

Journal of Alloys and Compounds 418 (2006) 68-72

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

# Cs<sub>2</sub>Gd<sub>6</sub>N<sub>2</sub>Te<sub>7</sub>: The first quaternary nitride telluride of the lanthanides

Falk Lissner, Thomas Schleid\*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Received 12 May 2005; received in revised form 2 August 2005; accepted 2 August 2005 Available online 24 January 2006

#### Abstract

The first quaternary nitride telluride with trivalent gadolinium,  $Cs_2Gd_6N_2Te_7$ , was obtained by the reaction of metallic gadolinium with cesium azide, elemental tellurium, and gadolinium trichloride as well as cesium chloride as flux at 900 °C for 7 days in evacuated silica tubes. Single crystals occur as long black needles and crystallize in the monoclinic space group C2/m (a = 2403.1(2) pm, b = 424.03(3) pm, c = 1142.91(7) pm,  $\beta = 103.709(4)^\circ$ , Z = 2). Three crystallographically different Gd<sup>3+</sup> cations constitute the structure, two are coordinated by one N<sup>3-</sup> (d(Gd(1/2)-N) = 217 pm) and five Te<sup>2-</sup> anions (d(Gd(1/2)-Te) = 305-326 pm), and the third Gd<sup>3+</sup> by two N<sup>3-</sup> (d(Gd(3)-N) = 244 pm) and four Te<sup>2-</sup> anions (d(Gd(3)-Te) = 316-317 pm), all forming distorted octahedra about Gd<sup>3+</sup>. The Cs<sup>+</sup> cation shows a perfect bicapped trigonal prism (C.N. = 8, d(Cs-Te) = 383-431 pm) as coordination sphere. Two of these polyhedra are condensed via a common (non-capped) rectangular face building up double prisms [Cs<sub>2</sub>Te<sub>1</sub>]<sup>22-</sup>. Further linkage via triangular faces (along [0 1 0]) and two of the four caps (along [0 0 1]) results in corrugated layers [Cs<sub>2</sub>Te<sub>7</sub>]<sup>12-</sup> running parallel to (1 0 0). However, the main feature of the crystal structure comprises N<sup>3-</sup>-centered (Gd<sup>3+</sup>)<sub>4</sub> tetrahedra (d(N-Gd) = 217 pm (2×) and 244 pm (2×);  $\chi$  (Gd–N–Gd) = 107° (2 + 2 + 1×) and 121° (1×)), which are connected via two vertices each to build up one-dimensional infinite chais  $\frac{1}{\infty} [[N(Gd1)_{1/1}^{1}(Gd2)_{1/2}^{10}]^{6+}]$  (t = terminal, v = vertex-shared) along [0 1 0] like in the structure of the M<sub>3</sub>NCh<sub>3</sub>-type nitride chalcogenides with M = La–Nd, Sm, Gd–Dy, and Ch = S, Se. © 2005 Elsevier B.V. All rights reserved.

Keywords: Lanthanides; Cesium; Gadolinium; Nitrides; Tellurides; Crystal structure

## 1. Introduction

In the last decade, nitride chalcogenides of the lanthanides (and their halide derivatives) have been demonstrated to possess an extremely rich chemistry of formula and structural types [1]. However, N<sup>3-</sup>-centered (M<sup>3+</sup>)<sub>4</sub> tetrahedra, which can occur isolated or condensed, provide the main feature in the crystal structures for all of them. In ternary compounds such as M<sub>3</sub>NCh<sub>3</sub> (M=La–Nd, Sm, Gd–Dy; Ch=S, Se) [2] these [NM<sub>4</sub>]<sup>9+</sup> tetrahedra are connected via two corners forming linear chains  $\frac{1}{\infty}$ {[N(M) $_{2/1}^{t}$ (M') $_{2/2}^{v}$ ]} (t=terminal, v=vertexshared). The ratio N<sup>3-</sup>: M<sup>3+</sup> = 1: 2, realized for the composition M<sub>4</sub>N<sub>2</sub>Ch<sub>3</sub> (M=La–Nd, Sm, Tb; Ch=S, Se, Te) [3], requires a higher degree of linkage of the N<sup>3-</sup>-centered (M<sup>3+</sup>)<sub>4</sub> tetrahedra. The crystal structures of Sm<sub>4</sub>N<sub>2</sub>S<sub>3</sub> [4] and Tb<sub>4</sub>N<sub>2</sub>Se<sub>3</sub> [5,6] show also infinite chains, but now by sharing *cis*-oriented edges according to  $\frac{1}{\infty}$ {[N(M) $_{1/1}^{t}$ (M') $_{3/3}^{e}$ ] (e=edge-connecting) in

