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Abstract
R1 o R1 (0]
o .
1 SN X N RTHJ\OH AgNO3 (10 mol /0), KZSZOS (2 equlV) R2_| AN R
R P I DMF, Ar, 50 °C, 24 h =

R'=H,Ar R2=H, Alkyl, Alkoxy, Halogen, CN R = Ar, Alkyl
Oxidative radical C-C bond difunctionalization strategy

Acylation and arylation of C-C 0 -bond in MCPs
General: 45 examples, up to 88% yield

A novel and efficient AgNOs-facilitated oxidative C—C o—bond difunctionalization of
alkylidenecyclopropanes with a-ketoacids for preparing 2-acyl-substituted 3,4-dihydronaphthalenes is
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developed. This radical acylation/arylation transformation proceeds via decarboxylation of a-ketoacid,
acylation of carbon—carbon double bond, cleavage of carbon—carbon o—bond and cyclization with
connected aromatic ring, and offers a mild and facile strategy for acylation/arylation of carbon—carbon
o-bonds with an acyl radical and an aromatic ring to build two new carbon—carbon bonds. This method
uses an inexpensive oxidant, features a wide substrate scope, and is operationally simple.

Introduction

Due to the stabilities of carbon—carbon o—bonds, the cleavage and functionalization of carbon—carbon
o-bonds is a challenging task.! New strategies for radical carbon—carbon o—bond functionalization have
become a recent interesting topic and arouse chemists’ wide concern because they provide new
approaches for preparing complex biological scaffolds and natural products.? Recently, many novel
methods featuring carbon—carbon o—bond difunctionalization for constructing two new chemical bonds
have been reported and have also been widely used in lots of different substrates.>* Especially, small
ring compound, including three-membered® and four-membered carbocycles,® are ideal raw materials
for accessing bicyclic or polycyclic structures.

Carboxylic acids are a class of common compounds, which are widely used in organic and
pharmaceutical synthesis.” In past several years, the decarboxylation of carboxylic acids have become
efficient tools for introducing aryl or alkyl groups into organic compounds by avoiding the preparation
of prefunctionalized starting materials and the usage of stoichiometric transition-metal-catalysis.® Most
recently, a-ketoacids, as acylating reagents, presented high value in constructing ketones. These
transformations underwent decarboxylation of a-ketoacids to deliver acyl free radicals and CO>
(Scheme 1).°1° In 2010, Ge’s group developed the Pd-mediated ortho-acylation of acetanilides with
acyl radicals, which came from decarboxylation of a-ketoacids (path I).°* In 2013, Wang and co-
workers presented a facile and mild method to access acylated azo compounds by decarboxylation of a-
ketoacids and ortho-acylation of azobenzenes (path I).° In the same year, this group reported a copper-
facilitated decarboxylative acylation of C3-position in indoles with a-ketoacids to prepare 3-acylindoles

(path IIT).° Kim et al. reported a mild and simple Pd-catalyzed acylation of ortho-position in o-methy]
2
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ketoximes with a-ketoacids via carbon—hydrogen bond activation and decarboxylative cross-coupling
reaction (path IV).°d In 2015, MacMillan and co-workers presented the direct decarboxylative cross-
coupling of a-ketoacids with aryl halides for constructing aryl and alkyl ketone architectures (path V).%
Zhu’s group developed a visible-light-catalyzed decarboxylative cross-coupling of a-ketoacids with
alkenes for the preparation of a.,f-unsaturated ketones via domino-fluorination-protodefluorination
process (path VI).”f Wang’s group reported the copper-mediated decarboxylative acylation of C(sp?)-H
bonds in formamides with a-ketoacids to synthesize a-ketoamides (path VII).’¢ Yu et al. developed an
enantioselective and new visible-light/amine-cocatalyzed hydroacylation of enals with acyl radicals,

which generated from decarboxylation of a-ketoacids (path VIII).>h

H
Ry

@NHAC Ny 1

_ _Rlg

Pd(TFA),, (NH4)>S,0g

[I{dF(CF3)ppylo{dtbbpy}]PFe
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Scheme 1. Selected Decarboxylative Acylation Reactions of a-Ketoacids

