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Abstract

The stereoselective synthesis of 5-monosubstituted and 5,5-dialkylsubstituted noviose derivatives has been
achieved starting from-arabinose. These noviose derivatives could be used as useful building blocks in probing
structure—activity relationships (SAR) of coumarin antibiotics that are inhibitors of DNA gyrase. © 2000 Elsevier
Science Ltd. All rights reserved.
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Novobiocin (@),12 clorobiocin @)1° and closely related synthetic analogu&? (are coumarin-
containing antibiotics possessing a broad spectrum of Gram-positive antibacterial activity, including
methicilin-resistant strains of the staphylococci species, MRSA and MR@fich are currently one
of the major concerns in treatment of bacterial infections. These coumarins have been shown to inhibit
the ATPase activity of subunit B of DNA gyraeg tetrameric AB, enzyme that belongs to a family
of enzymes known as topoisomerase. These ubiquitous enzymes play an important role in resolving
topological problems that arise during the various processes of DNA metabolism, including transcription,
recombination, replication and chromosome partitioning during cell division.
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Recently, we reported structure—activity relationships of a series of coumarin inhibitors of DNA gyrase
wherein theL-noviosyl sugar portion was replaced byhamnose. These are noviose analogues bearing
a 9-hydrogen atom instead of thé-fethyl axial grouff. As this novel series provided interesting
biological activity, we decided to expand SAR around this part of the molecule by varying the size of alkyl
substituents. We disclose herein a stereoselective synthesis of 5-monoalkyl and 5,5-dialkyl substituted
noviose analogues starting frarrarabinose.
The preparation of 5,5-dialkyl noviose derivatives is outlined in Scheme 1. LaGtoaadily available
from L-arabinose in five stepgd,was reacted with different alkyl Grignards in THF to provide the diols
6a—e.” These were oxidatively cyclised to the corresponding lact@iaes, 7ef with PySQ (2 equiv.)
in the presence of DMSO/gNl and then reduced with DIBALH to lactoBa—e in quantitative yield.
Acid-catalysed deprotection of the acetonides wittsB, afforded 5,5-dialkyl noviose analogu®a,b
and 9d,e. 5,5-Diallyl lactone7c was subjected to ring-closing metathesis in the presence of Grubbs
ruthenium cataly$tin dichloromethane to give the spirocyclopentene lactbaién 80% yield, which
was further transformed to spirocyclopentene novisas described.
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o Rt} —OH Ri}~Q Rul-0 R0
MeO a  MeO OH MeO o ¢ MeO OH ¢ MeO OH
5. ¢ x 5« 6>{o HO OH
5 6a R = Me (86%) 7a R= Me (66%) 8a R = Me (63%) 9a R = Me (L-noviose, 95%)
6b R = Et (quant) 7b R= 8b R=Et 9b R = Et (64% from 6b)
6c R = Allyl (50%) l:"’ R= AIIyI (80%) 8c R= cr—q2 -CH=CH-CH,-  9¢ R =-CH,-CH=CH-CH,-
6d R = - CH2)4- (72%) 7d R = -CH,-CH=CH-CH,- (qua gs%)
6e R =-(CH,)s (56%) (80%) 8d R= (CHZ)., (quant) 9d R =-(CH,),- (88%)
7e R =-(CH,),- (66%) 8e R =-(CH,s (quant) 9e R =-(CHys (85%)
T R =-(CH,)s (66%)
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Scheme 1.Reagents and conditionga) for 6a MeMgBr, THF, 0°C, 86%; for6b EtMgBr, THF, 0°C; for 6¢
CH,=CH-CH,MgBr, THF, 0°C; for 6d BrMg-(CH,)4-MgBr,°® THF, 0°C; for 6e BrMg-(CH,)s-MgBr, THF, 0°C 56%; (b)
PySQ, TEA, DMSO, CHCl,; (c) DIBALH, THF, 0°C (d) H,SQ,, H,0, 65°C (€) RUGI(CHPh)[P(GH11)3]2 cat, CHCly, 1t,
80%

Facing the more challenging problem of stereoselective introduction of the 5-equatorial alkyl sub-
stituents while keeping the methyl group or the hydrogen atom in the 5-axial position, we modified
the above described methodology for preparation of our new targets, as depicted in Scheme 2. The
nucleophilic addition of various Grignard reagentgl(equiv.) to a protected arabinolactd proceeded
stereoselectively in THF affording as major produf4$5R)-diastereomerd1a-d.1° However, this
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configuration was not the desired one as was proven by oxidative cyclisation of théldielith
PySQ/DMSO/EgN to give the lactond 8. The NOE experiments performed @8 (Fig. 1) indicated
cis-4H,5H orientation. The NOE between thedemethyl group of acetonide and 5H ady_s=1.5 Hz
coupling constant indicated a boat conformation of the six-membered lactone ring. In contrast, in lactone
15a(vide infra), NOE andlsy-5+=10 Hz clearly establishésans-diaxial orientation of 4H,5H atoms as
observed with.-rhamnose derivativ&9.1!
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L-arabinose

