STEROID CONJUGATES IV. THE PREPARATION OF STEROID SULFATES WITH TRIETHYLAMINE-SULFUR TRIOXIDE

J. P. Dusza, J. P. Joseph, and Seymour Bernstein

Organic Chemical Research Section, Lederle Laboratories, A Division of American Cyanamid Company, Pearl River, New York 10965

Received April 25, 1968

A lengthy series of steroid sulfate triethylammonium salts has been prepared using triethylamine-sulfur trioxide in pyridine as the sulfating agent. In addition to the expected sulfating capacity of the reagent, selective sulfation was observed in those cases where rate factors greatly differentiated between the reaction of various hydroxyl groups. Modifications of the general reaction conditions have allowed the sulfation of hindered hydroxyl groups, and the preparation of several disulfate salts. A simple procedure for the conversion of triethylammonium salts to the corresponding ammonium salts has been outlined.

The sulfation of alcohols with tertiary amine-sulfur trioxide complexes presents a process which has found ever increasing utility in synthetic organic chemistry.² Thus in the preparation of steroid sulfate conjugates, pyridine-sulfur trioxide³ has been widely employed for this purpose. In this report we wish to present our experiences with triethylamine-sulfur trioxide.^{2,4} We feel that this reagent offers some distinct advantages for the preparation of a wide variety of steroidal mono- and di-sulfates.

In the Table are outlined a number of representative steroid sulfates which have been prepared in this study. The triethylammonium sulfates^{4,5} are generally highly crystalline derivatives which can be readily recrystallized. Analytical data indicate the salts are non-hydrated, appear to be non-hygroscopic and stable under normal storage conditions.⁶ An advantage of the triethylammonium salts is their solubility in methylene chloride which conveniently allows their recrystallization from methylene chloride-anhydrous ether. This solubility also aids in their purification since passage of a methylene chloride solution of the salt through a pad of an adsorbent such as Magnesol[®] removes colored impurities and, in some cases, unreacted starting material. The adsorbent also removes traces of water which would hamper recrystallization. The triethylammonium salts can easily be converted to their corresponding ammonium salts by passage of a stream of gaseous ammonia into a methylene chloride or methylene chloride-anhydrous ether (2:1) solution of the former. The precipitated ammonium salt can be recovered by filtration.

The preparation of the sulfates I through VIII listed in the Table was easily accomplished at room temperature (2 hr) in dry pyridine employing 1.1 equivalents of the sulfating agent. No difficulties arose in sulfation of the 17β-hydroxy group in III; in fact, 17β-sulfooxyandrost-4-en-3-one triethylammonium salt (III) was isolated in at least 80% yield (recrystallized-analytical quality). A base-labile hydroxyl group was successfully sulfated in the preparation of 6β-sulfooxypregn-4-ene-3,20-dione triethylammonium salt (XI). The latter was recrystallized without noticeable decomposition.

The use of the reagent for selective hydroxyl group sulfation was next investigated. Employing 1.1 equivalents of the reagent and normal reaction conditions (room temperature 2 hr) allowed the preparation of 17α -hydroxy-3 β -sulfooxypregn-5-en-20-one triethylammonium salt (IX). When the quantity of the reagent was

50

increased to 5.0 equivalents and the reaction time extended to 17 hr, thin layer chromatography indicated the presence of a mixture of IX and the 3,17-disulfate. An increase in the reaction temperature to $90-95^{\circ}$ (3 hr) brought about complete conversion to the disulfate. The ditriethylammonium salt appeared to be a low melting compound, and therefore, the disulfate in methylene chloride-ether solution was treated with gaseous ammonia, being converted to and characterized as the diammonium salt X. 17α -Sulfooxypregn-4-ene-3,20-dione triethylammonium salt (XII) was prepared, albeit in low yield (13%), using the reaction conditions triethylamine-sulfur trioxide (1.1 eq.) - room temperature - overnight reaction time. When the reaction conditions were made more vigorous, (70-95° for 3 hr), a 70% yield of XII was obtained.