Alkylidenecyclopropanes (ACPs) are readily accessible molecules though the carbocyclic skeletons

possess large ring tensions. Due to their unique properties, ACPs are often used as important starting

materials in chemical industry and organic synthesis.!! Recently, many approaches for radical carbon—
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carbon o-bond difunctionalization ACPs were developed.!*!3 A variety of radicals, such as a-
carbonyl,'3*® SCF3,13¢ alkyl,'3¢ CF3,'3¢ ArS,3 sulfonyl, 3¢ acyl,'3" P'3-containing radicals could be
applied in these transformations. Based on these results, we developed a facile and efficient carbon—
carbon o-bond difunctionalization strategy for convenient constructing 2-acyl-substituted 3,4-
dihydronaphthalene compounds. The process is facilitated by a silver catalyst'* and results in C—C bond
acylation/arylation of ACPs with an acyl radical and an aromatic ring. In these transformations, the acyl

radicals come from decarboxylation of a-ketoacids (Scheme 2).

Previous work:

R = a-carbonyl, SCF3, alkyl, CF3, sulfonyl, acyl-containing radicals
This work:
R" O

AgNO3 (10 mol %)
X oH K28208 (2 equiv) R2_| X R
DMF, Ar, 50 °C, 24 h L

Scheme 2. Radical Carbon—Carbon c—Bonds Difunctionalization in ACPs

Results and Discussion

We began to investigate the best reaction conditions by using 1-(benzyloxy)-2-(cyclopropylidene-
methyl)-benzene (1a) and phenylglyoxylic acid (2a) as the model reaction (Table 1). To our delight, the
target product (8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)(phenyl)methanone 3aa could be obtained in
88% yield by using AgNOs3 (10 mol%) as catalyst and K>S>Os (2 equiv) as oxidant in DMF (2 mL) at 50
°C for 24 hours (entry 1). Next, we investigated the effect of other silver catalysts. The results showed
that the silver catalysts could promote the reaction. The difunctionalization reaction conducted without
AgNO;s could also deliver the expected product 3aa in 26% yield (entry 2). A series of other silver salts,

including Ag>COs;, AgoSOs, AgF, AgSCN, and AglOs;, were examined. However, all of them gave
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lower yield than that of AgNO; (entries 3—7 vs. entry 1). Reducing or increasing the loading of AgNOs3

1

g could not give higher reaction yields (entries 8-9).

4

5

? Table 1. Screening Optimal Conditions®

8

9

1? OBn 0 AgNO; (10 mol %) OBn O

12 m + Ph%OH K2S20s (2 €quiv) ph
13 DMF, Ar, 50 °C, 24 h

14 O

15 1a 2a 3aa

16

17 entry variation from the standard conditions yield (%)”
12 1 none 88

20 2 without AgNO3 26

21 3 Ag>COs instead of AgNOs 31

22 4 Ag>S04 instead of AgNOs 43

;i 5 AgF instead of AgNO3 35

25 6 AgSCN instead of AgNO:; 30

26 7 AglOs3 instead of AgNO3 51

27 8 AgNOs (5 mol %) 61

i 9 AgNO; (20 mol %) 85

30 10¢ without K>S>0s 0

31 11 (NHa4)2S205 instead of K2S>20s 70

32 12 oxone instead of K2S>0s 46

2431 13¢ DDQ instead of K»S>0s 0

35 14¢ BQ instead of K»S>0s 0

36 15¢ PhI(OAc):; instead of K2S>0s 0

37 16 DTBP instead of K>S>0s 13

gg 17 benzene instead of DMF 41

40 18 dioxane instead of DMF 18

41 19 "BuOAc instead of DMF 25

42 20 acetone instead of DMF 40

" 21 DMSO instead of DMF trace
45 22 at 70 °C 75

46 23 at 30 °C 60

47 24 under air atmosphere 80

P 25 for 48 h 87

50 264 none 73

51 @ Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol, 1.5 equiv), AgNO;
52 (10 mol %), K»S,0s (0.4 mmol, 2 equiv) and solvent (2 mL) at 50 °C under
33 an argon atmosphere for 24 h. ® Isolated yield. ¢ Over 85% of raw material
gg 1a was recovered, and the rest was decomposed. ¢ 1a (1 g, 4.24 mmol) and
56 solvent (10 mL) for 72 h.

