

WILEY-VCH

Copper-catalyzed S-arylation of tetraalkylthiuram disulfides by using diaryliodonium salts

Meng-Tian Zeng,^[a] Wan Xu,^[a] Xing Liu,^[a] Cai-Zhu Chang,^[a] Hui Zhu,^[a] Zhi-Bing Dong*^{[a], [b]}

Abstract: An efficient and convenient procedure for the *S*-arylation of tetraalkylthiuram disulfides by using diaryliodonium salts was explored. In the presence of Cul/KO*t*-Bu, two kinds of *S*-aryl dithiocarbamates could be obtained with good to excellent yields at one time, showing no obvious selectivity. The methodology has advantages of efficiency, good atomic economy and broad substrate scope. The method provides a facile and convenient preparation of some potentially biologically active compounds.

Introduction

Organic dithiocarbamates are popular in organic chemistry due to their versatile applications. They have attracted wide attention since they could be served as important synthetic intermediates,^[1] several of which were found to be biologically active, such as monoacylglycerol lipase inhibitors,^[2] leukemic cells inhibitors,^[3] thymocytes inhibitors,^[4] antitumors^[5] and antibacterials.^[6] Moreover, dithiocarbamates are widely applied in agriculture sphere, serving as fusarium oxysporum agent,^[7] crop anti-diseases drugs.^[8]

Conventionally, protocols for the synthesis of dithiocarbamates involve the use of organometallic reagents with tetramethylthiuram disulfide,^[9] sodium salt of dithiocarbamic acid with diaryliodonium salts^[10] or halobenzene.^[11] In recent years, one-pot three component reactions of amines, carbon disulfide with electrophiles including alkyl halide^[12] or aryl halide,[13] diazonium fluoroborate,[14] aryl pentafluorobenzonitrile,^[15] benzene boronic acid^[16] were reported. However, these methods are still limited by multiple reaction steps, flammable and explosive substrate or reagents, high substrates molar ratio.^[17] As part of our longstanding interests in developing phenylthioureas and the relevant applications,[18] we hereby report a facile method for the synthesis of S-aryl dithiocarbamates using Cul as catalyst and KOt-Bu as base. In this protocol, symmetric and asymmetric diaryliodonium salts react with tetraalkylthiuram disulfides affording two kinds of S-aryl dithiocarbamates in one pot with good yields.

- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China E-mail: <u>dzb04982@wit.edu.cn</u>
- [b] Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China

Results and Discussion

In preliminary studies, diphenyliodonium triflate (1a) and tetramethylthiuram disulfide (TMTD, 2a) were selected as substrate for model reaction under various conditions (Table 1). For the first trial, we expected the reaction to proceed in green solvents with no addition of metal and base, but phenyl dithiocarbamate was obtained in low yields (25-30%, Table 1, entries 1-4). We then added catalyst (CuCl₂) and base (K₂CO₃) to the aqueous solution, the yields were still poor (Table 1, entries 5-6). To our delight, the target compound could be furnished in a relatively higher yield (65%, Table 1, entry 7) in the presence of Cul/K₂CO₃/DMF. Then, a range of bases, such as K₂CO₃, CS₂CO₃, KOt-Bu, KOH, Et₃N and CH₃ONa were surveyed and KOt-Bu was found to be the most suitable base for this reaction (Table 1, entries 7-12). Subsequently, a broad screening of copper, iron, nickel and palladium catalysts was performed (Table 1, entries 13-20). It revealed that iron, nickel and palladium salts were not (or less) effective, but copper catalysts could catalyze the model reaction to give reasonable yields (Table 1, entries 13-17). Among these copper salts, Cul was the best one (Table 1, entry 9). Though a variety of solvents can be used for this reaction (Table 1, entries 9, 21-24), the results showed DMF was the best solvent. The effect of the temperature was checked, rising or decreasing the temperature led to significant yield decrease (Table 1, entries 25-27). The influence of substrates molar ratio was also surveyed, 1a:2a=0.5:0.4 was proved to be the optimal (Table 1, entries 9, 28-29). Furthermore, the control experiments for the loading of Cul and KOt-Bu showed that increasing the loading of Cul or KOt-Bu led to almost no yield change (Table 1, entries 30, 33), while reducing the loading of Cul or KOt-Bu cause sharp yield decrease (Table 1, entries 31-32, 34). The best reaction conditions were summarized in Entry 29, Table 1.