10 11a R, = Et (62%) 12a R, = Et (quant)
11b R, = Vinyl (83%) 12b R, = Vinyl (77%)
11¢ R, = Allyl (94%) 12¢ R, = Allyl (85%)

11d R, = Benzyl (Bn) (56%) 12d R, = Bn (48%)

B, R,
R{m 0 R‘Ill 0
MeO OH i MeO OH h
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HO OH o xo 0o 6_0
16a R, = Et, R, = H (quant)
16b R, = Et, R, = Me (quant)

13b R, = Vinyl (36%) | 13a
13c R, = Allyl 83%) | efor

13a R, = Et (83%) | 4o
13d R, = Bn (96%) J 13a-d

17a
17b

15a R, = Et, R, = H (44%)
15b R, = Et, R, = Me (80%)

14a R, = Et, R, = H (83%)

, = Et, R, = H (quant)
- 14b R, = Et, R, = Me (87%)

, = Et, R, = Me (quant)

17¢c
17d
17e

R, = Vinyl, R, = Me (86%)
R, = Allyl, R, = Me (96%)
R, = Bn, R, = Me (46%)

16¢ R, = Vinyl, R, = Me (quant)
16d R, = Allyl, R, = Me (quant)
16e R; =Bn, R, = Me (quant)

15¢ R, = Vinyl, R, = Me (51%)
15d R, = Allyl, R, = Me (68%)
15e R, = Bn, R, = Me (82%)

14c R, = Vinyl, R, = Me (27%)
14d R, = Allyl, R, = Me (64%)
14e R, =Bn, R, = Me (76%)

Scheme 2.Reagents and conditionga) for 11a EtMgBr, THF, 0°C; for 11b CH,=CH-MgBr, THF, 0°C; for 11c
CH,=CH-CH—-MgBr, THF, 0°C; forl1d PhCHMgCI, THF, 0°C; (b)tBuPhSiCl, Im, DMF, rt; (c) PCC, CHCI,, molecular
sieves 4 A, rt; (d) fod3aZn(BH,),, ELO, THF, 0°C; (e) forLl3a-d MeMgBr, THF, 0°C; (f) BuNF, THF, rt; (g) PyS@, DMSO,
TEA, CH,ClIj, rt; (h) DIBALH, THF, 0°C; (i) H,SOy, H,0, 65°C

1, h,

Fig. 1. Observed NOEs for the lactonEsaand18

-0 19

In order to correct the undesired diastereoselectivity of Grignard addition, the dialsl were
regioselectively protected at a primary hydroxyl group wWiBuPhSiCl under standard silylating
conditions, and the secondary alcohols were oxidised with PCC in the presence of molecular sieves
(4 A) to the corresponding ketond8a-d. Reduction of the keton&3awith Zn(BH,)212 in ether or
nucleophilic addition of MeMgBr in THF td.3b—-d proceeded diastereoselectively RBS) for 143,

(4S5S) for 14b—d] to establish the axial orientation of the hydrogen atom or methyl group, respeéfively.
The alcohold 4a-d were smoothly desilylated with BMF in THF and the resulting diols were subjected
to the same reaction sequence as described above and gave the noviose ah@bguEbus, the above
proposed synthetic scheme allows access to noviose derivatives having eithe(espHR(ax) or 5,5-
R1(ax)/R:(eq) configuration depending on the order of addition of Grignard reagents to 1&céwid

ketonel3.

The configurations of the newly formed alcohols were confirmed by X-ray structure afhlysksy
NOE experiments. The observed stereoselectivity of the nucleophilic addition of Grignard reagents to
lactol 10 or with ketonesl3b-d as well as the reduction of ketod8awith Zn(BHj,), follow Cram’s
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rule®> Presumably, the nucleophilic reactions proceed through-ghelated transition state which is
consistent with Still’s findingf that Grignard reagents in THF solutions prefechelation (Scheme 3).
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Scheme 3.

In conclusion, we have described a highly stereoselective approach to 5-monoalkylsubstituted and 5,5-
dialkylsubstituted noviose derivatives, as well as a general synthetic approach to 5,5-bisalkyl noviose,
including 5,5-spiro analogues. These synthetic intermediates could serve as useful scaffolds in probing
SAR related to coumarin antibiotics.
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