;73 According to the experimental result, K>S>Og was indispensable for the acylation/arylation reactior
59 5
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(entry 10). Prompted by this results, a number of other oxidants, such as (NH4)2S20s, KHSOs (oxone),
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 1,4-benzoquinone (BQ), PhI(OAc), and di-tert-
butyl peroxide (DTBP), were subsequently tested (entries 11-16). None of them was superior than
K>S,05 and the reaction could afford the product 3aa in moderate yields by using (NH4)2S20s or oxone
(entries 11 and 12). However, DDQ, BQ, and PhI(OAc), were not suitable for this decarboxylative
difunctionalization (entries 13—15). Various solvents, such as benzene, dioxane, "BuOAc, acetone, and
DMSO, were also surveyed, revealing that DMF is the best suited solvent (entries 17-21). However,
variation of reaction temperatures to 70 °C or 30 °C led to lower reaction yields (entries 22-23). The
target product could also be obtained in good yield when the difunctionalization reaction was conducted
in air atmosphere (entry 24). Additionally, a longer reaction time afforded a similar yield (entry 25). To
our delight, a large scale experiment, which was carried out with 1 g of ACP 1a, could delivere the

product 3aa in moderate yield (entry 26).

Based on the established conditions, we set out to examine the scope of ACPs 1 with 2-o0xo0-2-
phenylacetic acid 2a. As shown in Table 2, the results suggested that this acylation/arylation could be
applied to a variety of ACPs 1b—p, including ACPs with monosubstituted aryl group, disubstituted aryl
group, trisubstituted aryl group and unsubstituted aryl group. The standard conditions were suitable for
many ACPs 1b—j with one substituent, such as OMe, NO, OBn, Ph, Me, CI, and CN groups on the
connected aryl ring, and the activity order is ortho < meta < para. The electronic effect also affected the
reaction and ACPs with electron-donating groups on the aryl groups delivered higher yields than that of
ACPs with electron-withdrawing ones (products 3ba—ja): ACPs 1a—j were viable to furnish the target 2-
acyl-substituted 3,4-dihydronaphthalenes 3ba—ja in moderate to good yields, while using meta-
substituted ACP 1d under the standard conditions provided the single product 3da in 78% yield.
Another meta-substituted ACP 1e could undergo this difunctionalization smoothly and the products (7-
methoxy-3,4-dihydronaphthalen-2-yl)(phenyl)methanone 3ea and (5-methoxy-3,4-dihydronaphthalen-2-

yl)(phenyl)methanone 3ea’ could be isolated in 77% yield (4 : 1). Additionally, ACPs 1c or 1j with a
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NO: group or a CN group on the connected aryl ring were suitable starting materials (3ca and 3ja).

1
3 Disubstituted ACPs 1k-1 could undergo this difunctionalization smoothly and afforded the desired
4
5 products in moderate yields (products 3ka—la). Halogen substituted ACPs 1m—o0 were viable for the
6
; reaction with substrate 2a, AgNOs3, and K»S,0s, offering the corresponding halogen substituted 2-acyl-
?O 3,4-dihydronaphthalenes 3ma—oa in moderate yields.
11
12 : a
13 Table 2. Screening Scope of ACPs (1)
14
15
1 R1
1? AgNO; (10 mol %) 0
18 OH K,S,05 (2 equiv) N Ph
19 DMF, Ar, 50°C, 24 h R U __
20
21 3
2 a————
23 5 o o
24 ' :
BnO : Ph !

2 “’“ “* ey e U7
26 : |
27 R = OMe, 3ba, 72% 3da, 78% ; 3ea OMe  3eq' :
28 R =NO, 3ca, 53% . TT%3eaBea'=4:1 :
29 O R=0OMe, 3fa, 84% OMe 0 QM i
30 R = Me, 3ga, 80% Ph
31 O‘ Ph R =Ph, 3ha, 75% Ph
32 R R = Cl, 3ia, 72% oo
33 R =CN, 3ja, 66% e OMe
2 3ka, 71% 3la, 67%

Br (0] Br O Br (0] 0
35
37 F Cl
38 3ma, 62% 3na, 75% 30a, 79% 3pa, 70%
39

R' = CgHs, R? = H, 3sa, 83%

40 Ph o .

o R' O  R'"=4-OMeCgH4, R? = OMe, 3ta, 85%
p Ph b, R'=4-MeCgHy, R? = Me, 3ua, 80%
42 O O‘ R' = 4-FCgH,, R2 = F, 3va, 77%

) R = 4-CIC4H,, R? = CI, 3wa, 78%
0,
44 3qa, 0% 3ra, 0% R = 4-BrCgHs, R2 = Br, 3xa, 72%

46 ¢ Reaction conditions: 1a (0.2 mmol), 2 (0.3 mmol, 1.5 equiv.), AgNO3 (10
47 mol %), K2S>0g (0.4 mmol, 2 equiv), DMF (2 mL), at 50 °C under an argon
48 atmosphere for 24 h.