WILEY-VCH

10	Cul	KOH	DMF	110	51
11	Cul	Et₃N	DMF	110	62
12	Cul	CH₃ONa	DMF	110	46
13	CuBr	KO <i>t</i> -Bu	DMF	110	57
14	Cu ₂ O	KO <i>t</i> -Bu	DMF	110	67
15	Cu(OAc) ₂	KO <i>t</i> -Bu	DMF	110	50
16	CuCl	KO <i>t</i> -Bu	DMF	110	58
17	CuCl ₂	KO <i>t</i> -Bu	DMF	110	48
18	FeBr ₃	KO <i>t</i> -Bu	DMF	110	25
19	NiBr ₂	KO <i>t</i> -Bu	DMF	110	Mess
20	Pd(OAc) ₂	KO <i>t</i> -Bu	DMF	110	Mess
21	Cul	KO <i>t</i> -Bu	DMSO	110	48
22	Cul	KO <i>t</i> -Bu	DMAC	110	49
23	Cul	KO <i>t</i> -Bu	Toluene	110	44
24 ^c	Cul	KO <i>t</i> -Bu	THF	110	43
25	Cul	KO <i>t</i> -Bu	DMF	100	64
26	Cul	KO <i>t</i> -Bu	DMF	90	46
27	Cul	KO <i>t</i> -Bu	DMF	120	57
28 ^d	Cul	KO <i>t</i> -Bu	DMF	110	75
29 ^e	Cul	KO <i>t-</i> Bu	DMF	110	84
30 ^f	Cul	KO <i>t</i> -Bu	DMF	110	79
31 ^g	Cul	KO <i>t</i> -Bu	DMF	110	72
32 ^h	Cul	KO <i>t</i> -Bu	DMF	110	59
33i	Cul	KO <i>t</i> -Bu	DMF	110	82
34 ^J	Cul	KO <i>t</i> -Bu	DMF	110	43

[a] Reaction conditions: 1a (0.5 mmol), 2a (0.5mmol), catalyst (30% mmol), base (2.0 equiv), DMF (2 mL) for 4–6 h. [b] Isolated yield for 3a and 3a', respectively. [c] Reaction at 70 °C. [d] With 0.5 mmol of 1a and 0.6 mmol of 2a.
[e] With 0.5 mmol of 1a and 0.4 mmol of 2a. [f] With Cul (50% mmol). [g] With Cul (20% mmol). [h] With Cul (10% mmol). [i] With KOt-Bu (3.0 equiv). [j] With KOt-Bu (1.0 equiv).

Under the optimized reaction conditions, various substituted S-aryl dithiocarbamates were synthesized smoothly in good yields (Table 2, 3a-3q). In the case of reaction with tetramethylthiuram disulfides (TMTD, 2a), the nature of diphenyliodonium counterion anions showed no effect on the yields of the products (Table 2, entries 1-3, 5). A series of symmetrical and unsymmetrical diaryliodonium salts were submitted for reaction survey. Various symmetrical diaryliodonium salts 1X (X=d, e, f, g) reacted with TMTD (2a) giving S-aryl dithiocarbamates 3 and 3' in good yields (Table 2, entries 4-7). Heterocycle dithiocarbamate (3a') were not obtained under standard reaction conditions (Table 2, entry 10). Tetraethylthiuram disulfide (TETD, 2b) and tetrabutylthiuram disulfide (TBTD, 2c) could also be arylated to the corresponding products successfully. Symmetrical diaryliodonium salts (a, d, e, f, q,) reacted with TETD and TBTD, respectively giving the desired dithiocarbamates with good yield (entries 11-15 for TETD, entries 18-22 for TBTD). Unsymmetrical diaryliodonium salts 1h and 1i were slightly selectively transformed to the desired products smoothly, and multi-substituted arvl dithiocarbamates (3e, 3f, 3j, 3l) were more favorably obtained (Table 2, entries 8-9, 16-17). In general, the reaction was slightly positively affected by electron donating groups on the aromatic ring, the steric hindrance from N-substituted amine group put no effect on the reaction, showing its good substrate suitability.