\* Corresponding author. Fax: +49 711 685 4241.

E-mail address: schleid@iac.uni-stuttgart.de (Th. Schleid).

this case. The nitride chalcogenides  $Pr_4N_2S_3$  [7] and  $M_4N_2Se_3$  (M = Pr, Nd) [6,7] present a layered arrangement, dominated by N<sup>3-</sup>-centered (M<sup>3+</sup>)<sub>4</sub> tetrahedra again, which share a common edge first. Continuing linkage of the resulting bitetrahedral  $[N_2M_6]^{12+}$  units (also a discrete feature in the crystal structure of  $M_5NSe_6$  [8] with M = Pr) via the *non*-connected vertices to layers according to  $^2_{\infty}\{[N(M)^e_{2/2}(M')^v_{2/2}]^{3+}\}$  forms different kinds of tetrahedral nets, which can be described as layers consisting of "four- and eight-rings" for  $Pr_4N_2S_3$  and as layers of exclusively "six-rings" for  $Pr_4N_2S_3$ . Recently we could prepare and characterize the first nitride tellurides of the lanthanides,  $M_4N_2Te_3$  (M = La–Nd) [9], on the basis of single-crystal X-ray diffraction data. The crystal structure is dominated by  $N^{3-}$  centered ( $M^{3+}$ )<sub>4</sub> tetrahedra of course, which build up *non*-linear infinite chains  $^1_{\infty}\{[N(M)^e_{4/2}]^{3+}\}$  by sharing *trans*-oriented edges.

#### 2. Experimental data

 $Cs_2Gd_6N_2Te_7$ , the first quaternary nitride telluride with cesium and gadolinium, was obtained by the reaction of elemental gadolinium (Gd: ChemPur;

<sup>0925-8388/\$ -</sup> see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2005.08.105

F. Lissner, Th. Schleid / Journal of Alloys and Compounds 418 (2006) 68-72

| Table 1                                                    |
|------------------------------------------------------------|
| Cs2Gd6N2Te7: crystallographic data and their determination |

