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ABSTRACT: Here we report highly efficient and chemoselec-
tive azadiene–imine reductive couplings catalyzed by (Ph-
BPE)Cu–H that afford anti-1,2-diamines.  In all cases, reactions 
take place with either aldimine or ketimine electrophiles to 
deliver a single diastereomer of product in >95:5 er.  The prod-
ucts’ diamines are easily differentiable, facilitating down-
stream synthesis. 

The catalytic enantioselective preparation of vicinal dia-
mines is an important goal in synthetic chemistry owing to the 
large number of pharmaceuticals, natural products, and chiral 
ligands that contain this motif.1  Although several approaches 
to this moiety have been reported by a number of researchers, 
significant shortcomings in scope or the ability to differentiate 
the products’ two amino groups constrain their utility 
(Scheme 1).  One major strategy has utilized intermolecular 
olefin diamination2 to afford either the anti- or syn-1,2-dia-
mines.3  In nearly all such cases, the two introduced amino 
groups have identical substituents, making their differentia-
tion challenging to achieve.4  Another strategy has employed 
N-substituted enolates or nitroalkanes in Mannich-type reac-
tions;5–7 either diastereomer may be selectively formed.  How-
ever, in the former case, the requirement of an electron with-
drawing group reduces the scope of diamines that may be pre-
pared.  In the latter, nitro group reduction is needed to secure 
the diamine.8  In both cases, when tetrasubstituted amine-
containing stereogenic centers are formed, one of that center’s 
other substituents has been limited to a carbonyl-like group. 

To address these limitations, we sought to develop a 
method that would unite two N-containing reagents via cata-
lytic enantioselective C–C bond formation such that: 1) a 
greater diversity of 1,2-diamines, including those with N-con-
taining tetrasubstituted stereogenic centers, might be gar-
nered; 2) the nitrogen groups of the products would be easily 
differentiated in order to assist in subsequent derivatizations; 
and 3) either free amine could be obtained without the need 
for harsh reducing conditions.  We envisioned that the reduc-
tive coupling of 2-azadienes9 and suitably activated imines 
could allow us to realize this goal (Scheme 1).  However, cata-
lytic enantioselective reductive couplings with imines are 
rare.10,11  Successful implementation of our proposed strategy 
would require high catalyst efficiency and control over dia-
stereo-, and enantio-, and chemoselectivity for the desired C–

C bond formation (versus imine reduction12). 

Within the last several years, enantioselective Cu-catalyzed 
reductive couplings13,14 of unsaturated hydrocarbons with var-
ious C-electrophiles has rapidly emerged as an effective way 
for preparing myriad chemical motifs, often comprised of vic-
inal stereogenic centers.  Vinylarenes,10c,d,15 vinylboronic es-
ters,16 allenes,11e,17 and conjugated enynes18 and dienes15g,18 have 
comprised the substrates for these processes, yet none has es-
tablished vicinal heteroatom-substituted stereogenic centers.  
Our recent disclosure of the Cu-catalyzed reductive coupling 
of 2-azadienes and ketones shows the promise these reagents 
hold for achieving such a goal.9  In this work, we demonstrate 
that 2-azadienes participate in chemoselective Cu-catalyzed 
reductive couplings with N-diphenylphosphinoyl (Dpp) 
imines.  Both aldimines and ketimines react to furnish anti-
1,2-diamines19 with vicinal stereogenic centers, in most cases 
as a single stereoisomer.  The two N-groups of the products, 
one an imine and the other a phosphinamide, are readily dis-
criminated, enabling their subsequent divergent elaboration. 