This article is protected by copyright. All rights reserved.

10.1002/ejoc.201701056

WILEY-VCH

10.1002/ejoc.201701056

WILEY-VCH

[a] Reaction conditions: 1 (0.5 mmol), 2 (0.4 mmol), Cul (0.15 mmol), KOt-Bu (1.0 mmol), DMF (2 mL) at 110 °C for 4-6 h. [b] Isolated yield. [c] Isolated yield. [d] A scaled-up reaction (diaryliodonium salt 1: 10 mmol) was performed.

The possible reaction mechanism (**Scheme 1**) is proposed according to the related literature.^[16, 19] At first, diphenyliodonium triflate (1) react with Cul (A) generating intermediates **B** (through an oxidative addition manner) and aryl iodobenzene **E**. Tetraalkylthiuram disulfide (2) and **B** undergo through transmetallation affording complex **C**. Under the action of base (KO*t*-Bu), complex **C** decomposed to intermediate **D** and potassium salt **G**, a following reductive elimination produced the final product **3** along with copper (I) species **A**. On the other hand, **A** and **E** go the same oxidative addition affording **F**, then transmetallation giving intermediate **H**, and the reductive elimination producing the other main product **3'** along with copper(I) species **A**.

Scheme 1. Plausible mechanism for copper catalyzed *S*-arylation of tetraalkylthiuram disulfides by using diaryliodonium salts.

Conclusions

To summarize, we report an efficient and convenient procedure for the synthesis of *S*-aryl dithiocarbamates from diaryliodonium salts and tetraalkylthiuram disulfides. In the presence of Cul/KO*t*-Bu, two kinds of *S*-aryl dithiocarbamates could be obtained in good yields without obvious selectivity. The reaction has advantages of efficiency, good atomic economy and broad substrate scope. The method might afford an alternative way for the fast preparation of some potentially biologically active compounds.

Experimental Section

Nuclear magnetic resonance (NMR) spectra were obtained on a Bruker AC 400 MHz spectrometer (¹H NMR at 400 Hz, ¹³C NMR at 100 Hz) in CDCl₃ using tetramethylsilane as an internal standard. Chemical shifts are given in ppm and coupling constants (*J*) are given in Hz. Electrospray ionization-high-resolution mass spectra (ESI-HRMS) were determined on an Ion Spec (7.0 T) spectrometer. All reactions were performed under dried glassware with septums. All starting materials were purchased from commercial suppliers and used without further purification unless otherwise stated. Yield refers to isolated compounds estimated to be > 95% pure as determined by ¹H NMR and capillary GC analysis.

Typical procedure (TP) for the preparation of S-aryl dithiocarbamates in the presence of Cu and KOt-Bu. Diphenyliodonium triflate (0.5 mmol), TMTD (0.4 mmol), CuI (30% mmol), KOt-Bu (2.0 equiv.) were added in dried seal tube equipped with a septum and magnetic stirrer bar, DMF (2 mL) was then added. The mixture was stirred at 110 °C and checked by thin-layer chromatography (TLC) until the starting material was finished (about 4-6 h). The reaction was cooled down to room temperature, quenched with sat. NH₄Cl solution (5 mL), and then extracted with EtOAc (10 mL). The crude solution was dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by flash column chromatography to afford the desired product.