50 To our delight, ACP 1p with an unsubstituted aryl group could also afford the ring-opening and
cyclization product 3pa in 70% yield under the optimal conditions. However, the seven-membered
55 cyclic product 3qa could not be obtained when a four-membered carbocyclic substrate 1q

57 (methylenecyclobutane) was used under standard conditions. Disubstituted substrate 1r ((1-

59 7
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cyclopropylideneethyl)benzene) with a phenyl group and a methyl group (R' = Me) at the terminal
carbon of the double bond was an unsuitable substrate (product 3ra). Next, the corresponding products
3sa—xa could be obtained in good yields when a serial of diaryl substituted ACPs 1s—x (R! = Ar) were

employed into this carbon—carbon o—bonds acylation/arylation.

oNOYTULT D WN =

OBn O 9]
N RJ\WOH K,»S,05 (2 equiv) .
I "owmF, ar50°c 241
1a 2

Table 3. Screening Scope of a-Ketoacids (2) ¢

AgNO; (10 mol %) OBn

3

R = Me, 3ad, 82%
R ='Pr, 3ae, 87%

R = Ph, 3af, 80% OBn 0] OBn (0]
R=F, 3ag, 77% Cl

R = Cl, 3ah, 75%

R = Br, 3ai, 66%

R = CF,, 3aj, 61% Cl

R = NO,, 3ak, 0%" 3ar, 58% 3as, 66%

OBn O OBn 0] OBn O R
O
R

R =OMe, 3al, 82% R = Me, 3ao, 74%
= 0 3 )
2 _ (S)I\'\:Q ::f?gf R = Me, 3am, 76% R=F, 3ap, 71%
= oVie, Jac, /9% R = Cl, 3an, 70% R = Cl, 3aq, 62%

OBn O

OBn 9] OBn 0]
z R
COorCco oo OO

3at 619 Z =S, 3au, 52% R = Me, 3aw, 56%
at, 61% Z =0, 3av, 50% R = Bu, 3ax, 0%"

4 Reaction conditions: 1a (0.2 mmol), 2 (0.3 mmol, 1.5 equiv), AgNOs (10
mol %), K2S20s (0.4 mmol, 2 equiv), DMF (2 mL), at 50 °C under an argon
atmosphere for 24 h. ® Over 70% of raw material 1a was recovered, and the rest
was decomposed.
Subsequently, we began to investigate the applicability of substituted a-ketoacids 2 for this radical
difunctionalization process by using ACP 1a as reaction partener (Table 3). A wide range of a-ketoacids
2b—w, including functionalized aryl a-ketoacids (2b—t), heterocyclic a-ketoacids (2u—v) and aliphatic a-

ketoacids (2w), were examined. The standard conditions were suitable for a variety of aryl a-ketoacids

with different substituents, such as OMe, SMe, Me, ‘Pr, Ph, F, Cl, Br, CF; and dichloro groups on the