Scheme 1. Catalytic Enantioselective Methods for Pre-
paring Vicinal Diamines and Proposed Strategy 

 

We initially explored addition of terminal 2-azadiene 1a to 
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Dpp-aldimine 2a (Table 1).  Optimal conditions employ 
3.0 equivalents of azadiene, DMMS as the reducing agent, t-
BuOH as additive, a Cu-based catalyst with (S,S)-Ph-BPE as 

the ligand, and 5 C (ice bath) reaction temperature (entry 1).  
After 1 h under these conditions, the desired diamine 3a can 
be obtained in 82% yield, solely as the anti-diastereomer and 
as a single enantiomer.  Accompanying 3a is ca. 15% reduction 
product 4a.  Utilizing imine activating groups other than Dpp 
(e.g., Ts, Boc, etc.) results in <2% conversion to 3a (entry 

2).10d,12  Conducting the reaction at 22 C results in poorer 
chemoselectivity, delivering more of the unwanted 4a; how-
ever, stereoselectivity remains unaffected (entry 3).  Omitting 
t-BuOH not only lowers catalyst efficiency but also adversely 
affects chemoselectivity (entry 4), similar to observations 
made by the Buchwald lab in styrene–imine couplings.10d  The 
identity of the alcohol additive is also critical for the selective 
formation of 3a (entry 5).  Although an i-Pr-BPE–Cu complex 
fails to furnish any product (entry 6), switching to i-Pr-
DuPHOS generates 3a in 40% yield, 10:1 dr, and 99:1 er but ac-
companied by a substantial quantity of 4a (entry 7).  A 
QuinoxP-derived catalyst, although highly selective for C–C 
bond formation coupling over imine reduction (8:1), generates 
3a in only 4:1 dr (entry 8).20 

Table 1. Impact of Reaction Conditions in Azadiene–Imine 

Reductive Couplingsa 

 

aReaction under N2 with 0.1 mmol imine 2a. bDetermined by 400 MHz 
1H NMR spectroscopy of the unpurified mixture. cIsolated yield of pu-
rified 3a. dDetermined by HPLC analysis of purified 3a major diastere-
omer. eYield of the major/minor diastereomer of 3a. 

Several aldimines undergo coupling with azadiene 1a, lead-
ing to anti-diamines 3 as a single diastereomer (Table 2).  In 
most cases, only a single enantiomer of product is generated.  
A variety of aryl-substituted imines participate in the reaction 
with the more electron rich substrates affording the highest 
yields (64–93%, entries 1–5, 13, 15).  Halogen substituents are 
tolerated with diamines 3g–i and 3o isolated in 55–73% yield 
(entries 6–8, 14).  More electron poor imines also yield the de-
sired diamines 3j–l (entries 9–11) but in somewhat diminished 
yields (41–59%).  The observed trend is due to increasingly 
competitive imine reduction as the imine partner becomes 
more electron deficient;21 however, boronic ester 3m is iso-
lated in 75% yield as a single stereoisomer (entry 12).  Notably, 

more sterically hindered aldimines do not affect reaction effi-
ciency: o-tolyl 3p is furnished in 89% yield (entry 15).  Het-
eroaryl aldimines can be coupled efficiently with the terminal 
azadiene as well to generate diamines 3q–s in 83–94% yield 
(entries 16–18). 

Unsaturated imines also undergo efficient coupling with 
azadiene 1a (entries 19–20).  Allylic amine 3t, bearing a trisub-
stituted olefin, is formed in 71% yield.  The less hindered cin-
namyl 3u is isolated in 61% yield but the reductive coupling 
also affords ca. 15% of saturated diamine.  An alkyl-substituted 
imine leads to 52% yield of saturated diamine 3v in >99:1 er 
(entry 21).  An alkynyl aldimine failed to deliver the desired 
diamine product. 

Table 2. Aldimine Scope in Couplings with Azadiene 1a 

 

aReaction under N2 with 0.2 mmol imine 2. Dr measured by 400 MHz 
1H NMR spectroscopy of the unpurified mixture. bIsolated yield of pu-
rified 3. cDetermined by HPLC analysis of purified 3. d5.0 equiv 1a. 
e4.0 equiv 1a. fFormed as a 4:1 mixture of 3u:3v; yield of isolated 3u. 

We also examined the coupling of 4-substituted 2-azadi-

enes with aldimines to deliver diamines comprised of -alkyl 
groups other than methyl.  As typified in eq. 1, the added steric 
hindrance of azadiene 1b leads to slower Cu–H insertion and 
a more competitive reduction, which adversely affects the 
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diamine yield.  An electron rich aldimine, such as 2c, and an 
extended reaction time (6 h) are required to obtain good yield 
of 3w.  Increasing to 5.0 equivalents of azadiene improves the 
reaction as well with the product then isolated in 56% yield 
(versus 42% with 3.0 equiv 1b), >20:1 dr, and >99:1 er. 