Phenyl dimethylcarbamodithioate (**3a**). According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:7) to give the target compound **3a** (82.7 mg, 84%) as white solid; mp: 91-92 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.49-7.45 (m, 5 H), 3.56 (s, 3 H), 3.50 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 197.6, 137.0, 131.7, 130.1, 129.1, 45.7, 42.0. HRMS (ESI) calcd for C₉H₁₁NS₂ (197.0333), found: 197.0337.

4-Methylphenyl dimethylcarbamodithioate **(3b)**. According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:8) to give the target compound **3b** (83.3 mg, 79%) as white solid; mp: 109-110 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.33 (d, *J* = 8.0 HZ, 2 H), 7.33 (d, *J* = 4.0 HZ, 2 H), 3.51 (s, 3 H), 3.44 (s, 3H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 198.1, 140.4, 136.8, 130.0, 128.3, 45.7, 42.0. HRMS (ESI) calcd for C₁₀H₁₁NS₂ (211.0498), found: 211.0489.

4-Methoxyphenyl dimethylcarbamodithioate **(3c)**. According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:7) to give the target compound **3c** (95.3 mg, 84%) as white solid; mp: 97-99 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.37 (d, *J* = 4.0 HZ, 2 H), 6.96 (d, *J* = 4.0 HZ, 2 H), 3.83 (s, 3 H), 3.54 (s, 3H), 3.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 198.7, 161.1, 138.4, 122.6, 114.7, 55.3, 45.8, 41.9. HRMS (ESI) calcd for C₁₀H₁₁NOS₂ (227.0439), found: 227.0441.

2, 5-Dimethylphenyl dimethylcarbamodithioate **(3d).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:8) to give the target compound **3d** (96.8 mg, 86%) as colorless oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.33-7.27 (m, 3 H), 3.58 (s, 3 H), 3.51 (s, 3 H), 2.45 (s, 3 H), 2.41 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 196.4, 140.7, 138.1, 136.2, 131.6, 130.8, 130.6, 45.6, 42.1, 20.9, 20.5. HRMS (ESI) calcd for C₁₀H₁₆NOS₂ (225.0646), found: 225.0652.

2, 4, 6-Trimethylphenyl dimethylcarbamodithioate **(3e)**. According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:7) to give the target compound **3e** (106.4 mg, 89%) as white solid; mp: 77-78 °C, ¹H NMR (400 MHz, CDCl₃): $\overline{\delta}$ = 7.00 (s, 2 H), 3.53 (s, 6 H), 2.32 (d, *J* = 16.0 HZ, 9 H), ¹³C NMR (100 MHz, CDCl₃): $\overline{\delta}$ = 196.0, 143.8, 140.4, 129.3, 127.5, 45.5, 42.0, 21.6, 21.4. HRMS (ESI) calcd for C₁₂H₁₇NS₂ (239.0802), found: 239.0809.

2, 4, 6-triisopropylphenyl dimethylcarbamodithioate **(3f)**. According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:7) to give the target compound **3f** (143.8 mg, 89%) as colorless solid; mp: 122-124 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.04 (s, 2 H), 3.47 (s, 6 H), 3.38-3.32 (m, 2 H), 2.90-2.84 (m, 2 H), 1.21 (d, *J* = 8.0 Hz, 6 H), 1.41 (s, 12 H). ¹³C NMR (100 MHz, CDCl₃): δ = 197.7, 153.4, 151.3, 125.7, 122.1, 45.5, 42.0, 34.2, 31.9, 23.8. HRMS (ESI) calcd for C₁₈H₂₉NS₂ (323.1741), found: 323.1749.

Phenyl diethylcarbamodithioate **(3g)**. According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:10) to give the target compound **3g** (90.0 mg, 80%) as pale yellow oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (d, *J* = 12.0 Hz, 5 H), 4.02 (d, *J* = 4.0 Hz, 2 H), 3.84 (d, *J* = 8.0 Hz, 2 H), 1.39 (t, *J* = 4.0 Hz, 3 H), 1.29 (d, *J* = 4.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 137.2, 131.6, 130.0, 129.0, 49.9, 47.3, 12.8, 11.6. HRMS (ESI) calcd for C₁₁H₁₅NS₂ (225.0604), found: 225.0608.