| Earmania                                                       | Co Cd N To                                               |
|----------------------------------------------------------------|----------------------------------------------------------|
| Formula                                                        | Cs2Gu6IN2 107                                            |
| Crystal system                                                 | Monoclinic                                               |
| Space group                                                    | <i>C</i> 2/ <i>m</i> (no. 12)                            |
| Formula units (Z)                                              | 2                                                        |
| Lattice constants <sup>a</sup>                                 | a = 2403.12(15)  pm, b = 424.03(3)  pm,                  |
|                                                                | $c = 1142.91(7) \text{ pm}, \beta = 103.709(4)^{\circ}$  |
| Molar volume, $V_{\rm m}$ (cm <sup>3</sup> mol <sup>-1</sup> ) | 340.68(4)                                                |
| Calculated density, $D_x$ (g cm <sup>-3</sup> )                | 6.254                                                    |
| F(000)                                                         | 1744                                                     |
| Diffractometer/wavelength                                      | Kappa-CCD (Nonius)/ $\lambda = 71.07 \text{ pm}$         |
|                                                                | (Mo-Kα)                                                  |
| Index range                                                    | $\pm h_{\max} = 32, \pm k_{\max} = 5, \pm l_{\max} = 15$ |
| $\Theta_{\max}$ (°)                                            | 28.3                                                     |
| Absorption coefficient, $\mu$ (mm <sup>-1</sup> )              | 29.33                                                    |
| Data corrections                                               | Background, polarization and Lorentz                     |
|                                                                | factors; numerical absorption correction:                |
|                                                                | program X-SHAPE [11]                                     |
| Collected reflections/unique ones                              | 13978/1590                                               |
| $R_{\rm int}/R_{\sigma}$                                       | 0.092/0.053                                              |
| Structure solution and refinement                              | Program package SHELX-93 and -97 [12]                    |
| Scattering factors                                             | International Tables, vol. C [13]                        |
| $R_1$ (with $4\sigma$ barrier)                                 | 0.037 (for 1386 reflections)                             |
| $R_1/wR_2$ /Goodness of Fit (GooF)                             | 0.050/0.061/1.122                                        |
| (for all reflections)                                          |                                                          |
| Extinction (g)                                                 | 0.00022(3)                                               |
| Residual electron density, $\rho$                              | 1.91 (max.), -1.72 (min.)                                |
| $(e^{-} \times 10^{6}  pm^{3})$                                |                                                          |

<sup>a</sup> Single crystal data, further details of the crystal structure investigation can be obtained from the Fachinformationszentrum (FIZ) Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247 808 666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the depository number CSD-391315 for  $Cs_2Gd_6N_2Te_7$ .

Table 2  $Cs_2Gd_6N_2Te_7: \mbox{ atomic coordinates and anisotropic thermal displacement parameters, $U_{ij}$ (pm^2)^a$}$ 

| Wyckoff  | position                                              | x/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | y/b                                                    | z/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4i       |                                                       | 0.06636(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 0                                                      | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9714(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4i       |                                                       | 0.16467(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 0                                                      | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9163(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4i       |                                                       | 0.21612(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 0                                                      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3008(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4i       |                                                       | 0.41009(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 0                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6393(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4i       |                                                       | 0.1386(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 0                                                      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 964(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2a       |                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | 0                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4i       |                                                       | 0.24075(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 0                                                      | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6158(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4i       |                                                       | 0.33622(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 0                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5830(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4i       |                                                       | 0.42506(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 0                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9543(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $U_{11}$ | <i>U</i> <sub>22</sub>                                | U <sub>33</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>U</i> <sub>23</sub>                                 | L                                                      | V <sub>13</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $U_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 307(5)   | 300(5)                                                | 313(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | 2                                                      | 8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 144(3)   | 150(3)                                                | 140(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | 1                                                      | 9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 112(3)   | 136(3)                                                | 170(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | 4                                                      | 4(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 104(3)   | 141(3)                                                | 162(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | 2                                                      | 3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 81(41)   | 163(51)                                               | 115(50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                      | -                                                      | -3(37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 167(6)   | 148(6)                                                | 374(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | _                                                      | -104(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 160(4)   | 153(4)                                                | 163(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | 1                                                      | 3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 134(4)   | 154(4)                                                | 171(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | 3                                                      | 8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 163(4)   | 164(4)                                                | 227(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                      | 8                                                      | 1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ | $\begin{tabular}{ c c c c c } \hline Wyckoff position \\ \hline 4i & & & \\ 2a & & & \\ 4i & & & \\ 4i & & & \\ 4i & & & \\ \hline U_{11} & U_{22} & & \\ \hline & U_{11} & U_{22} & & \\ \hline & & & & \\ 307(5) & 300(5) & & \\ 144(3) & 150(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 136(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 112(3) & 126(3) & & \\ 1$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Wyckoff position $x/a$ $y/b$ $4i$ 0.06636(4)         0 $4i$ 0.16467(2)         0 $4i$ 0.21612(2)         0 $4i$ 0.41009(2)         0 $4i$ 0.1386(4)         0 $2a$ 0         0 $4i$ 0.24075(3)         0 $4i$ 0.33622(3)         0 $4i$ 0.42506(3)         0 $U_{11}$ $U_{22}$ $U_{33}$ $U_{23}$ $U_{33}$ $U_{11}$ $U_{22}$ $U_{33}$ $U_{23}$ | Wyckoff position $x/a$ $y/b$ $z/c$ $4i$ 0.06636(4)         0         0.66 $4i$ 0.16467(2)         0         0.33 $4i$ 0.21612(2)         0         0.14 $4i$ 0.41009(2)         0         0.88 $4i$ 0.1386(4)         0         0.12 $2a$ 0         0         0         0 $4i$ 0.24075(3)         0         0.66 $4i$ 0.33622(3)         0         0.00 $4i$ 0.342075(3)         0         0.59 $U_{11}$ $U_{22}$ $U_{33}$ $U_{23}$ $U_{13}$ $307(5)$ $300(5)$ $313(5)$ 0         28(4) $144(3)$ $150(3)$ $140(3)$ 0         19(2) $112(3)$ $136(3)$ $170(3)$ 0         44(2) $104(3)$ $141(3)$ $162(3)$ 0         23(2) $81(41)$ $163(51)$ $115(50)$ $-3(37)$ 167(6) $148(6)$ $374(8)$ $-104(6)$ |

