78 °Ctor.t,, 2 h ‘\_\

3) H;0*

2a, 0.3 mmol

o] 0
N\j ( I é”\j %

A Ph =

3a, 82% 3b, 63% 3¢, 37%

In conclusion, we have developed a facile approach for the
synthesis of the isoindolinone skeleton via Pd-catalyzed C-H
carbonylation of benzylamines using TFBen as a convenient CO
source. The reaction proceeds smoothly with a wide range of
benzylamine substrates, affording various isoindolinone derivatives
in 43-95% yields.

EXPERIMENTAL SECTION

Unless otherwise noted, all reactions were carried out under a
nitrogen atmosphere. All reagents and 1s were obtained from
commercial sources and used as received without further
purification. Column chromatography was performed on silica gel
(200-300 mesh) using petroleum ether (bp 6090 °C) and ethyl
acetate as eluent. 'H and '3C NMR spectra were taken on 400 MHz
instruments, and spectral data were reported in ppm relative to
tetramethylsilane (TMS) as internal standard and CDCl; as
solvent.

Preparation of Benzene-1,3,5-triyl triformate (TFBen).
Formic acid (8.4 mL, 222.8 mmol, 5.0 equiv.) was added to acetic
anhydride (16.8 mL, 178.2 mmol, 4.0 equiv.) at rt. The mixture was
stirred at 60 °C for 1 h and cooled to rt. The resulting solution was
poured into a flask containing 1,3,5-trihydroxybenzene (5.62 g
44.6 mmol, 1.0 equiv.) and AcONa (1.83 g, 22.3 mmol, 0.5 equiv.).

The mixture was stirred for 4 h in a water bath and then diluted
with toluene (100 mL), washed with H,O (50 mL) two times.
Keep the organic phase in fridge (2-8 °C) for overnight. Then
filtered and dried in vacuo to afford the desired product benzene-
1,3,5-triyl triformate (TFBen) (S.1 g, 55%) as a white solid. mp
53.2-55.6 °C. '"H NMR (400 MHz, CDCl;) § 8.24 (s, 3H), 6.97 (s,
3H). BC{'H} NMR (101 MHz, CDCl;) § = 158.1, 150.3, 112.6.

General Procedure for the Syntheses of the Secondary
Amines 1a-1m’ and 1t-1z'. To a solution of aldehyde (3 mmol,
1.0 equiv.) in MeOH (15 mL) at 0 °C was added primary amine
(3.6 mmol, 1.2 equiv.) slowly, and the reaction mixture was stirred
at 0 °C for 0.5 h, then at rt for 5 h. The reaction mixture was again
cooled to 0 °C, and NaBH, (4.5 mmol, 1.5 equiv.) was added every
10 min in three portions. Then it was stirred at rt for 1h. The
reaction was quenched by the addition of H,0 (10 mL) and
Na,CO; (0.252 g). The reaction mixture was washed with CH,Cl,
(20 mL), then the organic phase was separated and aqueous phase
was further extracted with CH,Cl, (20 mL x 2). Combined organic
layer was dried over anhydrous Na,SO,, filtered, and concentrated.
The crude mixture was purified by flash column chromatography
on silica gel eluted with petroleum ether / ethyl acetate 2/1)to
give the secondary amine products 1a-1m’ and 1t-1z.

General Procedure for the Syntheses of the Secondary
Amines 1n-1r2°. Titanium(IV) isopropoxide (4 mmol, 1.3 equiv.)
was added to a solution of n-butylamine in MeOH (2 M, 4.5 mL, 3
equiv.) followed by the addition of the ketone (3 mmol, 1.0 equiv.).
The reaction mixture was stirred at rt for S h, after was cooled to 0
°C and NaBH, (3 mmol, 1.0 equiv.) was added and the resulting
mixture was further stirred for 2 h. The reaction was then quenched
by the addition of water (1 mL), the resulting inorganic precipitate
was filtered and washed with CH,Cl, (20 mL). The organic layer
was separated and the aqueous phase was further extracted with
CH,Cl, (20 mL x 2). The combined CH,Cl, extracts were washed
with HCI (2 M, 10 mL x 2). The acidic aqueous solution was made
alkaline (pH = 10) by slow addition of (10%, w / v) aqueous
NaOH and extracted with CH,Cl, (20 mL x 2). Combined organic
layer was dried over anhydrous Na,SO,, filtered, and concentrated.
The crude mixture was purified by flash column chromatography
on silica gel eluted with petroleum ether / ethyl acetate (10 / 1) to
give the secondary amine products 1n-1r.

N-benzylbutan-1-amine, 1a*!. 455.1 mg, 93%, Pale yellow oil. 'H
NMR (400 MHz, CDCL,) 8 7.31 (d, ] = 4.3 Hz, 4H), 7.24 (dd, ] =
8.0, 4.0 Hz, 1H), 3.78 (s, 2H), 2.62 (t, J = 7.2 Hz, 2H), 1.54 (s,
1H), 1.48 (dd, ] = 14.8, 7.5 Hz, 2H), 1.40 - 1.29 (m, 2H), 0.91 (t,]
= 7.3 Hz, 3H). BC{'H} NMR (101 MHz, CDCL,) § 140.4, 128.2,
127.9,126.7, 53.9,49.1, 32.1, 20.4, 13.9.

N-(4-methylbenzyl)butan-1-amine, 1b*'. 488.4 mg, 92%, Pale
yellow oil. 'H NMR (400 MHz, CDCl;) § 7.20 (d, ] = 8.0 Hz, 2H),
7.12(d, ] = 7.8 Hz, 2H), 3.74 (s, 2H), 2.68 — 2.56 (m, 2H), 2.32 (s,
3H), 1.62 (s, 1H), 1.49 (dt, ] = 14.5, 7.1 Hz, 2H), 1.34 (dq, ] =
14.5, 7.3 Hz, 2H), 0.90 (t, J = 7.3 Hz, 3H). BC{'H} NMR (101
MHz, CDCl,) § 137.4, 136.3, 1289, 128.0, 53.7, 49.0, 32.1, 20.9,
20.4,13.9.

N-(3-methylbenzyl)butan-1-amine, Ic. 504.5 mg, 95%, Pale
yellow oil. 'H NMR (400 MHz, CDCL,) § 7.21 (td, ] = 7.5, 2.8 Hz,
1H), 7.17 - 7.08 (m, 2H), 7.05 (d, ] = 7.2 Hz, 1H), 3.75 (s, 2H),
2.63 (t, ] =7.0 Hz, 2H), 2.34 (d, ] = 2.5 Hz, 3H), 1.77 (s, 1H), 1.57
- 1.43 (m,2H), 1.42 - 1.27 (m, 2H), 0.91 (td, ] = 7.3, 2.8 Hz, 3H).
1BC{'H} NMR (101 MHz, CDCL,) § 140.2, 137.9, 128.9, 128.2,
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127.6, 125.1, 53.9, 49.1, 32.1, 21.3, 20.4, 13.9. HRMS (ESL-TOF):
[M+H"] calcd. for C;,H,oN*, 178.1590; found, 178.1595.

