NOVEL CARBON-CARBON BOND CLEAVAGE REACTIONS OF α-AZOHYDROPEROXIDES

Masanori UTAKA, Yuji FUJITA, and Akira TAKEDA* Department of Synthetic Chemistry, School of Engineering Okayama University, Tsushima, Okayama 700

1-Phenylazo-1-hydroperoxycyclohexanes, easily prepared by the autoxidation of cyclohexanone phenyl hydrazones, have been found to undergo C(1)-C(2) bond cleavages when treated with acids, bases, or reducing reagents under mild conditions. Thus 6-oxoalkanoic acids and their derivatives have been obtained in good yields from 2hydroxycyclohexanone derivatives. The 2-hydroxyl group seems to play an important role for the cleavage.

 α -Azohydroperoxides], easily obtained by the autoxidation of phenylhydrazones, have been reported to undergo a variety of reactions: the regeneration of original ketone when treated with potassium iodide in acidic media,² the catalytic hydrogenation to afford 1-pheny1-2-benzohydrazide, ^{1c} the decomposition with cuprous or ferrous ion to generate phenyl radical, nitrogen, and the original ketone,³ and the photolysis or thermolysis in anhydrous media to form hydroxyl radical, aryl radical, nitrogen, and the original ketone. 4 Thus, except for the only report focused on the one-carbon degradation of carbohydrate derivatives,⁵ no work has been reported about the cleavage or rearrangement of the carbon framework of the original carbonyl component in α -azohydroperoxides. We report herein an unprecedented C-C bond cleavage α to the carbon bearing a perhydroxyl group by mild reagents.

 α -Azohydroperoxides 2-4⁶ formed from the corresponding hydrazones⁷ (1 mmol) in methanol (20 ml) with one equivalent of oxygen absorbed were treated as such with acids, bases, or reducing reagents under a nitrogen atmosphere. The C-C bond was cleaved under mild conditions to give 6-oxoalkanoic acids or their derivatives 5-9

as the major products. The results are shown in Table I.

The observation for 2 and 3 that the starting ketone was not recovered suggests that the C-C bond cleavage is essential for the reactions (entries 1-5). Nitrogen was not evolved in appreciable amounts. Thus the acid-catalyzed rearrangement⁸ is

expected to generate a positive oxygen which is supplied with a pair of electrons by a neighboring C-C bond. Here the C-C bond cleavage rather than the usual alkylgroup migration⁸ seems more likely owing to the presence of a hydroxyl group which assists the cleavage by releasing a pair of electrons (Scheme I). The resulting N-acyl-N'-phenyldiazene undergoes acid-catalyzed methanolysis⁹ to give 5^{10} and 8^{11} . The electron-withdrawing phenylazo group is capable of becoming a good leaving group as phenyldiazene,¹² the fate of which remains obscure.

The base-catalyzed bond cleavage for 2 seems to be initiated by the attack of hydroxide ion at the hydroxyl hydrogen (entry 2). The reaction path (Scheme II) is similar to that proposed by Schulz et al. 5

The action of dimethyl sulfoxide on 2 and 3 is expected to give the corresponding diols 10 and 11. However, 10 was not isolated, 7 being obtained as the major product¹³ (entry 3). Another diol 11 was gradually rearranged to 9, although stable enough to permit the acquisition of ¹³C NMR spectrum¹⁴ (entry 5). The rearrangements $10 \rightarrow 7$ and $11 \rightarrow 9$ are best accounted for by six-membered intramolecular acid catalysis, being driven by the unstable α -hyroxyalkyl azo function^{1c,15} (Scheme III).

entry	hydroperoxide	reagent	conditions temp, ^O C	time, h	product	(% yield)
1	2~	H ₂ SO ₄ ^b	12	5	5	(70)
2	2~	NaOH	12	5	6	(56) ^d
3	2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Me2s	12	1.5	Z	(80)
4	3	H ₂ SO ₄	12	4	8	(40)
5	3	Me ₂ s ^e	0	0.5	9	(70)
6	4	$H_2 SO_4^b$	65 ^f	1	5	(26)
7	4	NaOH ^C	30	6	6 ~	(23) ^d