Concerning the sulfation of the 21-hydroxyl group in the corticoid series, selective reaction has yielded the following triethylammonium salts, 21-sulfooxypregn-4-ene-3,20-dione (XIII), 17 α -hydroxy-21-sulfooxypregn-4-ene-3,20-dione (XIV), 17 α -hydroxy-21-sulfooxypregn-4-ene-3,11,20-trione (XVI) and 11 β ,17 α -dihydroxy-21-sulfooxypregn-4-ene-3,20-dione⁷ (XVIII). In addition, XVI was converted to its ammonium salt XVII with gaseous ammonia to illustrate the salt exchange in this series. The preparation of 17 α ,21-disulfooxypregn-4-ene-3,20dione - reaction conditions: sulfating agent (5.0 eq.) - 70-90° -3 hr - was successful with the ditriethylammonium salt XV being conveniently characterized in this instance.

The aromatic sulfates XIX through XXI have been included to illustrate examples in the estrogen series. The conversions are extremely facile and actually represent nearly ideal reaction conditions for the preparation of estrogen sulfates. We have investigated the synthesis of estrogen sulfate conjugates in greater depth, which will be the subject of a future publication.

Experimental

Melting Points. - All melting points are uncorrected.

<u>Optical Rotations</u>. - The rotations are for chloroform solution or as otherwise stated, and were carried out at 25^o.

<u>Absorption Spectra</u>. - The ultraviolet spectra were determined in methanol. The infrared spectra are for a pressed potassium bromide disc or as otherwise stated. NMR data were obtained on a Varian A-60 spectrometer using TMS as internal standard.

Petroleum Ether. - The fraction used had bp 30-75°.

Celite[®]. - (Johns-Manville Company), a diatomaceous silica product.

Florisil[®]. - (Floridin Corporation), a synthetic magnesium silicate adsorbent.

<u>Magnesol[®]</u>. - (Food Machinery Chemical Corp.), a hydrous magnesium silicate.

Thin Layer Chromatography Solvent System. - Benzene:acetone:water (2:1:2) upper phase 70%, methanol 30%.

Thin Layer Chromatography. - The thin layer chromatograms were carried out at room temperature on glass plates coated with approximately 0.25 mm of Silica Gel G (Merck, Darmstadt) prepared according to E. Stahl, CHEM. ZTG. 82, 323 (1958) with approximately 0.3% Radelin Phosphor GS-115 (United States Radium Corporation, Morristown, N.J.), added. After developing the chromatogram, the plates were viewed under a Mineralight^D UVS.11 (Ultra Violet Products Inc., San Gabriel, California) ultraviolet source and then sprayed with a 10% phosphomolybdic acid-methanol solution (slight heating of plates to develop spots).

Purification of Triethylamine-Sulfur Trioxide.

Commercial grade triethylamine-sulfur trioxide (30 g) was dissolved in methylene chloride (50 ml) and this solution was passed through a 35 mm column of Magnesol[®] (packed in a 35 mm sintered glass funnel) followed by additional methylene chloride (250 ml). The clear effluent was heated to reflux on a steam bath, and anhydrous diethyl ether was added slowly with continued reflux until a heavy crystalline precipitate was evident. This suspension was cooled and the reagent was recovered by filtration, 25.5 g, mp 92-93°, reported⁴ mp 91.5°.

General Procedure for the Monosulfation of a Steroid.

The steroid was dissolved in the minimum volume of dry pyridine required to effect complete solution. To this solution was added solid triethylamine-sulfur trioxide (1.1 eq.).⁸ After standing approximately 2 hr at room temperature the reaction mixture was poured into anhydrous ether (approximately 10 to 20 times the volume of the reaction mixture). The precipitated salt was filtered, washed several times with anhydrous ether, and then dissolved in a minimum volume of methylene chloride. This solution (usually colored) was added to the top of a sintered glass funnel which had previously been packed with Magnesol^{\square} (approximately 10 g/l g of steroid). Additional methylene chloride was passed through the column under reduced pressure and the effluent stream was monitored for the termination of the steroid flow. The methylene chloride effluent was refluxed on a steam bath and anhydrous ether was continuously added until the precipitation of the salt was noted. The solution was then cooled and the crystals were collected by filtration. Additional compound could be obtained by the addition of more anhydrous ether to the initial mother liquor. The purity of the salt was established by thin layer chromatography using the system outlined in the introduction to the Experimental. Recrystallization of salts was accomplished from the same solvent pair, methylene chloride-anhydrous ether.

For the monosulfation of steroids having a hindered hydroxyl group (<u>e.g. XII</u>) the most favorable reaction conditions were 1.1 equivalents of reagent at $70-95^{\circ}$ for 3 hr.

