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Abstract: A series of  hydrolytically-stable aza analogs of arabinofuranose was prepared and evaluated against 
Mycobacterium tuberculosis and M. avium. The compounds were designed to mimic the putative arabinose donor 
involved in biogenesis of the essential cell wall polysaccharide, arabinogalactan. Though most compounds 
displayed little activity in cell culture, one compound showed significant activity in infected macrophage models. 
© 1998 Elsevier Science Ltd. All rights reserved. 

Tuberculosis (TB) remains the most prevalent infectious disease worldwide, resulting in 2.9 million deaths 

annually. 2 Recently, TB has been resurgent in the United States, where outbreaks of  pernicious, multiply drug 

resistant forms have made the need for new antimycobacterials acute. 3 Moreover, infection by M. tuberculosis, the 

etiologic agent of TB, and other opportunist mycobacteria such as M. avium Complex (MAC), is one of the leading 

sources of morbidity and mortality in AIDS patients. 4 

Among the unusual characteristics of mycobacteria that contribute to their resistance to mainstream 

antibacterials is a thick cellular envelope attached to the cell wall exterior. 5 This lipopolysaccharide barrier is 

thought to hinder uptake of some drugs, but conversely is also the site of action of other effective agents. One of 

the chief components of the mycobacterial envelope is an arabinogalactan that has been shown to be essential to 

the organism. 6 Since ethambutol, one of the chief antimycobacterial drugs despite its low potency, is thought to 

act by disruption of arabinan biosynthesis, 7 we embarked on a program to develop novel, selective, and more potent 

inhibitors of this pathway, and in particular, of  arabinosyltransferases (ATs). 

Figure 1 depicts the structure of 1-~-D-arabinofuranosyl decaprenol-1-phosphate 1, the putative arabinose 

donor utilized by mycobacterial ATs. s We envisioned that 
FIGURE 1 
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provide the major driving force for ligand binding, 9 and (ii) chelating moieties were incorporated into the bridging 

phosphate surrogate, to coordinate with the bivalent metal ion often found within glycosyltransferase active sites.l° 

Figure 1 also shows the general structure of  a series of  compounds whose design is based on these principles (2). 

In this series, the arabinose substructure has been homologated at the 1-position to more appropriately position the 

chelating sulfur atom, and to remove any potential hydrolytic lability at the anomeric position; alternatively, 2 can 

be viewed as a transition state analog, since the anomeric bond of  the native donor would be lengthened during SN2- 

type sugar transfer to the elongating polysaccharide chain, li In the aza series (X = NH), the pyrrolidine nitrogen 

atom was also viewed as a potential chelator, depending upon the precise binding orientation within the transferase 

arabinose site. 

Scheme 1 depicts our synthetic approach to the desired sulfides) 2 Pyrrolidine 3, derived from 5- 

ketofructose 13 via the procedure of  Reitz and Baxter, 14 was protected as benzyl carbamate 4. Subsequently, 

conversion of  the cis-1,3-diol to isopropylidene 5 was followed by masking of  the remaining hydroxyls as the t- 

butyldiphenylsilyl ethers (6). Hydrolysis of  the ketal afforded 7, which was selectively transformed to iodide 8 

using the general procedures of  Garegg and Samuelsson) s Displacement of  the iodine with the appropriate sodium 

sulfide, generated in situ from the corresponding thiol, produced 9, which was deblocked in two steps to yield the 

desired arabinose analogs 11. All target compounds and intermediates had acceptable spectroscopic and analytical 

data) 6 

SCHEME 1 

R~ ~BZ ffBZ HO~........N~]'-OH R10"~ / N ~ .  ] -'OR3 T B D ~ S O ~ N ~ X  H H O - ' k . . . . / N ~ / - - S R  
HO~ ii, iii, iv ~ K R20~ v~vi . ~ HOu~ vii, viii . ~ HO~ 

I I 
OH /R1 TBDOSO /RI 

i ¢"" 3, R 1 = H 5, R t = H, R 2 -  R 3 = C(CH3)2 8, X = 1 10, R 1 = TBDOS 
~'~ 4, R 1 CBZ 6, R1 = TBDOS, R2_ R3 = C(CH3)2 9, X = SR 11, R1 ~ H 

7, R 1 =TBDOS, R 2=R 3 = H 

Reagents: (i) benzyl chloroformate, NaHCO3, dioxane:water, 95:5; (ii) (CH30)2C(CH3)2, HCIO4, acetone; (iii) t- 
butyldiphenylsilyl chloride, imidazole, DMF; (iv) 80% HOAc, A; (v) qb3P, 12, imidazole, toluene; (vi) Na, RSH, 
methanol; (vii) 40% KOH, methanol; (viii) Et4N~F e, CH3CN. 

Several additional compounds were prepared for comparative purposes (Figure 2). Oxidation of  thioether 

l l e  [or l i b ]  (Table 1) afforded sulfoxide 12a [12b] and sulfone 13a [13b]. Also, 14a and 14b (the 13 and ct 

epimeric forms of  the furan analog of  l l e )  were synthesized from 2,5-anhydroglucito117 and 2,5-anhydromannitol, js 

respectively, using procedures essentially identical to those in the pyrrolidine series. 