<sup>a</sup> Defined as temperature factor according to:  $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{23}klb^*c^* + 2U_{13}hla^*c^* + 2U_{12}hka^*b^*)].$ 

| Table 3                                                                                             |
|-----------------------------------------------------------------------------------------------------|
| $Cs_2Gd_6N_2Te_7$ : selected internuclear distances, $d$ (pm), and angles, $\measuredangle(^\circ)$ |

| Cs                      |       | Gd1                     |       | Gd2                     |       |
|-------------------------|-------|-------------------------|-------|-------------------------|-------|
| -Te3 (2×)               | 383.2 | $-N(1\times)$           | 217.0 | $-N(1\times)$           | 217.1 |
| $-\text{Te4}(2\times)$  | 393.8 | $-\text{Te4}(2\times)$  | 305.3 | -Te3 (2×)               | 307.1 |
| $-\text{Te4}'(2\times)$ | 400.6 | $-\text{Te2}(1\times)$  | 319.2 | $-\text{Te2}(2\times)$  | 317.3 |
| -Te1 (1×)               | 414.0 | $-\text{Te2}'(2\times)$ | 326.9 | $-\text{Te3}'(1\times)$ | 318.2 |
| -Te2 (1×)               | 430.5 |                         |       |                         |       |
| Gd3                     |       | Ν                       |       |                         |       |
| $-N(2\times)$           | 244.1 | -Gd1 (1×)               | 217.0 | Gd1–N–Gd3 $(2\times)$   | 107.0 |
| -Te3 (1×)               | 315.5 | $-Gd2(1\times)$         | 217.1 | Gd2-N-Gd3 $(2\times)$   | 107.2 |
| -Te1 (2×)               | 316.1 | -Gd3 (2×)               | 244.1 | Gd1–N–Gd2 $(1\times)$   | 107.3 |
| -Te4 (1×)               | 317.3 |                         |       | Gd3–N–Gd3' (2×)         | 120.6 |



Fig. 1. Coordination polyhedra [(Gd1)NTe<sub>5</sub>], [(Gd2)NTe<sub>5</sub>], and [(Gd3)N<sub>2</sub>Te<sub>4</sub>] (top to bottom) in the crystal structure of  $Cs_2Gd_6N_2Te_7$ .