General Procedure for the Disulfation of Steroids.

The experimental conditions for the disulfation of steroids were essentially those outlined for monosulfation with the exception that the molar quantity of triethylamine-sulfur trioxide was increased from 1.1 to 5.0 equivalents, and the temperature of the reaction mixture was increased from room temperature to $90-95^{\circ}$. Product isolation has been detailed in the monosulfate section.

General Procedure for the Conversion of Triethylammonium Salts to the Corresponding Ammonium Salts.

A solution of the triethylammonium salt in methylene chloride or methylene chloride-anhydrous ether (2:1) was treated with a stream of gaseous ammonia with the immediate appearance of a precipitate. This process was continued for 2 min and then the product was recovered by filtration. Recrystallization of the ammonium salt was accomplished from methanol-anhydrous ether.

Compound	M ⁺	Φ	$[\alpha]_D^{25}$ chcl ₃	$\lambda \frac{MeOH}{max} m \mu (\epsilon)$	$[\alpha]_D^{25}$ CHCl ₃ λ_{max}^{MeOH} m (ϵ) Nur Signals Hz ⁸
38-Sulfooxyandrost-5-en- 17-one triethylammonium salt	ин(с ₂ н ₅) ₃ 220-222 ⁰	220-222 ⁰	°1+	I	18-CH3 = 52 19-CH3 = 61 H-3 = 255 (broad) H-6 = 324 (m) HN = 580 (broad)
MS03000	<u>Anal</u> . Calco S, 6.82. 1	l for C ₂₅ F Found: C,	₄₄₃ No ₅ s (469.0 63.67; н, 9	<u>Anal</u> . Calcd for C ₂₅ H ₄₃ NO ₅ S (469.66): C, 63.92; H, 9. S, 6.82. Found: C, 63.67; H, 9.46; N, 2.94; S, 6.81	c, 63.92; H, 9.22; N, 2.98; V, 2.94; S, 6.81
30-Sulfooxyandrost-5-en- 17-one ammonium salt	NH4	201-202 ⁰ dec	1	1	1
MS0300 TI	Reported ^b 206-207 ⁰ mp	206-207 ⁰	ďш		
176-Sulfooxyandrost-4-en- 3-one triethylammonium salt	NH(C ₂ H ₅) ₃ 158-163 ^o	158-163 ⁰	0 ^{†(9†}	2^{μ} (16,400) $\left \begin{array}{c} 18-CH_3 = 52\\ H-4 = 3^{\mu}5\\ H-4 = 3^{\mu}5\\ H-17 = 262 \end{array} \right $	18-CH3 = 52 19-CH3 = 72 H-4 = 345 H-17 = 262 (t)
	Anal. Calco S, 6.82. I	l for C ₂₅ F Found: C,	I ₄₃ No ₅ S (469.0 64.22; H, 9.1	56): C, 63.92 14; N, 2.67; S	<u>Anal</u> . Calcd for C ₂₅ H ₄₃ NO ₅ S (469.66): C, 63.92; H, 9.22; N, 2.98; S, 6.82. Found: C, 64.22; H, 9.14; N, 2.67; S, 6.78.
17β-Sulfooxyandrost-4-en- 3-one ammonium salt 0S0 ₂ M	NH _t	202-204°	1	1	I
	Reported ^b 206-207 ⁰ mp	206-207 ⁰ ж	Ê		