4-Methylphenyl diethylcarbamodithioate **(3h).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:15) to give the target compound **3h** (98.0 mg, 82%) as white solid; mp: 75-76 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (d, *J* = 8.0 Hz, 2 H), 7.16 (d, *J* = 4.0 Hz, 2 H), 3.94 (d, *J* = 8.0 Hz, 2 H), 3.76 (d, *J* = 4.0 Hz, 2 H), 2.32 (s, 3 H), 1.31 (t, *J* = 4.0 Hz, 3 H), 1.20 (t, *J* = 4.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 196.5, 140.2, 137.0, 129.9, 128.1, 49.9, 47.2, 21.5, 12.7, 11.6. HRMS (ESI) calcd for C₁₂H₁₇NS₂ (239.0802), found: 239.0807.

2, 5-Dmethylphenyl diethylcarbamodithioate **(3i)**. According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:15) to give the target compound **3i** (102.5mg, 81%) as pale yellow oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.18 (s, 1 H), 7.11 (d, *J* = 8.0 Hz, 2 H), 3.93 (d, *J* = 4.0 Hz, 2 H), 3.77 (d, *J* = 8.0 Hz, 2 H), 2.25 (d, *J* = 8.0 Hz, 6 H), 1.31 (s, 3 H), 1.19 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 195.0, 140.7, 138.2, 136.2, 131.4, 130.6, 130.5, 49.7, 47.3, 20.8, 20.4, 12.8, 11.7. HRMS (ESI) calcd for C₁₃H₁₈NS₂ (253.0959), found: 253.0962.

2, 4, 6-Trimethylphenyl diethylcarbamodithioate **(3j).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:15) to give the target compound **3j** (102.8mg, 77%) as yellow solid; mp: 94-96 °C, ¹H NMR (400 MHz, CDCl₃): δ = 6.93 (s, 2 H), 3.96 (d, *J* = 8.0 Hz, 2 H), 3.82 (d, *J* = 4.0 Hz, 2 H), 2.28 (s, 6 H), 2.24 (s, 3 H), 1.34 (s, 3 H), 1.20 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.3, 143.9, 140.3, 129.2, 127.6, 49.7, 47.2, 21.7, 21.3, 12.9, 11.8. HRMS (ESI) calcd for C₁₄H₂₁NS₂ (267.1115), found: 267.1114.

4-Methoxy diethylcarbamodithioate **(3k).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:7) to give the target compound **3k** (97.0mg, 76%) as white solid; mp: 73-75 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.23 (d, *J* = 8.0 Hz, 2 H), 6.80 (d, *J* = 8.0 Hz, 2 H), 3.87 (d, *J* = 8.0 Hz, 2 H), 3.68 (s, 5 H), 1.24 (t, *J* = 6.4 Hz, 3 H), 1.13 (t, *J* = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 197.1, 161.0, 138.6, 122.4, 114.6, 55.3, 50.0, 47.1, 12.7, 11.6. HRMS (ESI) calcd for C₁₂H₁₇NOS₂ (255.0752), found: 255.0759.

2, 4, 6-Triisopropylphenyl diethylcarbamodithioate **(3I).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:20) to give the target compound **3I** (150.9mg, 86%) as yellow solid; mp: 58-59 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.02 (s, 2 H), 3.94 (d, *J* = 4.0 Hz, 2 H), 3.85 (d, *J* = 8.0 Hz, 2 H), 3.38-3.31 (m, 2 H), 2.89-2.84 (m, 1H), 1.34 (s, 3 H), 1.21 (d, *J* = 4.0 Hz, 9 H), 1.14 (s, 12 H) ¹³C NMR (100 MHz, CDCl₃): δ = 196.0, 153.4, 151.1, 125.9, 122.0, 49.6, 47.2, 34.3, 32.0, 23.8, 13.0, 11.8. HRMS (ESI) calcd for C₂₀H₃₃NS₂ (351.2054), found: 351.2047.