N-(2-methylbenzyl)butan-1-amine, 1d*!. 472.6 mg, 89%, Pale
yellow oil. 'H NMR (400 MHz, CDCl;) § 7.34 — 7.25 (m, 1H),
7.20 - 7.08 (m, 3H), 3.75 (s, 2H), 2.75 - 2.58 (m, 2H), 2.34 (s,
3H), 1.51 (dt, ] = 14.6, 7.1 Hz, 2H), 1.36 (dq, ] = 14.4, 7.2 Hz, 3H),
0.92 (t, J = 7.3 Hz, 3H). BC{'H} NMR (101 MHz, CDCl;) §
138.5, 136.1, 130.2, 1282, 126.8, 125.8, 51.6, 49.5, 32.3, 20.5, 18.9,
13.9.

N-(4-methoxybenzyl)butan-1-amine, 1e*'. 526.8 mg, 91%, Pale
yellow oil. 'H NMR (400 MHz, CDCL,) § 7.25 (dd, = 8.8, 6.1 Hz,
2H), 6.88 — 6.82 (m, 2H), 3.78 (s, 3H), 3.72 (s, 2H), 2.66 - 2.56
(m, 2H), 1.78 (s, 1H), 1.49 (dt, ] = 20.2, 7.1 Hz, 2H), 1.34 (dq, ] =
14.3,7.2 Hz, 2H), 0.94 — 0.84 (m, 3H). *C{'H} NMR (101 MHz,
CDCL,) § 158.6, 132.5, 129.2, 113.7, 55.2, 53.3, 48.9, 32.1, 20.4,
13.9.

N-(4-fluorobenzyl)butan-1-amine, 1f'. 4453 mg, 82%, Pale
yellow oil. 'H NMR (400 MHz, CDCl;) § 7.28 (dd, ] = 8.2, 5.6 Hz,
2H), 6.99 (t, ] = 8.7 Hz, 2H), 3.74 (s, 2H), 2.61 (t, ] = 7.2 Hz, 2H),
1.49 (dt, ] = 14.5,7.1 Hz, 3H), 1.34 (dq, ] = 14.3, 7.2 Hz, 2H), 0.91
(t,J=7.3Hz, 3H).3C{'H} NMR (101 MHz, CDCl;) § 161.9 (d,]
= 2452 Hz), 136.3, 129.6 (d, ] = 7.9 Hz), 115.1 (d, J = 20.8 Hz),
53.3,49.1,32.2,20.4, 13.9.

N-(4-Chlorobenzyl)butan-1-amine, 1g*>. 520.0 mg, 88%, Pale
yellow oil. 'H NMR (400 MHz, CDCl;) § 7.37 - 7.14 (m, 1H),
3.74 (s, 1H), 2.73 - 2.44 (m, 1H), 1.48 (dt, ] = 14.5, 7.1 Hz, 2H),
1.42 (s, 1H), 1.34 (dq, J = 14.3, 7.2 Hz, 1H), 091 (t, ] = 7.3 Hz,
1H). BC{'H} NMR (101 MHz, CDCL) § 139.1, 132.4, 129.3,
128.4,53.3,49.1, 32.2,20.4, 13.9.

N-(4-Bromobenzyl)butan-1-amine, 1h*'. 643.4 mg, 89%, Pale
yellow oil. '"H NMR (400 MHz, CDCl;) § 7.43 (d, ] = 8.3 Hz, 2H),
7.20 (d, ] = 8.3 Hz, 2H), 3.73 (s, 2H), 2.60 (t, ] = 7.2 Hz, 2H), 1.57
(s, 1H), 1.53 - 1.42 (m, 2H), 1.34 (dq, J = 14.3, 7.2 Hz, 2H), 0.90
(t, ] = 7.3 Hz, 3H). BC{'H} NMR (101 MHz, CDCL,) § 139.5,
131.3,129.8, 120.6, 53.3, 49.0, 32.1, 20.4, 13.9.

Methyl 4-((butylamino )methyl)benzoate, 1i%%. 590.1 mg, 89, Pale
yellow oil. 'H NMR (400 MHz, CDCl;) § 7.99 (d, ] = 8.1 Hz, 2H),
7.39 (d, ] = 8.1 Hz, 2H), 3.90 (s, 3H), 3.84 (s, 2H), 2.62 (t, ] = 7.1
Hz, 2H), 1.55 - 1.4 (m, 3H), 1.35 (dq, ] = 14.3, 7.2 Hz, 2H), 0.91
(t, ] = 7.3 Hz, 3H). BC{'H} NMR (101 MHz, CDCL,) § 166.9,
145.9,129.6, 128.7, 127.8, 53.6, 51.9, 49.2, 32.2, 20.4, 13.9.

4-((Butylamino )methyl)benzonitrile, 1j*>. 423.0 mg, 75%, Pale
yellow oil. 'H NMR (400 MHz, CDCl;) § 7.61 (d, ] = 8.2 Hz, 2H),
7.45 (d, ] = 8.2 Hz, 2H), 3.85 (s, 2H), 2.61 (t, ] = 7.1 Hz, 2H), 1.54
~ 1.45 (m, 2H), 1.4 (s, 1H), 1.36 (dq, ] = 14.3, 7.2 Hz, 2H), 0.91
(t, ] = 7.3 Hz, 3H). BC{'"H} NMR (101 MHz, CDCL,) § 146.3,
132.1,128.5, 118.9, 110.6, 53.5,49.2, 32.2, 20.3, 13.9.

N-(3,4-dimethylbenzyl)butan-1-amine, 1k. 504.2 mg, 88%, Pale
yellow oil. '"H NMR (400 MHz, CDCL,) § 7.08 (d, ] = 7.8 Hz, 2H),
7.03 (d,J = 7.7 Hz, 1H), 3.71 (s, 2H), 2.67 - 2.56 (m, 2H), 2.25 (5,
3H), 2.24 (s, 3H), 1.49 (dt, J = 20.1, 7.2 Hz, 3H), 1.34 (dq, ] =
14.3, 7.2 Hz, 2H), 091 (t, ] = 7.3 Hz, 3H). 3C{'H} NMR (101
MHz, CDCL) 8§ 137.9, 136.4, 134.9, 129.5, 129.5, 125.5, 53.8, 49.2,
32.2,20.5, 19.6, 19.3, 13.9. HRMS (ESI-TOF): [M+H?*] calcd. for
C1sH,,N", 192.1747; found, 192.1753.

N-(3,4-dimethoxybenzyl)butan-1-amine, 11?*. S68.6 mg, 85%, Pale
yellow oil. 'H NMR (400 MHz, CDCl,) § 6.89 (s, 1H), 6.87 - 6.79
(m, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 3.73 (s, 2H), 2.63 (t, ] = 7.2
Hz, 2H), 1.50 (dt, ] = 14.6, 7.1 Hz, 3H), 1.40 — 1.30 (m, 2H), 0.91
(t, ] = 7.3 Hz, 3H). BC{'H} NMR (101 MHz, CDCL,) § 148.,
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147.8, 133.2, 120.0, 111.3, 110.9, 55.8, 55.7, 53.7, 49.0, 32.1, 20.3,
13.8.

N-(naphthalen-2-ylmethyl)butan-1-amine, Im?. 517.6 mg, 81%,
Yellow oil. 'H NMR (400 MHz, CDCl;) § 7.82 - 7.75 (m, 3H),
7.73 (s, 1H), 7.46 — 7.37 (m, 3H), 3.91 (s, 2H), 2.68 - 2.59 (m,
2H), 1.50 (dt, J = 14.7, 7.2 Hz, 3H), 1.39 - 1.29 (m, 2H), 0.90 (t, ]
= 7.3 Hz, 3H). BC{'H} NMR (101 MHz, CDCl;) § 138.0, 133.4,
132.5, 127.9, 127.6, 127.5, 126.5, 126.3, 125.8, 125.3, 54.1, 49.1,
322,204, 13.9.