99.9%) with cesium azide (CsN<sub>3</sub>: Ferak; 99.9%), tellurium (Te: ChemPur; 99.9999%) as well as gadolinium trichloride (GdCl<sub>3</sub>: prepared from Gd<sub>2</sub>O<sub>3</sub> (Johnson–Matthey; 99.999%) by the ammonium-chloride route [10]) and cesium chloride (CsCl: ChemPur; 99.9%) as flux. In attempts to obtain Gd<sub>4</sub>N<sub>2</sub>Te<sub>3</sub> with a crystal structure isotypic to the M<sub>4</sub>N<sub>2</sub>Te<sub>3</sub>-type homologues with M = La–Nd [9] according to

 $34\,Gd\,+\,6\,CsN_3+27\,Te\,+\,2\,GdCl_3\rightarrow\,9\,Gd_4N_2Te_3+6\,CsCl$ 

the reactants (Gd, CsN<sub>3</sub>, Te, GdCl<sub>3</sub>) were handled under the inert argon atmosphere of a glove box (M. Braun, Garching) and then heated to 900 °C for 7 days in evacuated silica tubes. Single crystals occur as long black needles in amounts of at least 50% and turned out to possess a heretofore unknown basis-centered monoclinic unit cell (space group: C2/m) with parameters like a = 2403.1(2) pm, b = 424.03(3) pm, c = 1142.91(7) pm and  $\beta = 103.709(4)^{\circ}$ . Complete singlecrystal X-ray diffraction data refinement (Tables 1 and 2) results in the first quaternary nitride telluride with cesium and gadolinium: Cs<sub>2</sub>Gd<sub>6</sub>N<sub>2</sub>Te<sub>7</sub>. In order to increase the yield of this new nitride telluride the stoichiometric mixtures of the educts were changed according to

 $58\,Gd\,+\,6\,CsN_3+63\,Te\,+\,12\,CsCl\,\rightarrow\,9\,Cs_2Gd_6N_2Te_7+4\,GdCl_3$ 

for reactions at 900 °C of 1 week. Under these circumstances  $Cs_2Gd_6N_2Te_7$  became the single-phase nitride telluride product in almost quantitative yields. It was not possible to isolate a pure sample of this nitride telluride so far, however, because by rinsing off the water-soluble by-products (GdCl<sub>3</sub> and the fluxing agent CsCl)  $Cs_2Gd_6N_2Te_7$  begins to decompose by hydrolysis after 10–15 min, leaving behind black tellurium and colourless gadolinium hydroxide after ammonia evolution.

### 3. Structure description and discussion

In the crystal structure of  $Cs_2Gd_6N_2Te_7$  there are three crystallographically different  $Gd^{3+}$  cations present, two of them coordinated by one  $N^{3-}$  and five  $Te^{2-}$  anions, the third by two N<sup>3-</sup> and four Te<sup>2-</sup> anions, forming distorted octahedra about each  $Gd^{3+}$  (Fig. 1, top to bottom). The distances  $d(Gd^{3+}-N^{3-})$ amount to 217–244 pm and  $d(Gd^{3+}-Te^{2-})$  to 305–327 pm, respectively, as shown in Table 3. These values are in good agreement with the Gd-N distances in the crystal structures of Gd<sub>3</sub>NS<sub>3</sub> (220–232 pm) [2] or Gd<sub>2</sub>NCl<sub>3</sub> (226–228 pm) [14] and Gd<sub>3</sub>NCl<sub>6</sub> (224–231 pm) [15] as well as with the Gd–Te distances in gadolinium sesquitelluride Gd<sub>2</sub>Te<sub>3</sub> [16] with U<sub>2</sub>S<sub>3</sub>-type structure (311-323 pm, C.N. = 7) or Cs<sub>3</sub>Gd<sub>7</sub>Te<sub>12</sub> (304-322 pm, C.N. = 6) [17]. The Cs<sup>+</sup> cation shows a perfect bicapped trigonal prism (C.N. = 8) as coordination figure due to its site symmetry *m* with distances  $d(Cs^+-Te^{2-})$  of 383–431 pm (Fig. 2, above). The binary telluride Cs<sub>2</sub>Te [18] (in contrast to most of the other alkali-metal chalcogenides, A2Ch, with no anti-CaF2-type structure) shows distances that again agree well (371-378 pm, C.N. = 4 and 5) with the title compound and the same is true for the Cs-Te distances in the ternary telluride Cs<sub>3</sub>Gd<sub>7</sub>Te<sub>12</sub> (368-414 pm, C.N.=6 and 7) [17]. Two of these  $[\text{CsTe}_8]^{15-1}$ polyhedra (Fig. 2) are condensed via a common (non-capped) rectangular face building up double prisms  $[Cs_2Te_{12}]^{22-}$ .