Phenyl dibutylcarbamodithioate **(3m).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:20) to give the target compound **3m** (116.6mg, 83%) as brown oil, ¹H NMR (400 MHz, CDCl₃): $\bar{\sigma}$ = 7.40-7.33 (m, 5 H), 3.85 (t, *J* = 4.0 Hz, 2 H), 3.67 (t, *J* = 4.0 Hz, 2 H), 1.72-1.64 (m, 4 H), 1.35-1.25 (m, 4H), 0.93 (t, *J* = 4.0 Hz, 3 H), 0.85 (t, *J* = 8.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): $\bar{\sigma}$ = 196.2, 137.1, 131.8, 129.9, 129.0, 55.3, 53.1, 29.6, 28.4, 20.2, 13.9, 13.8. HRMS (ESI) calcd for C₁₅H₂₃NS₂ (281.1272), found: 281.1280.

4-Methylphenyl dibutylcarbamodithioate **(3n).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:20) to give the target compound **3n** (119.5mg, 81%) as brown oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.31 (d, *J* = 4.0 Hz, 2 H), 7.19 (d, *J* = 8.0 Hz, 2 H), 3.89 (t, *J* = 4.0 Hz, 2 H), 3.71 (t, *J* = 8.0 Hz, 2 H), 2.35 (s, 3H), 1.76-1.68 (m, 4 H), 1.41-1.27 (m, 4 H), 0.96 (t, *J* = 8.0 Hz, 3 H), 0.89 (t, *J* = 8.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 196.8, 140.1, 136.9, 129.9, 128.3, 55.4, 53.0, 29.6, 28.4, 21.5, 20.2, 13.9, 13.8. HRMS (ESI) calcd for C₁₆H₂₅NS₂ (295.1428), found: 295.1435.

2, 5-Dmethylphenyl dibutylcarbamodithioate **(30).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:30) to give the target compound **30** (115.9mg, 75%) as colorless oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.17 (s, 1 H), 7.13-7.08 (m, 2 H), 3.86 (t, *J* = 8.0 Hz, 2 H), 3.69 (t, *J* = 4.0 Hz, 2 H), 2.44 (d, *J* = 4.0 Hz, 6 H), 1.73-1.63 (m, 4 H), 1.37-1.23 (m, 4 H), 0.92 (t, *J* = 4.0 Hz, 3 H), 0.85 (t, *J* = 8.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 195.3, 140.6, 138.2, 136.1, 131.4, 130.8, 130.5, 55.1, 53.0, 29.7, 28.5, 20.8, 20.4, 20.1, 13.9, 13.8. HRMS (ESI) calcd for C₁₇H₂₇NS₂ (309.1585), found: 309.1582.

2, 4, 6-Trimethylphenyl dibutylcarbamodithioate **(3p).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:30) to give the target compound **3p** (130.8mg, 81%) as colorless oil, ¹H NMR (400 MHz, CDCl₃): δ = 6.94 (s, 2 H), 3.90 (t, *J* = 8.0 Hz, 2 H), 3.75 (t, *J* = 8.0 Hz, 2 H), 2.30 (s, 6 H), 2.25(s, 3 H), 1.76 (d, *J* = 8.0 Hz, 2 H), 1.65 (d, *J* = 8.0 Hz, 2 H), 1.42-1.36 (m, 2 H), 1.31-1.26 (m, 2 H), 0.96 (t, *J* = 4.0 Hz, 3 H), 0.89 (t, *J* = 8.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.7, 140.6, 143.8, 140.2, 129.2, 55.0, 52.9, 29.8, 28.6, 21.7, 21.4, 20.2, 13.9, 13.9. HRMS (ESI) calcd for C₁₈H₂₉NS₂ (323.1741), found: 323.1746.