N-(1-phenylethyl)butan-1-amine, In*’. 456.7 mg, 86%, Pale
yellow oil. '"H NMR (400 MHz, CDCL,) § 7.36 — 7.27 (m, 4H),
7.23(ddd, ] = 11.3, 5.4, 2.8 Hz, 1H), 3.75 (q, ] = 6.6 Hz, 1H), 2.57
-2.36 (m, 2H), 1.52 - 1.39 (m, 3H), 1.36 - 1.33 (m, 3H), 1.29
(tdd, ] = 9.8, 7.4, 2.1 Hz, 2H), 0.87 (t, ] = 7.3 Hz, 3H). BC{'H}
NMR (101 MHz, CDCL) § 145.9, 128.3, 126.7, 126.5, 58.4, 47.5,
32.4,24.3,20.5,13.9.

N-butyl-1-phenylbutan-1-amine, 1o. 516.6 mg, 84%, Pale yellow
oil. 'H NMR (400 MHz, CDCl,) § 7.36 - 7.18 (m, SH), 3.55 (dd, J
=7.7,62 Hz, 1H), 2.47 - 2.33 (m, 2H), 1.69 (ddt, J = 11.9, 10.3,
5.9 Hz, 1H), 1.64 - 1.53 (m, 1H), 1.41 (tdd, J = 9.2, 7.6, 3.5 Hz,
2H), 1.33 - 1.20 (m, 3H), 1.21 - 1.09 (m, 1H), 0.86 (td, ] = 7.3, 2.9
Hz, 6H). BC{'H} NMR (101 MHz, CDCL,) § 144.7, 128.2, 127.1,
126.7, 63.3, 47.4, 40.5, 32.4, 204, 19.5, 14.0, 13.9. HRMS (ESI-
TOF): [M+H"] calcd. for C,,H,,N*, 206.1903; found, 206.1910.

N-(cyclohexyl(phenyl)methyl)butan-1-amine, 1p. 551.2 mg, 75%,
Pale yellow oil. 'H NMR (400 MHz, CDCl;) § 7.33 — 7.26 (m,
2H),7.24 - 7.19 (m, 3H), 3.31 (d, J = 7.1 Hz, 1H), 2.35 (td, ] = 7.4,
1.9 Hz, 2H), 1.99 — 1.88 (m, 1H), 1.77 - 1.69 (m, 1H), 1.61 (dt, ] =
8.8,7.9 Hz, 2H), 1.55 — 1.46 (m, 2H), 1.44 — 1.35 (m, 3H), 1.34 —
1.18 (m, 3H), 1.17 - 1.04 (m, 2H), 1.01 - 0.90 (m, 1H), 0.87 —
0.79 (m, 4H). BC{'H} NMR (101 MHz, CDCL;) § 143.4, 128.0,
127.8,126.5, 69.0, 47.7, 44.3, 32.4, 30.4, 29.9, 26.6, 26.4, 26.3, 20.4,
13.9. HRMS (ESI-TOF): [M+H*] calcd. for C,;H,sN*, 246.2216;
found, 246.2222.

N-butyl-1,2,3,4-tetrahydronaphthalen-1-amine, 1q. 444.6 mg,
73%, Yellow oil. 'H NMR (400 MHz, CDCl;) § 7.36 — 7.30 (m,
1H), 7.19 - 7.09 (m, 2H), 7.09 - 7.03 (m, 1H), 3.74 (t, ] = 4.9 Hz,
1H), 2.85 - 2.60 (m, 4H), 2.02 — 1.89 (m, 1H), 1.85 (dt, J = 3.5, 3.1
Hz,2H), 1.78 - 1.66 (m, 1H), 1.54 - 1.44 (m, 2H), 1.44 — 1.31 (m,
2H), 1.23 (s, 1H), 0.92 (dd, ] = 7.8, 6.8 Hz, 3H). *C{'H} NMR
(101 MHz, CDCL,) 8§ 139.5, 137.3, 128.9, 128.6, 126.5, 125.6, 55.4,
47.1,32.7,29.3,28.4, 20.5, 18.9, 13.9. HRMS (ESL-TOE): [M+H?]
calcd. for C,H,,N*, 204.1747; found, 204.1754.

N-benzhydrylbutan-1-amine, 1r*. 473.2 mg, 66%, Pale yellow oil.
'H NMR (400 MHz, CDCL,) §7.38 (d, = 7.6 Hz, 4H), 7.27 (t, ] =
7.6 Hz, 4H), 7.17 (t, ] = 7.3 Hz, 2H), 4.80 (s, 1H), 2.56 (t, ] = 7.1
Hz,2H), 1.49 (dq, J = 14.5, 7.1 Hz, 3H), 1.39 - 1.28 (m, 2H), 0.88
(t, ] = 7.3 Hz, 3H). BC{'H} NMR (101 MHz, CDCL,) § 144.4,
128.4,127.2, 126.8, 67.6,47.9, 32.4,20.4, 13.9.

N-benzylpropan-1-amine, 1¢?*. 421.8 mg, 95%, Pale yellow oil.
'H NMR (400 MHz, CDCl;) § 7.30 (dd, J = 10.1, 2.8 Hz, 4H),
7.27 ~7.20 (m, 1H), 3.78 (s, 2H), 2.65 — 2.52 (m, 2H), 1.58 - 1.48
(m, 2H), 1.44 (s, 1H), 0.92 (t, ] = 7.4 Hz, 3H). *C{'H} NMR (101
MHz, CDCL) § 140.5, 128.3, 128.0, 126.7, 53.9, 51.3,23.1, 11.7.

N-benzylpropan-2-amine, 1u*°. 388.8 mg, 87%, Pale yellow oil. 'H
NMR (400 MHz, CDCL;) § 7.31 (d, ] = 4.5 Hz, 4H), 7.27 - 7.20
(m, 1H), 3.78 (s, 2H), 2.85 (hept, ] = 6.2 Hz, 1H), 1.42 (s, 1H),
1.09 (d, J = 62 Hz, 6H). ®C{'H} NMR (101 MHz, CDCl,) &
140.8, 128.3, 128.0, 126.8, 51.6, 48.0, 22.9.

N-benzylcyclopentanamine, 1v*”. 435.7 mg, 83%, Pale yellow oil.
'H NMR (400 MHz, CDCL) § 7.34 — 7.28 (m, 4H), 7.26 - 7.20
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(m, 1H), 3.76 (s, 2H), 3.11 (p, ] = 6.7 Hz, 1H), 1.90 - 1.78 (m,
2H), 1.75 - 1.64 (m, 2H), 1.63 - 1.44 (m, 3H), 1.37 (qd, ] = 8.0,
1.5 Hz, 2H). BC{'H} NMR (101 MHz, CDCl;) § 140.7, 128.3,
128.1,126.7, 59.1, 52.7, 33.1, 24.0.