Compounds were evaluated in vitro against M. tuberculosis strain H37Ra and also against a panel of  five 

clinical MAC isolates using a colorimetric broth microdilution assay. 19 Selected compounds were also evaluated 

for intracellular activity against MAC strain 101 in mouse and human monocyte cell lines, 2° and in a similar TB 

model. 21 Some compounds were evaluated against H37Rv using a standard BACTEC assay 22 as a check on the 
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broth assays. Table 1 shows the structures o f  the compounds and summarizes the biological data. 

Tab le  1 
Structures and Biological Activities of  Arabinose Analogs ~b 

C o m p o u n d  

l l a  

l l b  

l l e  

l l d  

l i e  

l l f  

l l g  

11h 

11i 

R 

(CH2)9CH3 

(CH2)I1CH3 

(CH2)IsCH3 

[CH2CH=C(CH3)CH2]2H 
(geranyl) 

C6H5 

p-CH3OC6H 5 

o-CH3OC6H 5 

p-NCC6H~ 

4-pyridyl 

MIC ~ 
(~g/mL) 

32-128 

16-32 

16-64 

64->128 

>128 

>128 

>128 

>128 

>128 

M B C  ~ 
(pg/mL) 

2128 

64-2128 

64-2128 

ND 

ND 

ND 

ND 

ND 

ND 

BACTEC % 
Inhib i t ion  

@12.5 pg/mL 

ND 

ND 

ND 

ND 

ND 

ND 

M a c r o p h a g e  
(M. avium) 

ND 

ND 

4 ~tg/mL 

ND 

ND 

ND 

ND 

l l j  CH2C6H 5 >128 ND ND ND 

1 lk  [3-naphthyl > 128 a ND 18 ND 

12a C6H 5 >128 ND 18 I 

12b (CH:),CH 3 32-64 > 128 ND ND 

13a C6H5 > 128 ND 6 I 

13b (CH2).CH 3 32-128 2128 ND C 

14a (see Figure 2) > 128 ND ND >64 ~tg/mL 

14b (see Figure 2) >128 ND ND >64 ~tg/mL 

15 (ct-epimer of 13b) > 12.8- < 128 ND ND ND 
"See Scheme (11) and Figure 2 (12, 13, 14) for structures; bAbbreviations: MIC, minimum inhibitory concentration; MBC, 
minimum bactericidal concentration; ND, not determined; C, cytotoxic to macrophages; I, inactive in macrophages. ~Numbers 
represent the range of values obtained with the various strains (specific strains used are listed in Ref. 19); the following c o m p o u n d s  
were used as controls: ethambutol, 8-32; isoniazid, 0.03 (M. tuberculosis), 0.5->2 (MAC). apartiai inhibition at 128 ~tg/mL. 

FIGURE 2 
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b, a-phenylthiom ethyl 

Most  compounds showed lackluster activity against mycobacteria in the alamar Blue and BACTEC assays. 

However, the marginal activity o f  several agents in these assays prompted further evaluation of  the leads in MAC 
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macrophage models. Though most compounds were not active at noncytotoxic levels, surprisingly l l e  was 

consistently and reproducibly found to be quite active against three strains of MAC (belonging to serovars 1, 4, and 

8) at 4 lag/mL in infected macrophages. The activity was in part dependent on TNFt~ production by infected 

macrophages, triggered upon treatment with l i e  (uninfected control macrophages, 5 pg/mL of TNFct; infected, 

untreated macrophages, 89 ± 13 pg/mL; uninfected + l ie ,  16 ± 3 pg/mL; infected + l ie ,  196 + 21 pg/mL). 

Furthermore, the activity could be abrogated by utilizing anti-TNFc~ antibody (data not shown). Interestingly, the 

oxygen counterpart of l l e  (compound 14a) showed no activity in macrophages; nor did the potential metabolites 

12a and 13a. Subsequently, l i e  was examined for antituberculosis activity in infected mouse macrophages. 

Though the compound showed no reproducible effects against M. tuberculosis, there was a similar elevation of 

TNFct production in treated, infected cells relative to untreated controls. 

The mechanism for the activity of l i e  is unclear. While the inactivity of the compound against 

mycobacteria in broth assays may argue against inhibition of cell wall biogenesis, it is still possible that any putative 

disruption of wall integrity caused by 1 le  is insufficient in itself to cause lethality, but nonetheless provokes an 

increased immune response in macrophages by, for example, exposing unusual wall structures or promoting 

increased shedding of wall components. Experiments to test these hypotheses are ongoing. 
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then diluted into broth medium at twice the desired concentration, and 0.05 mL added to duplicate assay 
wells; the final concentration of DMSO was 1.25%. Each well was then inoculated with 0.05 mL of 
standardized culture and the plates incubated at 37 °C in polyethylene bags in a humidified incubator for 6 
or 13 days, depending on strain. The redox indicator alamar blue (Accumed Intemational, Inc., Westlake, 
OH) was then added to each well as a mixture with Tween 80 and the plates incubated for an additional 18-22 
h. The plates were read in an optical reader programmed to subtract the absorbance at 600 nm from that at 
570 nm to blank out turbidity and absorbance due to oxidized dye. Isoniazid and ethambutol were used as 
positive controls. 

Minimal bactericidal concentrations (MBCs) were determined by plating samples obtained from the 
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starting inoculum. 25 
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production, infected macrophage monolayers (MAC strain 101) were trated with different concentrations of  
l i e  for 18 h, and the supemate obtained. Concentration of TNFt~ in the supernate was measured using an 
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