4-Methoxy phenyl dibutylcarbamodithioate **(3q).** According to **TP**, the residue was purified by flash chromatography on silica gel (EtOAc/ PE= 1:20) to give the target compound **3q** (135.3mg, 87%) as yellow oil, ¹H NMR (400 MHz, CDCl₃): δ = 7 .29 (d, *J* = 8.0 Hz, 2 H), 6.87 (d, *J* = 12.0

Hz, 2 H), 3.86 (s, 2 H), 3.75 (s, 3 H), 3.69 (t, J = 4.0 Hz, 2 H), 1.76-1.72 (m, 4 H), 1.38-1.23 (m, 4 H), 0.93 (t, J = 8.0 Hz, 3 H), 0.86 (t, J = 8.0 Hz, 3 H), 1³C NMR (100 MHz, CDCl₃): $\delta = 197.4$, 161.0, 138.6, 122.6, 114.6, 55.5, 55.3, 52.9, 29.6, 28.4, 20.1, 13.9, 13.8. HRMS (ESI) calcd for C₁₆H₂₅NOS₂ (311.1378), found: 311.1375.

Acknowledgements

We thank the foundation support from National Natural Science Foundation of China (21302150), Hubei Provincial Department of Education (D20131501), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [2012]1707 and foundation of High-end Talent Cultivation Program from Wuhan Institute of Technology. We also thank Prof AiwenLei at Wuhan University (China) and for his kind NMR analysis support, and Prof. Dr. Georg Manolikakes at Johann Wolfgang Goethe-Universität (Germany) for generous chemicals donation.

Keywords: dithiocarbamates • aylation• diaryliodonium salts • tetraalkylthiuram disulfides • copper

References

- a) U. Boas, H. Gertz, J. B. Christensen, P. M. H. Heegaard, *Tetrahedron Lett.* 2004, *45*, 269-272; b) M. Betou, L. Male, J. W. Steed, R. S. Grainger, *Chem. Eur. J.* 2014, *20*, 6505-6517.
- [2] C. N. Kapanda, J. Masquelier, G. Labar, G. G. Muccioli, J. H. Poupaert, D. M. Lambert, *J. Med. Chem.* **2012**, *55*, 5774-5783.
- [3] R. Bessho, K. Matsubara, M. Kubota, K. Kuwakado, H. Hirota, Y. Wakazono, Y. W. Lin, A. Okuda, M. Kawai, R. Nishikomori, T. Heike, *Biochem. Pharmacol.* **1994**, *48*, 1883-1889.
- [4] J. T. Wolfe, D. ROSS, G. M. Cohen, FEBS Lett. 1994, 352, 58-62.
- [5] a) L. Ronconi, C. Marzano, P. Zanello, M. Corsini, G. Miolo, C. Macca`,
 A. Trevisan, D. Fregona, *J. Med. Chem.* 2006, *49*, 1648-1657; b) X. L.
 Hou, Z. M. Ge, T. M. Wang, W. Guo, J. R Cui, T. M. Cheng, C. S. Lai,
 R. T. Li, *Bioorg. Med. Chem. Lett.* 2006, *16*, 4214-4219.
- [6] a) N. G. Urlyapova, A. A. Yushchenko, A. D. Daudova, V. A. Makarov, Bull. Exp. Biol. Med. 2007, 143, 327-329; b) R. Nagano, K. Shibata, T. Naito, A. Fuse, K. Asano, T. Hashizume, S. Nakagawa, Antimicrob. Agents. Chemother. 1997, 41, 2278-2281.
- [7] C. Rafin, E. Veignie, M. Sancholle, D. Postel, C. Len, P. Villa, G. Ronco, J. Agric. Food Chem. 2000, 48, 5283-5287.
- [8] C. Len, D. Postel, G. Ronco, P. Villa, J. Agric. Food Chem. 1997, 45, 3-6.
- a) S. Gronowitz, A. B. Hornfeldt, M.Temciuc, *Synthesis* 1993, 5, 483-484; b) A. Krasovskiy, A. Gavryushin, P. Knochel. *Synlett.* 2005, *17*, 2691-2693; c) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, *Angew. Chem. Int. Ed.* 2006, *45*, 6040-6044.
- [10] Z. C. Chen, Y. Y. Jin, P. J. Stang, J. Org. Chem. 1987, 52, 4117-4118.
- [11] Y. Y Liu , W. L. Bao, Tetrahedron Lett. 2007, 48, 4785-4788.
- [12] N. Azizi, F. Aryanasab, M. R. Saidi, Org. Lett. 2006, 8, 5275-5277.
- [13] S. Bhadra, A. Saha, B. C. Ranu, Green Chem. 2008, 10, 1224-1230.
- [14] T. Chatterjee, S. Bhadra, B. C. Ranu, Green Chem. 2011, 13, 1837-1842.
- [15] X. G. Yin, Y. M. Guo, C. B. Liu, Z. F. Wang, B. Zhang. *Tetrahedron Lett.* 2015, 56, 5135-5139.
- [16] C. R. Qi, T. Z. Guo, W. F. Xiong, Synlett. 2016, 27, 2626-2630.
- [17] D. Chaturvedi, S. Ray, Tetrahedron Lett. 2006, 47, 1307-1309.
- [18] a) C. Z. Chang, W. Xu, M. T. Zeng, M. Liu, X. Liu, H. Zhu, Z. B. Dong, Synthetic. Commun. 2017, 47, 1262-1267; b) W. Xu, M. T. Zeng, M.