N-benzylcyclohexanamine, Iw*. 504.6 mg, 89%, Pale yellow oil.
'H NMR (400 MHz, CDCL) 8§ 7.31 (d, J = 4.4 Hz, 4H), 7.27 -
7.20 (m, 1H), 3.80 (s, 2H), 2.48 (tt, J = 10.1, 3.7 Hz, 1H), 1.99 -
1.85 (m, 2H), 1.78 — 1.68 (m, 2H), 1.66 — 1.55 (m, 1H), 1.42 (s,
1H), 1.32 - 1.06 (m, SH). BC{'H} NMR (101 MHz, CDCl;) §
140.9, 128.3, 128.0, 126.7, 56.2, 51.0, 33.5, 26.2, 24.9.

Dibenzylamine, 1x%”. 531.9 mg, 90%, Pale yellow oil. '"H NMR
(400 MHz, CDCL,) § 7.31 (dd, = 7.9, 5.2 Hz, 7H), 7.27 - 7.19 (m,
2H), 3.79 (s, 4H), 1.71 (s, 1H). 3C{'H} NMR (101 MHz, CDCl;)
§140.3,128.3, 128.1, 126.9, 53.1.

N-benzyl-2-methoxyethan-1-amine, 1y*. 351.4 mg, 71%, Pale
yellow oil. 'H NMR (400 MHz, CDCl;) § 7.35 — 7.28 (m, 4H),
7.27 - 721 (m, 1H), 3.81 (s, 2H), 3.53 - 3.48 (m, 2H), 3.35 (s,
3H), 2.83 - 2.77 (m, 2H), 1.80 (s, 1H). 3C{'H} NMR (101 MHz,
CDCL,) § 140.2, 1283, 128.1, 126.9, 72.0, 58.7, 53.9, 48.7.

3-(benzylamino)propanenitrile, 12%°. 297.6 mg, 62%, Pale yellow
oil. 'TH NMR (400 MHz, CDCL) § 7.36 — 7.28 (m, 4H), 7.27 -
7.19 (m, 1H), 3.79 (s, 2H), 2.86 (td, J = 6.6, 2.6 Hz, 2H), 2.44 (td,
= 6.6, 2.6 Hz, 2H). BC{'H} NMR (101 MHz, CDCl;) § 139.3,
128.3,127.8, 1269, 118.6, 52.8, 44.1, 18.5.

General Procedure for Carbonylative Synthesis of
Isoindolinone from Benzylamines. PdCl, (0.05 mmol, 10
mol%), Cu(OAc), (0.75 mmol, 1.5 equiv.), and a 2.5 mL vial
containing TFBen (1.0 mmol, 2.0 equiv.) were added to an oven-
dried tube (15 mL) which was then placed under vacuum and
refilled with nitrogen three times. An amine 1 (0.5 mmol, 1.0
equiv.), PivOH (1.0 mmol, 2.0 equiv.), Et;N (1.0 mmol, 2.0
equiv.), toluene (2.0 mL) and DMSO (0.2 mL) were added into
the tube via syringe. The tube was sealed and stirred at 110 °C for
20 h. Upon the reaction was completed, the mixture was diluted
with EtOAc and washed with water three times. The crude mixture
was purified by silica gel column chromatography (PE/EtOAc =
5/1to02/1) to obtain the desired products 2.

Procedure for 2 mmol scale: PACl, (10 mol%), Cu(OAc), (1.5
equiv.), and a § mL vial containing TFBen (2.0 equiv.) were added
to an oven-dried tube (25 mL) which was then placed under
vacuum and refilled with nitrogen three times. An amine 1 (2
mmol, 1.0 equiv.), PivOH (2.0 equiv.), Et;N (2.0 equiv.), toluene
(8.0 mL) and DMSO (0.8 mL) were added into the tube via
syringe. The tube was sealed and stirred at 110 °C for 20 h. Upon
the reaction was completed, the mixture was diluted with EtOAc
and washed with water three times. The crude mixture was purified
by silica gel column chromatography (PE/EtOAc = 5/1to 2/1) to
obtain the desired products 2.

2-butylisoindolin-1-one, 2a'. 76.6 mg, 81% yield (2 mmol scale,
85% yield, 321.3 mg), colorless oil. 'H NMR (400 MHz, CDCl;) §
7.84 (d,J=7.3Hz, 1H),7.51 (t, ] = 7.4 Hz, 1H), 7.44 (t, ] = 7.2 Hz,
2H), 4.37 (s, 2H), 3.62 (t, ] = 7.4 Hz, 2H), 1.72 - 1.59 (m, 2H),
1.45 - 1.32 (m, 2H), 0.96 (t, ] = 7.4 Hz, 3H). BC{'H} NMR (101
MHz, CDCL,) § 168.3, 141.0, 133.0, 130.9, 127.8, 123.5, 122.5,
49.8,42.0,30.4,19.9, 13.7.

2-butyl-6-methylisoindolin-1-one, 2b. 94.5 mg, 93% yield, colorless
oil. '"H NMR (400 MHz, CDCl;) § 7.64 (s, 1H), 7.31 (s, 2H), 4.32
(s, 2H), 3.60 (t, ] = 7.3 Hz, 2H), 2.43 (s, 3H), 1.68 - 1.58 (m, 2H),
1.44 - 1.32 (m, 2H), 0.95 (t, ] = 7.4 Hz, 3H). BC{'H} NMR (101
MHz, CDCL,) § 168.5, 138.2, 137.8, 133.2, 131.9, 123.8, 122.2,