Fig. 2. Coordination polyhedron [CsTe<sub>8</sub>] (above) and its condensation to corrugated layers  ${}^{2}_{\infty} \{([Cs(Te4)^{f}_{4/4}(Te3)^{f}_{2/2}(Te1)^{v}_{1/2}(Te2)^{t}_{1/1}]_{2})^{12-}\}$  (below) in the crystal structure of Cs<sub>2</sub>Gd<sub>6</sub>N<sub>2</sub>Te<sub>7</sub>.



Fig. 3. Infinite chain  $\frac{1}{\infty} \{ [N(Gd1)_{1/1}^{t}(Gd2)_{1/1}^{t}(Gd2)_{2/2}^{t}]^{6+} \}$  of vertex-connected  $[NGd_4]^{9+}$  tetrahedra along  $[0\ 1\ 0]$  in the crystal structure of  $Cs_2Gd_6N_2Te_7$ .

Table 4  $Cs_2Gd_6N_2Te_7$ : motifs of mutual adjunction [21]

|      | Ν   | Te1 | Te2 | Te3 | Te4 | C.N. |
|------|-----|-----|-----|-----|-----|------|
| Cs   | 0/0 | 1/2 | 1/1 | 2/2 | 4/4 | 8    |
| Gd1  | 1/1 | 0/0 | 3/3 | 0/0 | 2/2 | 6    |
| Gd2  | 1/1 | 0/0 | 2/2 | 3/3 | 0/0 | 6    |
| Gd3  | 2/2 | 2/4 | 0/0 | 1/1 | 1/1 | 6    |
| C.N. | 4   | 6   | 6   | 6   | 7   |      |

Further linkage via triangular faces (along [010]) and two of the four caps (along [010]) results in the formation of corrugated layers  $^{2}_{\infty}\{([Cs(Te4)^{f}_{4/4}(Te3)^{f}_{2/2}(Te1)^{v}_{1/2}(Te2)^{t}_{1/1}]_{2})^{12-}\}$ (t = terminal, v = vertex-connecting, f = face-connecting; compare also Table 4). However, the main feature of the crystal structure comprises N<sup>3-</sup>-centered (Gd<sup>3+</sup>)<sub>4</sub> tetrahedra which are fused via two (Gd3)<sup>3+</sup> vertices to build up one-dimensional infinite chains  $^{1}_{\infty}\{[N(Gd1)^{t}_{1/1}(Gd2)^{t}_{1/1}(Gd3)^{v}_{2/2}]^{6+}\}$  (t = terminal, v = vertex-sharing) along [010] (Fig. 3). The longest Gd–Gd distance within this chain is 424 pm ( $\equiv$  a), which corresponds well to the large deviation of the corresponding tetrahedral angle  $\downarrow(Gd-N-Gd) = 121^{\circ}$ . This kind of  $[NM_4]^{9+}$ -tetrahedral linkage is well-known from the crystal structure of the ternary nitride chalcogenides M<sub>3</sub>NCh<sub>3</sub> (M = La–Nd, Sm, Gd–Dy; Ch = S, Se) [2] already. These strands  ${}_{\infty}^{1}$ {[NGd<sub>3</sub>]<sup>6+</sup>} reside in the commensurate layer  ${}_{\infty}^{2}$ {[CsTe<sub>3.5</sub>]<sup>6-</sup>} and assure the three-dimensional interconnection to a framework as well as the charge balance for electroneutrality. Fig. 4 shows a view of the complete crystal structure of Cs<sub>2</sub>Gd<sub>6</sub>N<sub>2</sub>Te<sub>7</sub> along [0 1 0].

