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Abstract: Reaction of sulfur ylides with suitably 4-functionalized-5,5-dimethyl-2-cyclopentenones allows an 

efficient entry to the bicyclo[3.1.0]hexan-2-one skeleton which proved to be a valuable precursor of vinyl 

cyclopropane carboxylic acids. Application to the synthesis of (d,I)- and (d)-(cis)-chrysanthemic acid is described. 
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A few years ago, we disclosed la,b the synthesis of (d,I)-cis-chrysanthemic acid 1' (R 1 , R2 = Me) 2 from dimedone 2' as 

the starting material. The main steps of this synthesis involve (i) geminal dialkylation of dimedone, (ii) oxidative cyclisation 

of dimethyl dimedone, (iii) reduction of the resulting bicyclic dione 3' and (iv) tosylation of the 13-hydroxy ketone 

intermediate 4'a followed by Grob fragmentation (Scheme 1). 
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The key step of this approach is without doubt the synthesis of the 13-hydroxy ketone 4'a, the only isomer leading to 1'. It 

requires the chemo- and stereoselective reduction of one of the carbonyl groups of 3' by its most hindered face, 

successfully achieved by NaBH4-CeCI3 .la,b 

We now report novel and highly convergent syntheses of (d,I)-cis-and (d)-cis-chrysanthemic acids from 

bicyclo[3.1.0]hexane derivatives I 3', 4'a and 4'b involving the cyclopropanation of 2,2-dimethyl-4-cyclopenten-l,3- 

dione 5, 3 4-hydroxy-5 ,5-d imethy l -cyc lopent -2-en- l -one 6a, 3 and related c o m p o u n d s  6b-e 3 wi th 

isopropylidenediphenyl sulfurane 7' (enone, 1.2 eq. Ph2S=CMe 2 LiBF 4, DME, - 78°C, lh then 20°C, lh). The latter is 

prepared in situ by metailation of the corresponding sulfonium tetrafluoroborate salt (1.2 eq. Ph2S-CHMe 2 BF4, 1 eq. 

LDA, 1 eq. CH2CI2, DME, - 78°C, 0.5 h). 4 

Dedicated to the memory of Professor Wolfgang Opplozer : a good friend and a fine chemist. 
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Although it is highly polymerisable,  the 4-cyc lopentene- l ,3-d ione 5 efficiently reacts with 

isopropylidenediphenylsulfurane 7' and produces the desired bicyclic dione 3' in reasonably good yield (Scheme 3, 

entry a). 
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The reaction of the same ylide on the 4-hydroxy- 6a, 4-tosyloxy- 6b, 4-silyloxy- 6c or 6d and 4-acetoxy- 6e enones is 

completely chemo- and stereoselective and leads to the bicyclo[3.1.0]hexane derivatives bearing a free hydroxyl group 

4'a or related derivatives bearing an activated (such as 4'b) or a protected (such as 4'c-e) hydroxyl group in the exo- 

position (Scheme 4). These are the only stereoisomers which can be transformed to chrysanthemic acid 1'. 1 

Interestingly cyclopropanation of 6a takes place without competitive retro-aldol reaction neither on the starting enone 

6a, nor on the resulting bicyclic derivative 4'a. Furthermore, cyclopropanation of 6'b occurs without any concomitant 

reaction on the allylic tosylate moiety and allows a very convergent and straightforward approach to (d,/)-cis-chrysanthemic 

acid 1'. l a  
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We have extended this reaction to ethylidenediphenyl sulfurane 7". 4a,6a Although we expected the results to be more 

complex, the reaction proceeded stereoselectively on the 2,2-dimethyl-4-cyclopenten-1,3-dione 5 leading mainly to the 

bicyclic derivative bearing the methyl group in anti-position 3" (d.e. 92 %, Scheme 3, entry b). 

The reaction is still high yielding but by far less stereoselective when carried out on the hydroxy enone 6a or on its 

derivatives 6b-e. 

The anti-exo 4"a stereoisomer is the major product obtained from the hydroxy enone 6a (Scheme 4, entry a) 

accompanied by trace amounts of the three other stereoisomers (5% each) whereas equal amounts of the anti-exo and 

the syn-exo stereoisomers 4"e are generated from its acetoxy derivative 6e (Scheme 5, entry b). 
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• The anti-endo and syn-endo stereoisomers are also formed in 5% each. 

Surprisingly the reaction takes another course with the closely related silyloxy derivatives 6c-d (Scheme 6). 

Cyclopropanation of trimethylsilyloxy derivative 6¢ provides a 1.6/1 mixture of anti-exo and anti-endo stereoisomers 4"c 

resulting from the attack of the ylide from each of the two faces of the enone 6¢. More surprising is the even higher 

percentage of the anti-endo stereoisomer 4"d arising from the attack of the ylide from the most hindered of the two faces 

of the enone 6d bearing the particularly bulky t-butyldimethylsilyloxy group at its 4-position. 
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• The syn-exo stereoisomers are also formed in 6, 2 and 6% respectively. 

We have also found that the 4-tosyloxy enone 6b possesses a similar reactivity to that of the silyl derivatives, although 

the anti-endo stereoisomer 4"b is no longer the predominant one. 

Most of the compounds reported here are known and their stereochemistry already established, la-c It was easy to 

compare their spectra to those of authentic samples and therefore to determine their structure unambiguously. 

Finally the reaction of isopropylidenediphenyl sulfurane 7' with the readily available optically active 4- 

acetoxycyclopentenone 6e 3 allows the highly enantioselective synthesis of the bicyclo[3.1.0]cyclohexanone 4'e 5 from 

which (1R)-cis-Chrysanthemic acid has been synthesized (Scheme 7). ld  
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Most of the reactions reported here produce the most stable stereoisomers via transition states involving the weakest 

steric interactions (Schemes 3, 4, 5 entry a). Few others involving ethylidenediphenyl sulfurane 7' and 4-acetoxy- 6e, 4- 

silyloxy- 6c-d or 4-sulfonyloxy- 6b enones (Schemes 5 entry b, Scheme 6) lead to results which are not consistent with 

this interpretation. In such cases, electronic interactions are expected to dominate the above mentioned steric effects 

and might be responsible for these discrepancies. More work is required to clearly rationalize all these results. For 

example, the formation of syn-cyclopropyl derivatives, related to the reaction we just reported from ethylidenediphenyl 

sulfurane 7" and a bicyclic unsaturated lactame 8, has been explained by Meyers by the addition of the ylide with the 

lowest steric interaction followed by a rotation in order to attain proper alignment of the leaving sulfonium group in an SN2 

type reaction (Scheme 8). 6a 

Scheme 8 
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The same author has attempted to explain, but without success, 6b results related to those we have reported here using 

the Cieplak 6cd stereoelectronic model (Scheme 9). 
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