www.publish.csiro.au/journals/ajc

An Expeditious Synthesis of Isofagomine

Ethan D. Goddard-Borger^A and Robert V. Stick^{A,B}

^AChemistry M313, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley WA 6009, Australia. ^BCorresponding author. Email: rvs@chem.uwa.edu.au

An expeditious synthesis of isofagomine, from D-arabinose, is reported.

Manuscript received: 22 January 2007. Final version: 9 February 2007.

Isofagomine 1 (Scheme 1), a prominent member of the aza sugar family, was proposed and first synthesized by Lundt, Bols, and co-workers in 1994.^[1] Subsequently, the molecule attracted considerable synthetic attention^[2] owing to its strong inhibition of a range of enzymes that hydrolyze, in particular, the β -glycosidic linkage. One of the most expeditious syntheses of 1 starts from benzyl α -L-xylopyranoside and introduces the required nitrogen and extra carbon atom in the form of the nitrile 2.^[2] This synthesis very closely follows our route to isofagomine, starting with benzyl β -L-xylopyranoside;^[3] we have recently reported some

improvements to our original synthesis of **1**, as well as related routes to other aza sugars.^[4]

It seemed to us, given the importance and general need, including our own, for access to good amounts of isofagomine, that the time was ripe for developing a cheap and easy route to **1**. Undoubtedly the route offered by Fan and co-workers^[2] (Scheme 1) was the way to proceed but, like our own synthesis,^[3] it suffers from the expense of L-xylose, an inefficient isopropylidenation step and the poor-yielding preparation of benzyl α -L-xylopyranoside.^[5] Therefore we decided to start our synthesis of

Scheme 2. (a) (i) $MeC(OEt)_3$, CSA, CH_2Cl_2 , (ii) Et_3N , (iii) AcOH, H_2O , 87%. (b) (i) $CH_2C(OMe)Me$, CSA, CH_2Cl_2 , (ii) NaOH, MeOH, 94%. (c) 4-O_2NC_6H_4CO_2H, DEAD, PPh3, PhMe, 80%. (d) Et_3N , MeOH, 92%. (e) SO_2Cl_2 , ImH, C_5H_5N , 94%. (f) KCN, DMF, 76%. (g) Pd(OH)₂/C, conc. HCl, MeOH, 81%.

1 from inexpensive and readily available D-arabinose, necessitating the replacement of the hydroxyl group at C4 with the required nitrile, and with retention of configuration; our synthesis is outlined in Scheme 2. Such conversions of D-arabinopyranosides into L-xylopyranosides have ample precedent.^[6]

Benzyl β -D-arabinopyranoside^[7] was converted into the diol **3** using standard orthoester chemistry and thence the alcohol **4**, the configuration of which at C4 was easily inverted by Mitsunobu chemistry, providing the ester **5**; a simple transesterification process then gave the known alcohol **6**.^[2] We then found it convenient to avoid the formation of an expensive triflate from the alcohol **6**;^[2] instead, the imidazylate **7** allowed for the formation of the nitrile **2**. The described reductive amination then converted **2** into isofagomine **1**.^[2]

A gram of isofagomine can now be prepared from D-arabinose, in an overall yield of 30%, in about eight days.

Experimental

General experimental procedures have been described recently.^[8]

Benzyl 4-O-Acetyl- β -D-arabinoside 3

Camphor-10-sulfonic acid (580 mg, 2.50 mmol) was added to benzyl β-D-arabinopyranoside^[7] (21.6 g, 90 mmol) and triethyl orthoacetate (33.0 mL, 180 mmol) in CH₂Cl₂ (350 mL) and the mixture stirred (30°C, 2h). Triethylamine (5 mL) was added before the solution was washed with water, dried over MgSO₄, filtered, and concentrated. The residue was dissolved in AcOH/H₂O (9:1, 200 mL) and the solution stirred (15 min). Concentration of the mixture. co-evaporation with PhMe, and recrystallization gave the diol 3 as colourless needles (22.1 g, 87%). mp 95.0–95.5°C (Et₂O/petrol). $[\alpha]_D$ –213°. δ_H (600 MHz) 1.94– 2.67 (2H, br m, OH), 2.14 (s, CH₃), 3.75 (dd, J₄ 5 2.1, J₅ 5 13.0, H5), 3.84 (dd, J_{1.2} 3.8, J_{2.3} 9.8, H2), 3.86 (dd, J_{4.5} 1.4, H5), 3.96 (dd, J_{3.4} 3.6, H3), 4.54, 4.76 (ABq, J 11.7, CH₂Ph), 5.02 (d, H1), 5.15 (ddd, H4), 7.28–7.41 (m, Ph). δ_C (150.9 MHz) 21.2 (CH₃), 61.1 (C5), 69.2, 70.0, 71.4 (C2,3,4), 70.1 (CH₂Ph), 98.0 (C1), 128.2, 128.3, 128.8, 136.9 (Ph), 171.1 (C=O). m/z 283.1179; $[M + H]^+$ requires 283.1182.