ACS Paragon Plus Environment
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aryl ring (products 3ab—ar), and the steric effect of the substituents affected the reaction yields
(products 3ad, 3am and 3ao). The electronic effect of the substituents also had influence on this
transformation, and electron-withdrawing groups substituted o-ketoacids delivered lower yields than
that of electron-donating groups substituted ones (products 3ab-ar): a-ketoacids 2b—j were viable to
furnish the corresponding 2-acyl-substituted 3,4-dihydronaphthalenes 3ab—aj in moderate to good
yields. While using 2-(4-isopropylphenyl)-2-oxoacetic acid 2e, the target (8-(benzyloxy)-3,4-
dihydronaphthalen-2-yl)(4-isopropylphenyl)methanone 3ae was obtained in 87% yield. However, para-
NO:»-substituted aryl a-ketoacid 2k had no reactivity (product 3ak). To our delight, disubstituted aryl a-
ketoacid 2r was viable for the reaction with ACP 1a, AgNOs, and K>S:2Os, offering the corresponding
product 3ar in moderate yield. To our surprise, 2-(naphthalen-1-yl)-2-oxoacetic acid (2s) and 2-
(naphthalen-2-yl)-2-oxoacetic acid (2t) were compatible for this transformation (products 3as and 3at).
The heterocyclic a-ketoacids 2u and 2v have been also utilized for this reaction. We found that the
corresponding products 3au and 3av formed in moderate yields under the standard conditions.
Additionally, aliphatic a-ketoacid 2w was also suitable for this reaction system, and delivered the
difunctional product 3aw in 56% yield. However, 3,3-dimethyl-2-oxobutanoic acid 2x was not
compatible with the standard conditions. The target product 3ax could not be obtained and most of the
starting material 1a was recovered. The 3,3-dimethylpropyl acyl radical, which generated from a-
ketoacid 2x, was easily to decompose into fert-butyl radical via decarbonylation. The addition of fert-

butyl radical to carbon—carbon double bond in ACPs was very difficult due to the steric effect.

Finally, a range of other acyl radical sources 4, including benzoic acid, benzaldehyde, acetophenone,
benzoyl chloride, and benzil were employed for this difunctionalization reaction. The experimental
results indicated that these acyl radical sources were not suitable for this acylation/arylation reaction (eq
1, Scheme 3). According to previous literature, the reaction may contain a radical-type pathway.’'?

Thus, several control experiments were performed by adding corresponding radical inhibitors, such as

TEMPO, BHT, or 1,1-diphenylethylene. The yield of the product 3aa was dramatically declined (eqs 2—
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4, Scheme 3). The product 5 (1,3,3-triphenylprop-2-en-1-one) could be obtained in 46% yield and the
target product 3aa could only be isolated in very low yield when 1,1-diphenylethylene (2.5 equiv) was
added into the reaction. These results indicated that a radical process could be definitely contained in

this transformation.®!3

Scheme 3. Control Experiments.

OBn AgNO; (10 mol %) OBn O

O K>S,0g (2 equi
N - 2520 ( equ(|)v) . Ph 1)
Ph X DMF (2 mL), Ar, 50 °C, 24 h

X =0H, H, Me, CI, PhCO

1a 4 3aa, 0%
OBn 0 AgNO; (10 mol %) OBn o)
N + Ph K»S,0g (2 equiv) Ph @)
OH DMF (2 mL), Ar, 50 °C, 24 h
O TEMPO (2.5 equiv)
1a 2a 3aa, 28%
OBn 0 A}?'\éoé(1(g mol'%),) OBn O
AN + Ph 2920Ug equiv Ph 3
m %OH DMF (2 mL), Ar, 50 °C, 24 h O‘ @)
o) BHT (2.5 equiv)
1a 2a 3aa, 34%
OBn AgNO3 (10 mol %
0 gNOs (10 mol %) Ph Ph
' =
N + Ph K>S,03 (2 equiv) saa + W @
OH  DMF (2 mL), Ar, 50 °C, 24 h Ph O
O 1,1-diphenylethylene (2.5 equiv) 17%
1a 2a 5, 46%

Alkenes are important intermediates in organic synthesis. They can be used in a lot of transformation,
such as cross-coupling reaction,'> difunctionalization reaction,'® polymerization reaction!” and so on.
Thus, we prepared the alkene 6 from the product 3ab through condensation reaction between the
carbonyl group and methyltriphenylphosphonium bromide (Scheme 4).