49.6, 42.0, 30.5, 212, 19.9, 13.7. HRMS (ESI-TOF): [M+Na*]
calcd. for C3H;NNaO*, 226.1202; found, 226.1205.
2-butyl-7-methylisoindolin-1-one, 2¢. 25.4 mg, 25% yield, colorless
oil. 'TH NMR (400 MHz, CDCl;) § 7.37 (t, ] = 7.5 Hz, 1H), 7.23 (d,
J=7.5Hz, 1H),7.18 (d, ] = 7.5 Hz, 1H), 4.31 (s, 2H), 3.59 (t, ] =
7.3 Hz, 2H), 2.73 (s, 3H), 1.63 (dd, ] = 14.8, 7.6 Hz, 2H), 1.45 —
1.32 (m, 2H), 0.96 (t, ] = 7.4 Hz, 3H). BC{'H} NMR (101 MHz,
CDCL) § 169.3, 141.6, 137.5, 130.5, 130.1, 129.9, 119.9, 49.3, 41.9,
30.5, 20.1, 17.1, 13.7. HRMS (ESI-TOF): [M+Na*] calcd. for
C,:H,,NNaO*, 226.1202; found, 226.1205.
2-butyl-S-methylisoindolin-1-one, 2¢’. 65.0 mg, 64% yield,
colorless oil. 'H NMR (400 MHz, CDCl;) § 7.72 (d, J = 7.7 Hz,
1H),7.24 (d,] = 9.6 Hz, 2H), 4.32 (s, 2H), 3.60 (t, ] = 7.4 Hz, 2H),
244 (s, 3H), 1.69 — 1.58 (m, 2H), 1.44 — 1.32 (m, 2H), 0.95 (t, ] =
7.4 Hz, 3H). BC{'H} NMR (101 MHz, CDCl;) § 168.5, 141.5,
141.5, 130.5, 128.9, 123.3, 123.0, 49.6, 41.9, 30.5, 21.7, 19.9, 13.7.
HRMS (ESI-TOF): [M+Na*] calcd. for C;3H;;NNaO*, 226.1202;
found, 226.1207.
2-butyl-4-methylisoindolin-1-one, 2d. 87.3 mg, 86% yield, colorless
oil. '"H NMR (400 MHz, CDCL,) 8 7.67 (d, ] = 7.4 Hz, 1H), 7.36 (t,
J=7.5Hz, 1H),7.30 (d, ] = 7.5 Hz, 1H), 4.27 (s, 2H), 3.63 (t, ] =
7.3 Hz, 2H), 2.34 (s, 3H), 1.70 — 1.62 (m, 2H), 1.44 — 1.33 (m,
2H), 0.96 (t, ] = 7.4 Hz, 3H). *C{'H} NMR (101 MHz, CDCl;) §
168.8, 139.9, 132.7, 1322, 131.8, 128.1, 121.0, 49.0, 42.0, 30.5,
200, 174, 13.7. HRMS (ESLTOF): [M+Na‘] caled. for
C3H7;NNaO*, 226.1202; found, 226.1209.
2-butyl-6-methoxyisoindolin-1-one, 2e. 90.9 mg, 83% yield,
colorless oil. '"H NMR (400 MHz, CDCl;) § 7.33 (d, J = 2.4 Hz,
1H),7.31 (d, ] = 8.7 Hz, 1H), 7.08 (dd, ] = 8.2, 2.4 Hz, 1H), 4.30
(s,2H), 3.86 (s, 3H), 3.61 (t, ] = 7.3 Hz, 2H), 1.69 — 1.60 (m, 2H),
1.43 - 1.33 (m, 2H), 0.96 (t, ] = 7.4 Hz, 3H).3C NMR (101 MHz,
CDCL,) § 168.4, 159.9, 134.4, 1332, 123.3, 119.4, 106.4, 55.6, 49.4,
422, 30.5, 19.9, 13.7. HRMS (ESL-TOF): [M+H*] calcd. for
C,sH,sNO,*, 220.1332; found, 220.1341.
2-butyl-6-fluoroisoindolin-1-one, 2f. 86.9 mg, 84% yield, colorless
oil. 'H NMR (400 MHz, CDCL) 8 7.50 (dd, J = 7.7, 2.4 Hz, 1H),
7.40 (dd, ] = 8.2, 4.5 Hz, 1H), 7.22 (td, ] = 8.7, 2.4 Hz, 1H), 4.35 (s,
2H), 3.61 (t, ] = 7.4 Hz, 2H), 1.72 - 1.57 (m, 2H), 1.46 — 1.30 (m,
2H), 0.96 (t, ] = 7.4 Hz, 3H). 3C{'H} NMR (101 MHz, CDCl;) §
167.4 (d,] = 3.4 Hz), 162.9 (d, ] = 244.7 Hz), 136.4 (d, ] = 2.3 Hz),
1352 (d, ] = 9.4 Hz), 124.1 (d, ] = 8.3 Hz), 118.6 (d, ] = 23.6 Hz),
1103 (d, J = 23.5 Hz), 49.4, 42.2, 30.4, 19.9, 13.6. HRMS (ESI-
TOF): [M+Na*] caled. for C,,H ,FNNaO*, 230.0952; found,
230.0958.
2-butyl-6-chloroisoindolin-1-one, 2g. 95.9 mg, 86% yield, white
solid, mp 59.5-61.4 °C. 'H NMR (400 MHz, CDCL,) § 7.78 (d, ] =
1.4 Hz, 1H), 7.47 (dd, J = 8.0, 1.9 Hz, 1H), 7.37 (d, ] = 8.1 Hz,
1H), 4.35 (s, 2H), 3.60 (t, ] = 7.4 Hz, 2H), 1.70 — 1.58 (m, 2H),
143 - 131 (m, 2H), 1.01 - 0.91 (m, 3H). BC{'H} NMR (101
MHz, CDCL,) § 166.9, 139.1, 134.8, 134.1, 131.1, 123.8, 123.6,
49.4,42.1,30.3, 19.9, 13.6. HRMS (ESI-TOF): [M+Na*] calcd. for
C,H,4,CINNaO*, 246.0656; found, 246.0660.
6-bromo-2-butylisoindolin-1-one, 2h. 86.8 mg, 65% yield, white
solid, mp 60.3-64.5 °C. 'H NMR (400 MHz, CDCL,) § 7.95 (d, ] =
1.6 Hz, 1H), 7.62 (dd, J = 8.0, 1.8 Hz, 1H), 7.32 (d, J = 8.1 Hz,
1H), 4.33 (s, 2H), 3.60 (t, ] = 7.4 Hz, 2H), 1.69 — 1.60 (m, 2H),
1.43 - 1.32 (m, 2H), 0.95 (t, ] = 7.4 Hz, 3H). BC{'H} NMR (101
MHz, CDCL) § 166.9, 139.6, 135.1, 133.9, 126.7, 124.2, 121.9,
49.5,42.2,30.3,19.9, 13.6. HRMS (ESI-TOF): [M+Na*] calcd. for
C,,H,,BrNNaO*, 290.0151; found, 290.0157.
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methyl 2-butyl-3-oxoisoindoline-S-carboxylate, 2i. 92.7 mg, 75%
yield, white solid, mp $9.3-62.9 °C. '"H NMR (400 MHz, CDCl;) §
8.49 (s, 1H), 8.22 (dd, J = 7.9, 1.5 Hz, 1H), 7.52 (d, ] = 7.9 Hz,
1H), 4.44 (s, 2H), 3.95 (s, 3H), 3.63 (t, ] = 7.4 Hz, 2H), 1.72 - 1.59
(m, 2H), 145 - 1.33 (m, 2H), 0.96 (t, ] = 7.4 Hz, 3H). BC{'H}
NMR (101 MHz, CDCL) § 167.4, 166.3, 145.5, 133.5, 132.3,
130.4, 124.9, 122.7, 52.2, 49.9, 42.1, 30.4, 20.0, 13.7. HRMS (ESI-
TOF): [M+Na*] caled. for C;;H;;NNaOs*, 270.1101; found,
270.1106.

2-butyl-3-oxoisoindoline-5-carbonitrile, 2j. 54.6 mg, S1% yield,
white solid, mp 102.6-105.7 °C. 'H NMR (400 MHz, CDCL,) §
8.11 (s, 1H), 7.80 (dd, J = 7.8, 1.3 Hz, 1H), 7.59 (d, J = 7.8 Hz,
1H), 447 (s, 2H), 3.64 (t, ] = 7.4 Hz, 2H), 1.71 - 1.56 (m, 2H),
1.49 - 1.31 (m, 2H), 0.97 (t, ] = 7.4 Hz, 3H). *C{'H} NMR (101
MHz, CDCL) 8§ 166.2, 145.3, 134.4, 134.2, 127.6, 123.8, 118.1,
112.3, 49.9, 422, 30.3, 19.9, 13.6. HRMS (ESI-TOF): [M+H*]
caled. for C;3H;sN,0*, 215.1179; found, 215.1187.