WILEY-VCH

Liu, X. Liu, C. Z. Chang, H. Zhu, Y. S. Li, Z. B. Dong, *Chem. Lett.* **2017**, *46*, 641-643; c) M. T. Zeng, W. Xu, M. Liu, X. Liu, C. Z. Chang, H. Zhu, Z. B. Dong, *SynOpen* **2017**, *1*, 1-7; d) Q. Cao, F. Liu, M. Wang, W. Xu, M. T. Zeng, M. Liu, Y. S. Li, Z. B. Dong, *J. Chem. Res.* **2017**, *41*, 301-303; e) M. Liu, M. T. Zeng, W. Xu, C. Z. Chang, X. Liu, H. Zhu, Y. S. Li, Z. B. Dong, *J. Chem. Res.* **2017**, *41*, 165-167; f) W. Xu, M. T. Zeng, M. Liu, S. S. Liu, Y. S. Li, Z. B. Dong, *Synthesis* 2017, 49, 3084-3090.

[19] a) H. Minami, T. Kanayama, R. Tanaka, N. Okamoto, T. Sueda, R. Yanada, *Eur. J. Org. Chem.* 2016, *36*, 5990-6000; b) V. Arun, M. Pilania, D. Kumar, *Chem. Asian J.* 2016, *11*, 3345-3349.

This article is protected by copyright. All rights reserved.

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

Text for Table of Contents

Key Topic*

Author(s), Corresponding Author(s)*

Page No. – Page No.

Title

((Insert TOC Graphic here: max. width: 5.5 cm; max. height: 5.0 cm; NOTE: the final letter height should not be less than 2 mm.))

*one or two words that highlight the emphasis of the paper or the field of the study

Layout 2:

FULL PAPER

An efficient and convenient procedure for the S-arylation of tetraalkylthiuram disulfides by using diaryliodonium salts was explored. In the presence of Cul/KO*t*-Bu, two kinds of S-aryl dithiocarbamates could be obtained with good to excellent yields at one time, showing no obvious selectivity. The methodology has advantages of efficiency, good atomic economy and broad substrate scope.

*one or two words that highlight the emphasis of the paper or the field of the study

S-arylation of disulfides*

Meng-Tian Zeng, Wan Xu, Xing Liu, Cai-Zhu Chang, Hui Zhu, Zhi-Bing Dong*

Page No. – Page No.

Copper-catalyzed S-arylation of tetraalkylthiuram disulfides by using diaryliodonium salts

WILEY-VCH