We next sought to test whether azadiene couplings with 
ketimines would enable the synthesis of 1,2-diamines wherein 
one stereogenic center is fully substituted.  Reactions that 
form such motifs wherein both amines are bound to stereo-
genic centers, each with a variety of substituents, are rare and 
challenging to achieve.  Therefore, we were pleased to find 
that terminal azadiene 1a reacts with aryl–alkyl and diaryl 
ketimines to generate diamines 6a–h in 84–92% yield (Table 
3).  With the exception of the less electrophilic, electron rich 
imine 5b (entry 2), which requires higher temperature and 

longer reaction time, reactions proceed efficiently at 5 C 
within 2 h.  Transformations occur with >98% chemoselectiv-
ity for the reductive coupling regardless of imine identity.  Re-
markably, in all cases, the diamines are obtained in >20:1 dr 
(entries 1–7) and with high enantioselectivity.  Notably, in ad-
dition to tolerating several aryl groups, the coupling is also 
permissible with longer chain alkyl groups (entry 7).  The ste-
rically encumbered benzophenone imine reacts smoothly to 
give diamine 6h in 86% yield (entry 8). 

Table 3. Couplings of Azadiene 1a with Ketiminesa 

 

aReaction under N2 with 0.1 mmol imine 5. b–cSee Table 2. dReaction at 

22 C for 24 h. 

Furthermore, ketimines also participate in reductive cou-
plings with 4-substituted 2-azadienes, proceeding with ca. 60–
70% chemoselectivity to furnish diamines 6i–r as a single dia-
stereomer and with high enantioselectivity (Table 4).  Despite 
the steric congestion, reactions proceed to completion within 

6 h at 5 C.  Product yields are improved with 10 mol % catalyst 
loading.22  Variation of the ketimine’s aryl substituent, includ-
ing both electron rich and electron poor arenes, is tolerated in 
couplings with azadiene 1b (entries 1–5).  The azadiene may 
contain several functional groups, including heterocycles, 
ethers, esters, and halides that are preserved in the products 
(44–63% yield, entries 6–10).  The versatility of the reaction 
partners should enable the assembly of a range of complex 
molecules from these diamine building blocks. 

The developed azadiene–imine reductive couplings have 
the advantage that the amines within the products are readily 
differentiated (Scheme 2) as one is doubly protected as an 

imine (red) and the other mono-protected as the phosphina-
mide (blue).  Either may be transformed to the amine by hy-
drolysis (i.e., without reduction).  These qualities allow for se-
lective functionalization of either product nitrogen.  For ex-
ample, deprotonation of the phosphinamide N–H of 3a ena-
bles alkylation to deliver 7 in 84% yield while retaining the 
imine.  Alternatively, the imine may be hydrolyzed under 
mildly acidic conditions and the resulting free amine then 
functionalized, such as in the formation of benzyl carbamate 
8 (85% yield over two steps).  The phosphinamide may then 
be cleaved with stronger acid, enabling functionalization of 
the liberated amine: phosphinamide 8 is converted to t-butyl 
carbamate 9 in 80% yield (two steps). 

Table 4. Addition of 4-Substituted Azadienes to 
Ketiminesa 

 

aReaction under N2 with 0.2 mmol imine 5. b–cSee Table 2. 

Scheme 2. Utilizing the Products’ Differentiated 
Amines 

 

In this work, we have shown that reductive couplings of 2-
azadienes with imines are an efficient and highly stereoselec-
tive way to construct vicinal diamines, several of which are dif-
ficult to access through existing protocols and have not before 
succumbed to enantioselective synthesis.  The methodology 
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represents a rare example of enantioselective reductive cou-
plings of imines as well as Cu-catalyzed reductive couplings to 
set vicinal heteroatom-substituted stereogenic centers.  Our 
future efforts will concentrate on the further development of 
azadienes and their applications to chiral amine synthesis. 
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