2-butyl-6,7-dimethylisoindolin-1-one, 2k. 20.6 mg, 19% yield,
white solid, mp 44.6-46.3 °C. 'H NMR (400 MHz, CDCl;) § 7.26
(d,J=7.6Hz, 1H),7.13 (d, ] = 7.6 Hz, 1H), 425 (s, 2H), 3.58 (t, ]
=7.3Hz,2H),2.69 (s, 3H), 2.32 (s, 3H), 1.68 — 1.56 (m, 2H), 1.38
(dq, ] = 14.6, 7.3 Hz, 2H), 0.95 (t, ] = 7.4 Hz, 3H). BC{'H} NMR
(101 MHz, CDCL) 8§ 169.6, 139.3, 137.1, 136.3, 132.1, 129.9,
119.5, 48.7, 42.0, 30.5, 20.1, 19.2, 13.8, 12.8. HRMS (ESLI-TOF):
[M+H*] calcd. for C,,H,,NO*, 218.1539; found, 218.1552.

2-butyl-5,6-dimethylisoindolin-1-one, 2k’. 76.0 mg, 70% yield,
white solid, mp 57.5-60.5 °C. '"H NMR (400 MHz, CDCL,) 8 7.60
(s, 1H), 7.19 (s, 1H), 4.29 (s, 2H), 3.59 (t, ] = 7.3 Hz, 2H), 2.33 (d,
J=4.5Hz, 6H), 1.71 - 1.58 (m, 2H), 1.42 - 1.31 (m, 2H), 0.95 (t, ]
= 7.4 Hz, 3H). BC{'H} NMR (101 MHz, CDCL,) § 168.7, 140.34,
138.9, 136.6, 130.9, 124.2, 123.5, 49.51, 42.0, 30.5, 20.3, 20.0, 19.8,
13.7. HRMS (ESLTOF): [M+Na‘] caled. for CyH,,NNaO*,
240.1359; found, 240.1369.

2-butyl-6,7-dimethoxyisoindolin-1-one, 21. 27.4 mg, 22% yield,
colorless oil. "H NMR (400 MHz, CDCl;) § 7.10 - 7.03 (m, 2H),
427 (s, 2H), 4.08 (s, 3H), 3.89 (s, 3H), 3.56 (t, ] = 7.3 Hz, 2H),
1.68 - 1.58 (m, 2H), 1.43 - 1.32 (m, 2H), 0.95 (t, ] = 7.4 Hz, 3H).
1BC{'H} NMR (101 MHz, CDCL) § 166.6, 152.3, 147.3, 134.5,
125.3, 117.5, 116.3, 62.5, 56.8, 48.9, 42.1, 30.4, 20.0, 13.7. HRMS
(ESI-TOF): [M+Na*] calcd. for C;,H;,NNaO;*, 272.1257; found,
272.1265.

2-butyl-S,6-dimethoxyisoindolin-1-one, 21”7. 90.9 mg, 73% yield,
colorless oil. "H NMR (400 MHz, CDCl,) § 7.31 (s, 1H), 6.92 (s,
1H), 4.28 (s,2H), 3.94 (d, ] = 1.3 Hz, 6H), 3.59 (t, ] = 7.3 Hz, 2H),
1.68 - 1.58 (m, 2H), 1.38 (dq, ] = 14.7, 7.4 Hz, 2H), 0.96 (t, ] = 7.4
Hz, 3H). BC{'H} NMR (101 MHz, CDCL) 8 168.6, 152.2, 149.6,
134.5, 125.3,105.3, 104.9, 56.1, 49.4, 42.0, 30.5, 19.9, 13.6. HRMS
(ESI-TOF): [M+Na*] calcd. for C;,H;,NNaO;*, 272.1257; found,
272.1263.

2-butyl-2,3-dihydro-1H-benzo[ e]isoindol-1-one, 2m. 45.4 mg, 38%
yield, yellow oil. 'H NMR (400 MHz, CDCl;) § 9.25 (d, ] = 8.3 Hz,
1H), 7.94 (d, ] = 8.3 Hz, 1H), 7.88 (d, ] = 8.2 Hz, 1H), 7.67 - 7.59
(m, 1H), 7.57 - 7.50 (m, 1H), 7.46 (d, ] = 8.3 Hz, 1H), 4.39 (s,
2H), 3.66 (t, ] = 7.3 Hz, 2H), 1.77 - 1.59 (m, 2H), 1.50 - 1.31 (m,
2H), 0.97 (t, ] = 7.4 Hz, 3H). 3C{'H} NMR (101 MHz, CDCl;) §
169.4, 141.5, 133.0, 131.8, 129.4, 127.9, 127.6, 126.8, 126.3, 123.8,
119.9, 49.7, 41.9, 30.7, 20.1, 13.7. HRMS (ESL-TOF): [M+H"]
calcd. for C¢H;sNO*, 240.1383; found, 240.1390.

2-butyl-2,3-dihydro-1H-benzo|flisoindol-1-one, 2m’. 64.6 mg, 54%
yield, white solid, mp 82.8-85.8 °C. '"H NMR (400 MHz, CDCl;) §
8.34 (s, 1H), 7.99 (d, ] = 7.9 Hz, 1H), 7.88 (d, ] = 8.0 Hz, 1H), 7.83
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(s, 1H), 7.59 — 7.48 (m, 2H), 4.49 (s, 2H), 3.66 (t, ] = 7.4 Hz, 2H),
1.73 - 1.64 (m, 2H), 1.46 — 1.35 (m, 2H), 0.97 (t, ] = 7.4 Hz, 3H).
1BC{IH} NMR (101 MHz, CDCL) § 168.2, 136.1, 135.0, 132.9,
131.0, 129.5, 127.9, 127.4, 1262, 123.7, 121.4, 49.6, 42.4, 30.3,
20.1, 13.8. HRMS (ESI-TOF): [M+Na*] calcd. for C,¢H;;NNaO"*,
262.1202; found, 262.1208.

2-butyl-3-methylisoindolin-1-one, 2n%. 93.4 mg, 92% yield,
colorless oil. 'H NMR (400 MHz, CDCl;) § 7.83 (d, J = 7.5 Hz,
1H), 7.52 (t, ] = 7.4 Hz, 1H), 7.43 (dd, J = 12.2, 7.5 Hz, 2H), 4.55
(q,] = 6.7 Hz, 1H), 3.96 (dt, ] = 14.1, 8.1 Hz, 1H), 3.21 (ddd, ] =
10.6, 8.5, 5.2 Hz, 1H), 1.70 - 1.52 (m, 2H), 1.46 (dd, ] = 6.7, 3.2
Hz, 3H), 143 - 1.32 (m, 2H), 0.95 (td, J = 7.3, 3.1 Hz, 3H).
1BC{IH} NMR (101 MHz, CDCL) § 167.8, 146.8, 132.0, 131.1,
127.9,123.4,121.7,55.2, 39.4, 30.4,20.1, 18.0, 13.7.

2-butyl-3-propylisoindolin-1-one, 20%. 107.5 mg, 93% yield,
colorless oil. '"H NMR (400 MHz, CDCl;) § 7.83 (d, J = 7.3 Hz,
1H),7.54 - 7.48 (m, 1H), 7.42 (t, ] = 7.4 Hz,2H), 4.60 (dd, ] = 5.1,
3.7 Hz, 1H), 4.02 (dt, ] = 13.9, 8.0 Hz, 1H), 3.09 (ddd, ] = 13.8, 8.4,
5.2 Hz, 1H), 2.08 - 1.82 (m, 2H), 1.76 — 1.47 (m, 2H), 1.46 — 1.31
(m, 2H), 1.16 - 1.01 (m, 1H), 0.95 (t, ] = 7.4 Hz, 3H), 0.90 - 0.73
(m, 4H). BC{'H} NMR (101 MHz, CDCl,) § 168.2, 145.1, 132.7,
130.9, 127.7, 123.3, 121.8, 58.8, 39.3, 32.5, 30.3, 20.0, 15.6, 13.8,
13.6.