Benzyl 2,3-O-Isopropylidene-β-D-arabinopyranoside 4

Camphor-10-sulfonic acid (116 mg, 0.50 mmol) was added to the diol 3 (21.2 g, 75.0 mmol) and 2-methoxypropene (12.9 mL, 135 mmol) in CH₂Cl₂ (200 mL), and the mixture stirred (30 min). Triethylamine (1 mL) was added and the solution stirred; saturated methanolic NaOH (30 mL) was added, and the solution again stirred (10 min). The solution was diluted (CH₂Cl₂), washed with water, dried over MgSO₄, filtered, and concentrated to give the crude acetonide 4 as a pale vellow oil that was sufficiently pure for the next step of the synthesis. Purification by flash chromatography (EtOAc/petrol/Et₃N, 25:74:1) gave the alcohol 4 as a colourless oil (19.8 g, 94%). $[\alpha]_{\rm D}$ -255° (MeCN). δ_H (600 MHz, CD₃CN) 1.37, 1.38 (6H, 2s, CH₃), 3.14 (br s, OH), 3.60 (dd, J_{4,5} 1.7, J_{5,5} 12.6, H5), 3.70 (dd, J_{4,5} 1.6, H5), 3.94–4.00 (m, H2,3), 4.20 (ddd, J_{3.4} 2.9, H4), 4.55, 4.75 (ABq, J 12.0, CH₂Ph), 5.26 (d, J_{1,2} 2.8, H1), 7.27–7.42 (m, Ph). δ_C (150.9 MHz, CD₃CN) 27.0 (CH₃), 65.2 (C5), 68.8, 72.2, 74.3 (C2,3,4), 70.2 (CH₂Ph), 98.8 (C1), 110.0 [C(CH₃)₂], 128.6, 129.4, 139.0 (Ph). *m*/*z* 281.1383; [M + H]⁺ requires 281.1389.

Benzyl 2,3-O-Isopropylidene-4-O-(4-nitrobenzoyl)-α-ι-xyloside **5**

Diethyl azodicarboxylate (30.6 mL, 196 mmol) in dry PhMe (25 mL) was added dropwise with stirring to the alcohol

4 (19.6 g, 70.0 mmol), PPh₃ (50.5 g, 192 mmol), and 4-O₂NC₆H₄CO₂H (32.2 g, 192 mmol) in dry PhMe (175 mL) at 0°C. The resulting mixture was warmed and stirred (40°C, 12 h). The dark mixture was concentrated and rapid silica gel filtration (EtOAc/petrol/Et₃N, 5:94:1 then 10:89:1) gave the 4-nitrobenzoate **5** as pale yellow needles (24.0 g, 80%). mp 104–105°C (EtOAc/petrol). [α]_D –38.0° (MeCN). δ _H (600 MHz, CD₃CN) 1.41 (6H, 2s, CH₃), 3.57 (dd, *J*_{4,5} 10.7, *J*_{5,5} 11.2, H5), 3.68 (dd, *J*_{1,2} 3.1, *J*_{2,3} 9.6, H2), 3.97 (dd, *J*_{4,5} 5.5, H5), 4.27 (dd, *J*_{3,4} 9.9, H3), 4.61, 4.81 (ABq, *J* 12.0, CH₂Ph), 5.28 (d, H1), 5.32 (ddd, H4), 7.32–7.44 (m, Ph), 8.16–8.29 (4H, m, Ar). δ _C (150.9 MHz, CD₃CN) 26.8, 27.0 (2C, CH₃), 60.3 (C5), 70.5 (CH₂Ph), 73.3, 74.8, 76.8 (C2,3,4), 97.3 (C1), 111.6 [*C*(CH₃)₂], 124.7–151.9 (Ar, Ph), 164.7 (C=O). *m/z* 430.1477; [M + H]⁺ requires 430.1502.