With the intention to prepare ternary lanthanide(III) nitride tellurides, we only could successfully obtain the M4N2Te3-type representatives for M=La-Nd [9] regardless of the nitrogen source (NaN<sub>3</sub> or CsN<sub>3</sub>) and the flux (NaCl or CsCl). Efforts to synthesize isotypic nitride tellurides with Sm<sup>3+</sup> and Eu<sup>3+</sup> failed, but resulted in the formation of SmTe and EuTe (NaCltype structure) with the divalent cations instead. For the heavier lanthanides starting with gadolinium and using NaN3 as nitrogen source (and NaCl as flux) only the ternary sodium tellurides NaMTe<sub>2</sub> (M = Gd-Lu) have been detected. These very stable compounds crystallize with the  $\alpha$ -NaFeO<sub>2</sub>-type structure, which has been well-investigated mainly for the sulfides NaMS<sub>2</sub> (M=Gd, Ho-Lu) [19]. Upon replacement of the sodium compounds (NaN3 and NaCl) by CsN3 and CsCl, in the case of gadolinium (and also terbium), Cs<sup>+</sup> and N<sup>3-</sup> were incorporated into quaternary tellurides such as Cs2Gd<sub>6</sub>N2Te<sub>7</sub> (or isotypic Cs<sub>2</sub>Tb<sub>6</sub>N<sub>2</sub>Te<sub>7</sub> [20], a = 2394.8(2) pm, b = 421.35(3) pm,



Fig. 4. View of the complete crystal structure of Cs<sub>2</sub>Gd<sub>6</sub>N<sub>2</sub>Te<sub>7</sub> along the *b*-axis.

 $c = 1140.49(7) \text{ pm}, \beta = 104.031(4)^{\circ}$ ). The corresponding compounds  $Cs_2M_6N_2Te_7$  with M = Dy-Lu do obviously not exist, but again the formation of ternary alkali-metal tellurides  $CsMTe_2$  (M = Dy-Lu) [19] with the  $\alpha$ -NaFeO<sub>2</sub>-type structure was found to take place.

A comparison of the Madelung Part of the Lattice Energy (MAPLE according to Hoppe [21]) for  $Cs_2Gd_6N_2Te_7$  with the sum of the formally underlying three binary components  $Cs_2Te$  [18],  $Gd_2Te_3$  (U type) [16], and GdN (NaCl type) [22] also gives a convincing result. By taking  $1 \times 434 + 2 \times 2666 + 2 \times 2092$  kJ/mol a value of 9950 kJ/mol for the sum (MAPLE( $Cs_2Te$ ) + 2 × MAPLE( $Gd_2Te_3$ ) + 2 × MAPLE(GdN)) emerges, which only deviates by -0.7% from MAPLE of  $Cs_2Gd_6N_2Te_7$  (10016 kJ/mol) itself. This is all the more astonishing, because a structure in which  $N^{3-}$  anions octahedrally surrounded by  $Gd^{3+}$  cations as GdN ( $d(N^{3-}-Gd^{3+})=250$  pm,  $6 \times$ ) [22] has to compete with such a one ( $Cs_2Gd_6N_2Te_7$ ) containing tetrahedrally coordinated  $N^{3-}$  anions ( $d(N^{3-}-Gd^{3+})=217-244$  pm, C.N. = 4).

#### Acknowledgements

The authors gratefully acknowledge the funding of the "Fonds der Chemischen Industrie" (FCI: Frankfurt a. M., Germany), of the "Deutsche Forschungsgemeinschaft" (DFG: SPP 1166 "Lanthanoidspezifische Funktionalität in Molekül und Material"; Bonn, Germany), and the State of Baden-Württemberg (Stuttgart, Germany).