Table I. Carbon-Carbon Bond Cleavage Reactions of α -Azohydroperoxides in Methanol^a

^{*a*}2-4 derived from 1 mmol of the corresponding hydrazones in 20 ml of methanol were used for the reactions under nitrogen. ^{*b*}0.2 ml (3.8 ml) of concd sulfuric acid was added. Perchloric acid catalyzed the cleavage similarly. ^{*c*}1.6 g of sodium hydroxide in 5 ml of water was added. ^{*d*}Distilled yield as methyl ester. ^{*e*}0.31 g (5 mmol) of dimethyl sulfide was added. Triphenyl phosphine reacted with 2 and 3 as well, but the workup was tedious. ^{*f*}Refluxed.

It is noteworthy that 4 having no hydroxyl group on the β -carbon has been cleaved to 5 or 6 by acid or base catalysis (entries 6 and 7). The mechanism of the C-C bond cleavage for 4 is currently being investigated with an aim to improve the yield. Considering the importance of the cleavage of C-C bonds in organic synthesis, the present cleavage reaction is expected to introduce a promising new method with advantages of mildness and ease. Further work in this area will be reported in due course.

References

- (a) Hiatt, R. In "Organic Peroxides", Swern, D., Ed.: Wiley-Interscience: New York, 1971; Vol. II, p 19. (b) Busch, M.; Dietz, W. Chem. Ber. 1914, <u>47</u>, 3277-3291. (c) Witkop, B.; Kismann, H. M. J. Am. Chem. Soc. 1953, <u>75</u>, 1975-1980.
- 2) Bellamy, A. J.; Guthrie, R. D. J. Chem. Soc. 1965, 2788-2795.
- 3) Minisci, F. Gazz. Chim. Ital. 1959, 89, 626-637.
- 4) Tezuka, T.; Narita, N. J. Am. Chem. Soc. 1979, <u>101</u>, 7413-7415. Tezuka, T.; Narita, N.; Ando, W.; Oae, S. *ibid*. 1981, <u>103</u>, 3045-3049.
- 5) Schulz, M.; Somogyi, L. Angew. Chem. Internat. Edit. 1967, 6, 168.
- 6) α -Azohydroperoxides 2-4 are unstable and soon deteriorate at room temperature to a dark oil, especially, when the solvent is removed. However, 4 is stable enough to allow measuring ¹H and ¹³C NMR spectra in CDCl₃. 2-4: UV max (MeOH) 273 nm (ϵ 11000).
- 7) The ketones reacted with one equivalent of phenylhydrazine in the absence of solvent. The water formed in the reaction mixtures was removed in vacuo to give the hydrazones quantitatively.
- 8) Ref 1a, pp 65-70.
- 9) Hoffmann, R. W. Chem. Ber. 1964, 97, 2772-2778.
- 10) Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1976, 41, 1396-1402.
- 11) Acetal 8 isolated by preparative TLC and identified by elemental and spectral analyses (IR, ¹H and ¹³C NMR).
- 12) Huang, P.-K.; Kosower, E. M. J. Am. Chem. Soc. 1968, <u>90</u>, 2354-2362.
- 13) Carbohydrazide 7 recrystallized from CCl₄ (mp 88.5–89.0 $^{\rm O}$ C) and identified by elemental and spectral analyses (IR, $^{1}{\rm H}$ and $^{13}{\rm C}$ NMR).
- 14) The conversion $11 \rightarrow 9$ was completed within 11 h at 55 °C. The ¹³C NMR spectra for 9 and 11 are shown below:

15) Freeman, J. P.; Rathjen, C. P. J. Org. Chem. 1972, <u>37</u>, 1686-1690. Chang, Y.-M.; Profetto, R.; Warkentin, J. J. Am. Chem. Soc. 1981, <u>103</u>, 7189-7195.

(Received July 2, 1982)

1610