2-butyl-3-cyclohexylisoindolin-1-one, 2p. 116.6 mg, 86% yield,
colorless oil. 'H NMR (400 MHz, CDCl;) § 7.83 (d, ] = 7.4 Hz,
1H), 7.53 - 7.39 (m, 3H), 4.42 (d, ] = 3.1 Hz, 1H), 4.11 - 3.99 (m,
1H), 3.12 (ddd, ] = 13.8, 8.6, 5.0 Hz, 1H), 2.01 (tq, ] = 12.1,2.9 Hz,
1H), 1.84 (t, ] = 12.9 Hz, 2H), 1.70 — 1.48 (m, SH), 1.42 — 1.24 (m,
4H), 1.23 - 1.01 (m, 2H), 0.95 (t, ] = 7.4 Hz, 3H), 0.42 (qd, ] =
12.6, 3.4 Hz, 1H). BC{'H} NMR (101 MHz, CDCL) § 168.4,
143.8, 1332, 130.5, 127.7, 123.4, 123.0, 63.8, 39.7, 39.5, 30.2, 29.7,
26.8, 263, 25.9, 25.7, 20.1, 13.7. HRMS (ESL-TOF): [M+H?]
calcd. for CsH,,NO*, 272.2009; found, 272.2022.

1-butyl-6,7,8,8a-tetrahydrobenzo[ cdJindol-2(1H)-one, 2q. 59.6
mg, 52% yield, colorless oil. 'H NMR (400 MHz, CDCl;) § 7.59
(d,] = 7.5 Hz, 1H), 7.36 (t, ] = 7.5 Hz, 1H), 7.25 (d, ] = 7.6 Hz,
1H), 4.25 (dd, J = 11.8, 4.8 Hz, 1H), 3.72 - 3.62 (m, 1H), 3.55 -
3.40 (m, 1H), 3.04 (dd, J = 17.6, 8.0 Hz, 1H), 2.74 (dt, ] = 17.6, 8.8
Hz, 1H), 2.39 (dq, J = 11.9, 4.0 Hz, 1H), 2.18 (dddd, ] = 14.2, 7.7,
6.3,3.7 Hz, 1H), 1.99 (dtd, J = 13.8, 9.4, 4.2 Hz, 1H), 1.69 - 1.60
(m, 2H), 1.45 - 1.34 (m, 2H), 1.15 (qd, J = 12.0, 4.1 Hz, 1H), 0.96
(t, J = 7.4 Hz, 3H). BC{'H} NMR (101 MHz, CDCL,) § 169.1,
144.2, 133.5,130.9, 129.9, 128.6, 120.6, 58.2, 40.9, 31.1, 26.4, 25.1,
20.8, 202, 13.8. HRMS (ESI-TOF): [M+H*] caled. for
C1sH,0NO*, 230.1539; found, 230.1549.

2-butyl-3-phenylisoindolin-1-one, 2r*2. 1074 mg, 81% yield,
colorless oil. '"H NMR (400 MHz, CDCl;) § 7.92 — 7.85 (m, 1H),
7.48 - 7.39 (m, 2H), 7.38 - 7.29 (m, 3H), 7.21 - 7.06 (m, 3H),
545 (s, 1H), 3.95 (dt, ] = 14.0, 7.9 Hz, 1H), 2.92 - 2.81 (m, 1H),
1.59 - 1.46 (m, 2H), 1.35 — 1.26 (m, 2H), 0.88 (t, ] = 7.4 Hz, 3H).
1BC{IH} NMR (101 MHz, CDCL) § 168.4, 146.1, 137.0, 131.6,
131.5, 128.9, 128.5, 128.1, 127.4, 123.3, 122.9, 64.3, 39.8, 30.2,
19.9, 13.6.

2-methylisoindolin-1-one, 2s7. 36.8 mg, 50% yield, white solid. 'H
NMR (400 MHz, CDCL;) § 7.84 (d, ] = 7.5 Hz, 1H), 7.52 (td, ] =
7.4, 1.1 Hz, 1H), 7.48 — 7.39 (m, 2H), 4.37 (s, 2H), 3.20 (s, 3H).
1BC{IH} NMR (101 MHz, CDCL) § 168.6, 140.9, 132.9, 131.1,
127.9,123.6,122.5,51.9,29.4.

2-propylisoindolin-1-one, 2¢2. 79.7 mg, 91% yield, colorless oil.
'H NMR (400 MHz, CDCL,) § 7.84 (dd, J = 7.0, 1.5 Hz, 1H), 7.55
~7.48 (m, 1H), 7.44 (t, ] = 7.0 Hz, 2H), 4.37 (s, 2H), 3.71 - 3.46
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(m, 2H), 1.78 - 1.56 (m, 2H), 0.96 (t, ] = 7.4 Hz, 3H). BC{'H}
NMR (101 MHz, CDCL,) § 1684, 141.0, 133.0, 131.0, 127.8,
123.5,122.5,49.8,43.9,21.6, 11.2.

2-isopropylisoindolin-1-one, 2u'?*. 49.4 mg, 57% yield, colorless
oil. '"H NMR (400 MHz, CDCl;) § 7.84 (dd, J = 6.5, 2.0 Hz, 1H),
7.55 - 7.49 (m, 1H), 7.48 — 7.41 (m, 2H), 4.68 (hept, ] = 6.8 Hz,
1H), 4.34 (s, 2H), 1.29 (d, J = 6.8 Hz, 6H). BC{'H} NMR (101
MHz, CDCLy) § 167.8, 141.1, 133.3, 130.9, 127.8, 123.5, 122.6,
44.9,42.5,20.7.

2-cyclopentylisoindolin-1-one, 2v*°. 61.3 mg, 61% yield, colorless
oil. '"H NMR (400 MHz, CDCl;) § 7.87 - 7.79 (m, 1H), 7.55 —
7.47 (m, 1H), 7.47 - 7.41 (m, 2H), 4.83 — 4.71 (m, 1H), 4.35 (s,
2H), 2.07 - 1.94 (m, 2H), 1.87 — 1.74 (m, 2H), 1.73 - 1.58 (m,
4H). BC{'H} NMR (101 MHz, CDCL) § 168.3, 141.0, 133.2,
130.9, 127.8, 123.4, 122.6,77.3, 77.0, 76.7, 52.5, 46.0, 30.0, 24.0.

2-cyclohexylisoindolin-1-one, 2w?. 70.9 mg, 66% yield, white
solid. 'H NMR (400 MHz, CDCL,) 8 7.88 — 7.80 (m, 1H), 7.54 —
7.47 (m, 1H), 7.48 — 7.41 (m, 2H), 4.34 (s, 2H), 4.24 (dt, ] = 11.4,
5.5 Hz, 1H), 1.86 (t, ] = 9.8 Hz, 4H), 1.72 (d, J = 12.6 Hz, 1H),
1.57 - 1.37 (m, 4H), 1.17 (tdd, ] = 12.8, 6.2, 3.5 Hz, 1H). BC{'H}
NMR (101 MHz, CDCL) § 1677, 141.2, 133.3, 130.8, 127.7,
123.4,122.5,50.4,45.9,31.3,25.5,25.4.