#### References

 Th. Schleid, Eur. J. Solid State Inorg. Chem. 33 (1996) 227–240; Th. Schleid, Mater. Sci. Forum 315–317 (1999) 163–168.

- F. Lissner, Th. Schleid, Z. Anorg. Allg. Chem. 619 (1993) 1771–1776;
   F. Lissner, M. Meyer, R.K. Kremer, Th. Schleid, Z. Anorg. Allg. Chem., in preparation;
  - F. Lissner, Th. Schleid, Z. Anorg. Allg. Chem. 630 (2004) 1741.
- [3] F. Lissner, Th. Schleid, Z. Kristallogr. Suppl. 21 (2004) 171.
- [4] F. Lissner, Th. Schleid, Z. Anorg. Allg. Chem. 620 (1994) 2003–2007.
- [5] F. Lissner, Th. Schleid, Z. Anorg. Allg. Chem. 628 (2002) 2179.
- [6] F. Lissner, Th. Schleid, Z. Anorg. Allg. Chem. 629 (2003) 1027-1032.
- [7] F. Lissner, Th. Schleid, Z. Anorg. Allg. Chem. 631 (2005) 427-432.
- [8] F. Lissner, O. Janka, Th. Schleid, Z. Kristallogr. Suppl. 22 (2005) 166.
- [9] F. Lissner, Th. Schleid, Z. Anorg. Allg. Chem. 631 (2005) 1119-1124.
- [10] G. Meyer, Inorg. Synth. 25 (1989) 146-150.
- [11] W. Herrendorf, H. Bärnighausen, HABITUS: program for the optimization of the crystal shape for numerical absorption correction in X-SHAPE (Version 1.06, Fa. Stoe, Darmstadt 1999), Karlsruhe, Gießen, 1993, 1996.
- [12] G.M. Sheldrick, SHELX-97: program package for crystal structure determination and refinement from diffraction data, Göttingen, 1997.
- [13] A.J.C. Wilson (Ed.), International Tables for Crystallography, vol. C, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992.
- [14] U. Schwanitz-Schueller, A. Simon, Z. Naturforsch. 40 b (1985) 705-709.
- [15] A. Simon, T. Koehler, J. Less-Common Met. 116 (1986) 279–292.
- [16] J.S. Swinnea, H. Steinfink, L.R. Danielson, J. Appl. Crystallogr. 20 (1987) 102–104.
- [17] O. Tougaît, H. Noël, J.A. Ibers, Solid State Sci. 3 (2001) 513-518.
- [18] I. Schewe-Miller, P. Boettcher, Z. Kristallogr. 196 (1991) 137–151.
- [19] M. Sato, G.Y. Adachi, J. Shiokawa, Mater. Res. Bull. 19 (1984) 1215–1220;

Th. Schleid, F. Lissner, Eur. J. Solid State Inorg. Chem. 30 (1993) 829-836;

F. Lissner, Th. Schleid, Z. Anorg. Allg. Chem. 629 (2003) 1895–1897;
K. Stöwe, C. Napoli, S. Appel, Z. Anorg. Allg. Chem. 629 (2003) 1925–1928.

- [20] F. Lissner, Th. Schleid, Acta Crystallogr. E, in preparation.
- [21] R. Hoppe, Angew. Chem. 78 (1966) 52-63;
  - R. Hoppe, Angew. Chem. 82 (1970) 7-16;
  - R. Hoppe, Adv. Fluorine Chem. 6 (1970) 387-438;
  - R. Hoppe, Izvj. Jugoslav. Centr. Krist. (Zagreb) 8 (1973) 21-36.
- [22] W. Klemm, G. Winkelmann, Z. Anorg. Allg. Chem. 288 (1956) 87-90.