Benzyl 2,3-O-Isopropylidene- α -L-xylopyranoside **6**

Triethylamine (10 mL) was added to the 4-nitrobenzoate **5** (21.5 g) in MeOH (250 mL), and the mixture stirred (40°C, 30 min). The solution was concentrated and flash chromatography (EtOAc/petrol/Et₃N, 25:74:1) gave the alcohol **6** as a colourless oil (12.9 g, 92%). $[\alpha]_D - 115^\circ$ (MeOH; lit.^[2] - 119.0° (MeOH)). The ¹H and ¹³C NMR spectra were consistent with those previously reported.^[2]

Benzyl 4-O-(Imidazolyl-1-sulfonyl)-2,3-Oisopropylidene- α -L-xylopyranoside **7**

Sulfuryl chloride (2.41 mL, 30.0 mmol) in CH₂Cl₂ (10 mL) was added dropwise to the alcohol 6 (7.01 g, 25.0 mmol) and pyridine (4.85 mL, 60.0 mmol) in CH_2Cl_2 (100 mL) at $-35^{\circ}C$ and the mixture stirred (1 h). Imidazole (7.49 g, 110 mmol) was added, the mixture allowed to warm to room temperature, and stirred (16 h). The solution was diluted (CH₂Cl₂), washed with water, dried over MgSO₄, filtered, and concentrated. The residue was subjected to flash chromatography (EtOAc/petrol/Et₃N, 15:84:1) to give the imidazylate 7 as colourless needles (9.64 g, 94%). mp 80–81°C (Et₂O/petrol). $[\alpha]_D$ –115° (MeCN). δ_H (600 MHz, CD₃CN) 1.29, 1.32 (6H, 2s, CH₃), 3.52 (dd, J_{4,5} 9.9, J_{5.5} 11.3, H5), 3.53 (dd, J_{1,2} 3.1, J_{2,3} 9.5, H2), 3.71 (dd, J_{4.5} 5.6, H5), 4.00 (dd, J_{3.4} 9.6, H3), 4.56, 4.74 (ABq, J 12.0, CH₂Ph), 4.93 (ddd, H4), 5.21 (d, H1), 7.13-7.14 (1H, m, Im), 7.30-7.41 (m, Ph), 7.47-7.48 (1H, m, Im), 8.03-8.04 (1H, m, Im). δ_C (150.9 MHz, CD₃CN) 26.5, 26.7 (2C, CH₃), 59.8 (C5), 70.7 (CH₂Ph), 74.2, 76.3, 82.3 (C2,3,4), 96.9 (C1), 112.0 $[C(CH_3)_2]$, 119.3–138.5 (Im, Ph). m/z 411.1226; $[M + H]^+$ requires 411.1226.

Benzyl 4-C-Cyano-4-deoxy-2,3-O-isopropylideneβ-D-arabinoside **2**

Potassium cyanide (6.3 g, 96 mmol) was added to the imidazylate 7 (4.9 g, 12 mmol) in DMF (150 mL) and the mixture stirred (50°C, 48 h). The mixture was then concentrated, diluted (CH₂Cl₂), washed with water, dried over MgSO₄, filtered, and concentrated. The residue was subjected to flash chromatography (EtOAc/petrol/Et₃N, 5:94:1) to give the nitrile **2** as a colourless oil (2.6 g, 76%). $[\alpha]_D - 198^\circ$ (MeOH; lit.^[2] -204.6° (MeOH)). The ¹H and ¹³C NMR spectra were consistent with those previously reported.^[2]

Acknowledgments

E.D.G.-B. thanks the University of Western Australia for a Hackett postgraduate scholarship.

References

- T. M. Jespersen, W. Dong, M. R. Sierks, T. Skrydstrup, I. Lundt, M. Bols, *Angew. Chem. Int. Ed. Engl.* **1994**, *33*, 1778. doi:10.1002/ANIE.199417781
- [2] X. Zhu, K. A. Sheth, S. Li, H.-H. Chang, J.-Q. Fan, Angew. Chem. Int. Ed. 2005, 44, 7450, and references therein. doi:10.1002/ANIE. 200502662
- [3] W. M. Best, J. M. Macdonald, B. W. Skelton, R. V. Stick, D. M. G. Tilbrook, *Can. J. Chem.* **2002**, *80*, 857. doi:10.1139/V02-060
- [4] P. J. Meloncelli, R. V. Stick, Aust. J. Chem. 2006, 59, 827. doi:10.1071/CH06241
- [5] C. E. Ballou, S. Roseman, K. P. Link, J. Am. Chem. Soc. 1951, 73, 1140. doi:10.1021/JA01147A076
- [6] S.-H. Chen, S. J. Danishefsky, *Tetrahedron Lett.* 1990, 31, 2229. doi:10.1016/0040-4039(90)80192-O
- [7] J. E. McCormick, Carbohydr. Res. 1967, 4, 262. doi:10.1016/S0008-6215(00)85011-9
- [8] A. Scaffidi, B. W. Skelton, R. V. Stick, A. H. White, Aust. J. Chem. 2006, 59, 426. doi:10.1071/CH06137