2-benzylisoindolin-1-one, 2x3*. 105.9 mg, 95% yield, white solid.
'H NMR (400 MHz, CDCL,) §7.87 (d, ] = 7.3 Hz, 1H), 7.46 (dt, ]
=208, 7.4 Hz, 2H), 7.37 — 7.25 (m, 6H), 4.78 (s, 2H), 4.22 (s,
2H). BC{'H} NMR (101 MHz, CDCL) § 168.3, 141.1, 136.9,
132.4, 1312, 128.6, 127.9, 127.8, 127.5, 123.6, 122.6, 49.2, 46.2.

2-(2-methoxyethylisoindolin-1-one, 2y. 61.1 mg, 64% yield,
colorless oil. '"H NMR (400 MHz, CDCl;) § 7.85 (d, J = 7.4 Hz,
1H), 7.56 — 7.49 (m, 1H), 7.44 (t, ] = 7.6 Hz, 2H), 4.52 (s, 2H),
3.80 (t, J = 5.1 Hz, 2H), 3.64 (t, J = 5.1 Hz, 2H), 3.36 (s, 3H).
1BC{!H} NMR (101 MHz, CDCL) § 168.5, 141.6, 132.7, 13L.1,
127.8, 123.5, 122.5, 71.6, 58.6, 51.5, 42.3. HRMS (ESL-TOF):
[M+H"] caled. for C;;H,,NO,*, 192.1019; found, 192.1027.

3-(1-oxoisoindolin-2-yl)propanenitrile, 2z. 40.0 mg, 43% yield,
yellow solid, mp 90.8-94.5 °C. '"H NMR (400 MHz, CDCl;) § 7.85
(d,] = 7.5 Hz, 1H), 7.58 (td, ] = 7.4, 1.0 Hz, 1H), 7.48 (t, ] = 8.2
Hz, 2H), 4.61 (s, 2H), 3.91 (t, ] = 6.4 Hz, 2H), 2.77 (t, ] = 6.4 Hz,
2H). BC{'H} NMR (101 MHz, CDCL) § 168.8, 141.2, 131.8,
1282, 123.8, 122.8, 118.2, 50.9, 39.1, 17.5. HRMS (ESI-TOF):
[M+H*] calcd. for C;;H;;N,0*, 187.0866; found, 187.0872.

Functionalizations of the Isoindolinone 2a. To a solution of
2a (0.3 mmol, 1.0 equiv.) in THF (2 mL) at -78 °C was added LDA
(0.33 mmol, 1.1 equiv.) slowly, and the reaction mixture was stirred
for 15 min. Then an alkyl bromide (0.45 mmol, 1.5 equiv.) in THF
(1mL) was added slowly via syringe and the reaction continued at
rt for 2h. Upon completion, the reaction mixture was quenched
with saturated NH,Cl solution and extracted with CH,Cl, (10 mL
x 3). The organic layer was combined, dried over anhydrous
Na,SO,, filtered, concentrated and purified by silica gel column
chromatography (PE/EtOAc = 10/1) to obtain the desired
products 3.

3-allyl-2-butylisoindolin-1-one, 3a. 56.3 mg, 82% vyield, colorless
oil. 'TH NMR (400 MHz, CDCL,) § 7.86 — 7.80 (m, 1H), 7.55 —
7.48 (m, 1H), 7.48 — 7.41 (m, 2H), 548 — 5.28 (m, 1H), 5.09 —
4.95 (m, 2H), 4.61 (dd, ] = 5.9, 3.7 Hz, 1H), 4.08 - 3.99 (m, 1H),
3.15 (ddd, J = 13.8, 8.4, 5.2 Hz, 1H), 2.78 (dddd, ] = 6.2, 5.0, 3.7,
2.1 Hz, 1H), 2.69 - 2.60 (m, 1H), 1.74 - 1.51 (m, 2H), 1.43 — 1.30
(m, 2H), 0.95 (t, ] = 7.4 Hz, 3H). *C{'H} NMR (101 MHz,
CDClL,) § 168.3, 144.7, 132.7, 131.3, 131.0, 128.1, 123.5, 1222,

119.1, 584, 39.5, 353, 304, 20.1, 13.7. HRMS (ESI-TOF):
[M+Na*] calcd. for C;sH;;NNaO*, 252.1359; found, 252.1359.

3-benzyl-2-butylisoindolin-1-one, 3b. 51.9 mg, 63% yield, colorless
oil. 'H NMR (400 MHz, CDCL,) § 7.81 (dd, ] = 8.4, 3.3 Hz, 1H),
7.42(dd, J = 6.2, 2.4 Hz, 2H), 7.29 (d, ] = 7.6 Hz, 3H), 7.14 - 7.10
(m, 2H), 6.95 (dd, ] = 8.0, 4.5 Hz, 1H), 4.83 (dd, ] = 7.9, 4.8 Hz,
1H),4.13 (dt, ] = 14.2, 8.1 Hz, 1H), 3.42 (dd, J = 13.8, 4.8 Hz, 1H),
325 (ddd, J = 13.8, 8.4, 5.2 Hz, 1H), 2.86 (dd, J = 13.8, 8.0 Hz,
1H), 1.77 - 1.57 (m, 2H), 1.45 — 1.31 (m, 2H), 0.98 (t, ] = 7.4 Hz,
3H). BC{'H} NMR (101 MHz, CDCL,) § 168.1, 144.7, 135.9,
132.4, 130.7, 129.4, 128.4, 128.0, 126.9, 123.4, 122.8, 59.9, 39.8,
383, 304, 20.1, 13.7. HRMS (ESL-TOF): [M+H*] caled. for
CoH, NNaO*, 302.1515; found, 302.1532.

2-butyl-3-(prop-2-yn-1-yl Jisoindolin-1-one, 3c. 25.2 mg, 37% yield,
colorless oil. '"H NMR (400 MHz, CDCl;) § 7.85 (d, J = 7.4 Hz,
1H),7.63 (d, ] =7.5 Hz, 1H), 7.55 (td, ] = 7.4, 1.1 Hz, 1H), 7.48 (t,
J=7.3Hz, 1H), 4.63 (dd, ] = 6.5, 4.3 Hz, 1H), 4.07 - 3.92 (m, 1H),
325 (ddd, J = 13.9, 8.6, 5.1 Hz, 1H), 2.86 (ddd, ] = 16.9, 4.2, 2.7
Hz, 1H), 2.66 (ddd, ] = 16.9, 6.7, 2.6 Hz, 1H), 1.98 (t, ] = 2.6 Hz,
1H), 1.73 - 1.55 (m, 2H), 1.4 — 1.30 (m, 2H), 0.96 (t, ] = 7.4 Hz,
3H). BC{'H} NMR (101 MHz, CDCl;) § 168.2, 144.2, 132.5,
131.3, 128.5, 123.5, 122.3, 78.5, 71.6, 57.5, 39.7, 30.4, 22.6, 20.1,
13.7. HRMS (ESI-TOF): [M+H*] caled. for C;sH;;NNaO*,
250.1202; found, 250.1212.
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