Physical Constants of Steroid Sulfate Salts

Table

STEROIDS

continued)	
Table (

	-		25	M- 0.11	
Сощроилд	M ⁺	đ	$[\alpha]_{D}^{2}$ CHCL ₃	$\bigvee_{\max}^{\text{MEUH}} \overline{\mu}_{u}(\epsilon)$	Nur Signals Hz ^a
3β-Sulfooxy-5α-androstan- 17-one triethylammonium salt	ин(c ₂ H ₅) ₃	210-512	+520	I	18-CH3 = 50, 51 19-CH3 = 50, 51 H-3 = 257 (broad) HN = 588 (broad)
MEO ₃ Office A	<u>Anal</u> . Calc S, 6.80.	d for C ₂₅ H Found: C,	Anal. Caled for C ₂₅ H ₄₅ NO ₅ S (471.68): S, 6.80. Found: C, 63.85; H, 9.70;		c, 63.65; H, 9.62; N, 2.97; I, 2.96; S, 6.71.
3α-Sulfooxy-5α-androstan- 17-one triethylammonium salt	ин(с ₂ н ₅) ₃	206-207 ⁰	+530	ł	$18^{-CH_3} = 49, 51$ $19^{-CH_3} = 49, 51$ $H^{-3} = 279 (m)$ HN = 585 (broad)
MB030-CC	Anal. Calc S, 6.80.	d for C ₂₅ H Found: C,	<u>Amal</u> . Calcd for C ₂₅ H ₄₅ NO ₅ S (471.68): C, 63.65; H, 9.6 S, 6.80. Found: C, 63.40; H, 9.41; N, 2.96; S, 6.60.	24	с, 63.65; Н, 9.62; N, 2.97; ', 2.96; S, 6.60.
3cd-Sulfooxy-59-androstan- 17-one triethylammonium salt	ин(с ₂ H ₅) ₃ 171-173 ⁰	171-173°	+62 ⁰	I	$18-CH_3 = 51$ $19-CH_3 = 58$ H-3 = 282 (m)
NG030-CALAN	<u>Anal</u> . Calc S, 6.80.	d for C ₂₅ H Found: C,	<u>Amal</u> . Calcd for C ₂₅ H ₄₅ NO ₅ S (471.68): C, 63.65; H, 9.6 S, 6.80. Found: C, 63.22; H, 9.69; N, 2.87; S, 6.73.	8): c, 63.6 59; N, 2.87;	с, 63.65; H, 9.62; N, 2.97; I, 2.87; S, 6.73.
3α-Sulfooxy-5β-pregnan- 20-one triethylammonium salt CH ₃	ин(с ₂ н ₅) ₃	224-226°	+83 ⁰		18-CH3 = 35 19-CH3 = 54 21-CH ₃ = 126 H-3 = 260 (m)
	Anal. Calc S, 6.41.	d for C ₂₇ E Found: C,	Amal. Calcd for C ₂₇ H ₄₉ NO ₅ S (499.77): C, 64.85; H, 9.8 S, 6.41. Found: C, 64.50; H, 9.43; N, 2.97; S, 6.53.	7): C, 64.8 43; N, 2.97;	с, 64.85; H, 9.88; N, 2.80; I, 2.97; S, 6.53.

July 1968

CONTRACTOR DESCRIPTION DESCRIPTION		$ \begin{array}{c} 18^{-CH_3} = 30 \\ 19^{-CH_3} = 56 \\ H-3 = 220 (m) \\ H-6 = 317 (m) \\ H-6 = 317 (m) \\ H-6 = 317 (m) \\ H-6 = 310 (m) \\ H-17 = 307 (g) \\ H-3 = 57 \\ 19^{-CH_3} = 57 \\ 19^{-CH_3} = 57 \\ 19^{-CH_3} = 57 \\ 19^{-CH_3} = 57 \\ H-3 = 318 (m) \\ H-6 = 210 (m) \\ H-6 = 209 \\ H-14 = 357 \\ H-6 = 229 \\ H-4 = 357 \\ H-6 = 229 \\ H-6 = 229 \\ H-7 = 127 \\ H$.76): c, 63.12 .09; N, 2.72; s .09; N, 2.72; s 26.65): c, 47. 26.5]: c, 47. 236 (13,300) 236 (13,300) 74): c, 63.35; 80. m 2.58. c	$\begin{bmatrix} \alpha \end{bmatrix}_{D}^{D} \text{ CHCL}_{3} \\ -17^{0} \\ \text{(MeOH)} \\ \text$	235-238° cd for C2 Found: C 202-204° dec dec 202-204° dec 202-204° dec 202-204° dec 202-204° dec 202-204° dec 202-204°		
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Н, 8.86; N, 2.74;		H45 NO6S (511.	d for C ₂₇	Anal. Calc	
Anal. Calcd for C ₂₇ H ₄₅ NO ₆ S (511.74): C, 63.35; H, 8.86; N, 2.74;	<pre>20-one diammonium salt 20-one diammonium salt 20-one diammonium salt CH3 003 M X X</pre>	19-СН3 = 80 21-СН3 = 127 H-6 = 299 H-4 = 357	236 (13,300)		180-181°	$NH(c_2H_5)_3$	dione triethyl
ilfooxypregn-4-ene- dione triethylammonium $NH(C_2H_5)_3$ $180-181^{\circ}$ +59° 236 ($T_{33}^{CH_3}$ $T_{63}^{CH_3}$ $T_{63}^{CH_3}$ $T_{63}^{CH_3}$ $T_{74}^{CH_3}$ $T_{27}^{CH_4}$ $T_{63}^{CH_3}$ $T_{11}^{CH_3}$ $T_{11}^{CH_3}$	<pre>r-Disulfooxypregn- c0-one diammonium salt cH3 moso_M X X</pre>						
ilfooxypregn-4-ene- dione triethylammonium $NH(C_2H_5)_3$ 180-181° +59° 236 (CH_3 OH_3	r-Disulfooxypregn- 20-one diammonium salt 0H3 0H3 0H3 0H3 0H3 0 0H3 0 0 0 0 0 0 0	94; N, 5.47; S, 11.784	67; н, 7.38, б.	3, 47.23, 47.	Found:	s, 12.17.	4
ilfooxypregn-4-ene- dione triethylammonium	$MH_{4} = \begin{bmatrix} 202-204^{\circ} & +8^{\circ} & 19-CH_{3} & = 29\\ 19-CH_{3} & = 57\\ 21-CH_{3} & = 57\\ 21-CH_{3} & = 126\\ H-3 & = 210 & m\\ H-6 & = 318 & m \\ NH_{4} & = 425 \end{bmatrix}$	89; H, 7.27; N, 5.32;	26.65): c, 47.	¹ ^H ₃₈ ^N ₂ 0 ₉ ^S ₂ (5	cd for C ₂ .	Anal. Cal	$\langle \rangle$
Lfooxypregn-4-ene- lione triethylammonium	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	H H					Meoso W
If ooxypregn-4-ene- lione triethylammonium					202-204 ⁰ dec		L7α-Disulfooxypregn- n-20-one diammonium salt CH3
x-Disulfooxypregn- z-Disulfooxypregn- 20-one diarmonium salt 20-one diarmonium salt CH3 X X X X X X X X X X X X X X X X X X X		; H, 9.23; N, 2.93;	.76): C, 63.12	7H47N06S (513	cd for C2'	Anal. Cal	}
r-Disulfooxypregn- r-Disulfooxypregn- c0-one diammonium salt CH3 x x x x x x x x x x x x x x x x x x x	Anal. Calcd for $c_{2T}H_{4T}NO_{6}S$ (513.76):	(m) 7 (s) 7					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Anal. Calcd for $C_{27}H_{47}NO_6S$ (513.76): C, 63.12; H, 9.23; N, 2.93				235-238 ⁰	ин(с ₂ н ₅) ₃	.Kydroxy-30-sulfooxy- m-5-en-20-one tri- laumonium salt _{CH-}
$ \begin{array}{c c} \mbox{rdroxy-3P-eulfooxy-} & \mbox{NH}(c_2H_{\rm J})_3 & \mbox{255-238}^{\circ} & \mbox{-1}T^{\circ} & \mbox{1} & \mbox{2} & 2$	$V^ NH(C_2H_5)_3$ $235-238^{\circ}$ -17° $19-CH_3 = 56$ 3 $H-3$ $19-CH_3 = 56$ $H-3$ $19-CH_3 = 56$ 3 $H-3$ $H-3$ $19-CH_3 = 56$ 0.117 $H-17$ $10H-17$ $10H-17$ OH $H-17$ $10H-17$ $10H-17$ $Anal.$ Calcd for $C_{27}H_{47}NO_6S$ (513.76):C, 63.12; H, 9.23; N, 2.93	_		$\left[\alpha\right]_{D}^{2}$ chcl ₃	ж	.¥	Compound
Compound M^+ M_P $[\alpha]_D^{25}$ CHCL $_3$ λ MeOH $_{max}$ M_{eOH}	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	+	A MeOH max	20-	¥	+	

г						·····	·
	Nur Signels Hz	18-CH ₃ = 39 19-CH ₃ = 70 21-CH ₃ = 137 H-4 = 342 (g)	c, 63.35; H, 8.86; N, 2.74; V, 3.23; S, 6.22.	$18-CH_3 = 40$ $19-CH_3 = 70$ $CH_2-21 = 273$ (a) H-4 = 341 (s)	<u>Amal</u> . Calcd for C ₂₇ H ₄₅ NO ₆ S (511.74): C, 63.35; H, 8.86; N, 2.74; S, 6.26. Found: C, 63.46; H, 8.68; N, 2.70; S, 6.16.	18-CH ₃ = 39 19-CH ₃ = 72 CH ₂ -21 = 296 (q) 0H-17 = 287 (s) H-4 = 340 (s)	<u>Amal</u> . Calcd for C ₂₇ H ₄₅ NO ₇ S (527.74): C, 61.32; H, 8.59; N, 2.66; S, 6.08. Found: C, 61.82; H, 8.48; N, 2.75; S, 5.86.
	λ ^{MeOH} mµ (€)	241 (17,600)	<u>Amal</u> . Calcd for C ₂₇ H ₄₅ NO ₆ S (511.74): C, 63.35; H, 8.8 S, 6.26. Found: C, 63.78; H, 9.21; N, 3.23; S, 6.22.	238 (19,400)	74): C, 63.35; .68; N, 2.70; S,	241 (16 , 600)	74): C, 61.32; .48; N, 2.75; S,
(nantiro	$\left[\alpha\right]_{D}^{25}$ chcl. ₃	+104 ⁰	H ₄₅ NO ₆ S (511. ⁷ , 63.78; H, 9	+120 ⁰	н ₄₅ No ₆ s (511.' , 63.46; н, 8	°88+	н ₄₅ ио ₇ s (527. , 61.82; н, 8
/ nanurnuna) aroar	Mp	209-2120	d for C ₂₇ Found: C	0241-141	d for C ₂₇ Found: C	224-225 ⁰	d for C ₂₇ Found: C
	+W	ин(с ₂ н ₅) ₃	Anal. Calc S, 6.26.	ин(с ₂ ң ²) ³ 141-142 ⁰	Anal. Calc S, 6.26.	$NH(c_2H_5)_3$	Anal. Calc 3, 6.08.
	Compound	17α-Sulfooxypregn-4-ene- 3,20-dione triethylammonium selt		21-Sulfooxypregn-4-ene- 3,20-dione triethylammonium salt GH20S0 ₃ M		17α-Hydroxy-21-sulfooxy- pregn-4-ene-3,20-dione triethylammonium salt	HO

STEROIDS

July 1968

58

Compound	M+	đỹ	$[\alpha]_{D}^{25}$ chcl. ₃	$[\alpha]_{D}^{25}$ CHCl ₃ $\lambda \operatorname{MeOH}_{max} (\epsilon)$	Nmr Signals Hz
<pre>11β,17α-Dihydroxy-21- sulfooxypregn-4-ene-3,20- dione triethylammonium salt</pre>	NH(C ₂ H ₅) ₃ 189-191 ⁰	189-191 ⁰	011+	241 (16 , 850)	$19-CH_{3} = 53 + 86 H_{1} + 86 H_{1} + 86 H_{2} + 86 H_{2} + 196 H_{2} + 196$
HO CH2 OSO3M	Reported ^c	191-193 ⁰	+117.80 (H ₂ 0)		
IIIAX TYPE	Anal. Calco S, 5.92.	d for c_{27} Found: $c_{,}$	<u>Anal</u> . Calcd for C ₂₇ H ₄₅ NO ₈ S (543.70): s, 5.92. Found: C, 59.37; H, 7.92; N		с, 59.64; Н, 8.34; N, 2.58; V, 2.34; S, 5.72.
3-Sulfooxyestra-1,3,5(10)- triene triethylammonium salt	NH(C ₂ H ₅) ₃ 135-136 ^o	135-136 ⁰	o +++	270 (987) 277 (940)	18-CH ₃ = 43
MEO30	Anal. Calc S, 7.32.	d for $c_{2\mu}^{l}$ Found: c_{j}	<u>Amal</u> . Calcd for C ₂₄ H ₃₉ NO ₄ S (437.65): s, 7.32. Found: C, 66.26; H, 9.03;		с, 65.87; Н, 8.98; N, 3.20; N, 3.10; S, 7.29.
3-Sulfooxyestra-1,3,5(10)- trien-17-one triethyl-	ин(с ₂ н ₅) ₃ 136-138 ⁰	136-138 ⁰	otot+	268 (1100) 275 (100)	18-CH ₃ = 53 H-N = 523
MSO ₂ OF	<u>Anal</u> . Cal S, 7.10.	cd for C ₂ Found: C ₁	<u>Anal</u> . Calcd for C ₂₄ H ₃₇ NO ₅ S (451.61): S, 7.10. Found: C, 63.69; H, 8.31;	.61): c, 63.83; 8.31; N, 3.27;	с, 63.83; Н, 8.26; N, 3.10; N, 3.27; S, 7.06.

STEROIDS

July 1968

ъ
ā
3
a
- 77
÷۲
a a
0
U
\sim
ω,
- -
മ
්ත්
EA

Compound	*W	đỹ	$\left[\alpha\right]_{D}^{25}$ char ₃	$\left[\alpha\right]_{D}^{25}$ CHCl ₃ $\lambda \xrightarrow{MeOH}_{max} (\varepsilon)$ Nur Signals Hz	Nur Signals Hz
2-Methoxy-3-sulfooxyestra- 1,3,5(10)-trien-17-one triethylammonium salt	ин(с ₂ н ₅) ₃ 150-160 ⁰	150-160 ⁰	o tot+	278(3390)	18-CH ₃ = 55 OCH ₃ = 229 H-1 = 439 H-4 = 410
CH3 CH2 Cost	<u>Anal</u> . Cal. S, 6.66.	cd for C ₂ , Found:	₅ ^н 39 ^{NO6} S (481 с, 62.58; н,	.63): c, 62.34; 8.22; N, 2.86; S	Anal. Calcd for C ₂₅ H ₃₉ NO ₆ S (481.63): C, 62.34; H, 8.16; N, 2.91; S, 6.66. Found: C, 62.58; H, 8.22; N, 2.86; S, 6.77.

groups attached to nitrogen are not recorded in the Table due to their consistent appearance in all samples as a triplet centered at 80 ± 5 and as a quartet centered at 185 ± 5 Hz. Spectra were determined in CDC1₃ unless otherwise stated. The signals ascribed to the ethyl ಹ

^b Joseph, J. P., Dusza, J. P., and Bernstein, S., STEROIDS, \overline{I} , 577 (1966).

c See Ref. 7.

Acknowledgment

The infrared, ultraviolet, nmr and optical rotation data were provided by William Fulmor and associates. The elemental analyses were performed by Louis M. Brancone and associates.

We wish to thank Dr. J. S. Webb, also of this Laboratory, for calling our attention to the possible utility of triethylamine-sulfur trioxide as a sulfating agent for steroids.

REFERENCES

- Paper III, Joseph, J. P., Dusza, J. P., and Bernstein, S., J. AM. CHEM. SOC., 89, 5078 (1967).
- 2. Gilbert, E. E., CHEM. REVIEWS, <u>62</u>, 549 (1962).
- Sobel, A. E., Drekter, I. J., and Natelson, S., J. BIOL. CHEM. <u>115</u>, 381 (1936); Sobel, A. E., and Spoerri, P. E., J. AM. CHEM. SOC., <u>63</u>, 1259 (1941).
- 4. Beilstein, F., and Wiegand, E., BER., <u>16</u>, <u>1264</u> (1883); Fex, H., Lundrall, K. E., and Olsson, A., have also employed triethylamine (or trimethylamine)-sulfur trioxide for the preparation of estrogen sulfates which were isolated as sodium or potassium salts. We wish to thank Dr. Fex (Research Dept., AB Leo, Halsingborg, Sweden) for this information.

Hydorn, A. E., Lerner, L. J., and Schwartz, J., STEROIDS, 6, 247 (1965) have reported on the first use of trimethylamine-sulfur trioxide as a sulfating agent in the steroid field. The 21-sulfates of 9 α -fluoro-11 β ,21-dihydroxy-16 α ,17 α -isopropylidenedioxypregna-1,4-diene-3,20-dione and the Ring A saturated analog of the latter were prepared.

- 5. Griebsch, E., and Garn, W., Ger. 1,090,208 (Oct. 6, 1960), mention several triethylammonium 21-steroid sulfates. These, however, were prepared by exchange of the pyridinium salts.
- 6. Periodic examination of samples stored at room temperature in capped vials showed no signs of decomposition when examined by thin layer chromatography.
- 7. Griebsch, E., and Garn, W., U.S. Pat. 3,152,044 (Oct. 6, 1964).
- 8. Triethylamine-sulfur trioxide has a greater solubility at room temperature in pyridine than does its trimethyl analog. This solubility difference may offer a distinct advantage to the former as a sulfating agent for steroids.