Scheme 4.Utilizations of products 3
OMe  PhsPCH,Br (2 equiv) OMe
soPemiir-ilsole
THF, 0-40 °C, 12 h

OBn O OBn
3ab 6, 66%

The reaction mechanism for the decarboxylative difunctionalization reaction was proposed
10

ACS Paragon Plus Environment



Page 11 of 34 The Journal of Organic Chemistry

oNOYTULT D WN =

according to previous literature and these experimental results (Scheme 5).°'4 Initially, S>0s* oxidizes
Aglinto Ag" along with generating SO4™~, which triggers decarboxylation of a-oxocarboxylic acid 2a to
give the acyl radical A. Then, the acyl radical A attacks the double bond of ACP 1a to afford the more
stable benzyl radical B. The alkyl radical C, which is formed from ring-opening of intermediate B,
undergoes intramolecular cyclization with an aryl ring to furnish radical D. Finally, oxidation and
deprotonation of intermediate D to afford the target product 3aa by the oxidation of SO4™. Importantly,
SO4~ oxidation process is undoubtedly contained in the last step, because this difunctionalization
reaction can still occur in absence of AgNOs;. However, the last aromatization process can also be
performed under the action of Ag'!, because AgNOs is important for this reaction, and in accordance

with the low efficiency of this transformation without AgNQ3. 1351314

Scheme 5. Possible Mechanisms.

Ph
CEY Cﬁ% sl
. 0
OBn / OBn
1a 0 B

OBn

HSO, + Ph)'- +C0z
A } O)S( Ph
O 2a
S2082~ SO~
o) 0

Ph Ag(l)  Ag(ll) H Ph
» \path )
ath Il O
OBn p \ OBn

HSO; SO, D

3aa

Conclusions

In summary, we have presented a novel and efficient AgNOs-facilitated oxidative C—C o—bond
difunctionalization of alkylidenecyclopropanes with a-ketoacids to prepare 2-acyl-substituted 3,4-

dihydronaphthalenes. This radical acylation/arylation transformation proceeds via decarboxylation of
11
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o-ketoacid, acylation of carbon—carbon double bond, cleavage of carbon—carbon o—bond and cyclization
with connected aromatic ring, and offers a mild and facile strategy for acylation/arylation of carbon-
carbon o—bonds with an acyl radical and an aromatic ring to construct two new carbon—carbon bonds.
Experimental Section

General Considerations:

The 'H and '3C NMR spectra were recorded in CDCl; solvent on a NMR spectrometer using TMS as
internal standard. LRMS was performed on a GC-MS instrument and HRMS was measured on an
electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometry. Melting points
are uncorrected.

Preparation of ACPs 1 and a-Ketoacids:

ACPs 1'% and a-ketoacids®!? were synthesized according to the literatures.

R = OMe, 1f
= 1
| R=0Bn 1a R | | S:I\pﬂﬁ’u?
R = OMe, 1b R = OBn, 1d R =Cl, 1i
R R=NO,, 1c R=0Me, 1e g R =CN, 1j
| e, | | |
MeO OMe OMe Br F Br CI Br
1k 11 1m 1n 10
R=H,1s
| | R = OMe, 1t
| R = Me, 1u
o, B
R=Cl, 1w
R R R=Br 1x
1p 1q 1s

ACPs 1a-b, 1d-i, 1k, 1q, 1s-t;'>2 Im—o, 1u—x;'?¢ 1¢, 1r, 1p;'?" 1j, 11;'*°a-ketoacid 2a-b, 2d, 2g-i,
2m-o, 2q, 2s—t, 2u, 2w;'% 2¢; 2f, 2j-k, 2p;’® and 21, 2n, 2r, 2v;’" were reported in previous literatures,
o-ketoacid 2e was reported for the first time and its physical data and spectroscopic were presented as
follow:

2-(4-Isopropylphenyl)-2-oxoacetic acid (2e):Yield: 1196.6 mg, 62%; yellow oil;'H NMR (400 MHz,
CDCl) &: 8.21(d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 5.32 (s, 1H), 3.05-2.95 (m, 1H), 1.28 (d,
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J = 6.8 Hz, 6H). BC{IH}NMR (100 MHz, CDCl3) &: 184.7, 163.0, 157.6, 131.4, 127.1, 126.7, 34.5,

23.5. HRMS (ESI-TOF) m/z: C11H1303 (M + H)" calcd for 194.0859, found 194.0866.

Typical Experimental Procedure for the Synthesis of 2-acyl-3,4 -dihydronaphthalenes:

To a Schlenk tube were added ACPs 1 (0.2 mmol), a-ketoacids 2 (0.3 mmol, 1.5 equiv), AgNO3 (0.02
mmol, 10 mol %), K2S205 (0.4 mmol, 2 equiv) and DMF (2 mL). Then the tube was stirred at 50 °C (oil
bath temperature) under argon atmosphere for 24 hour until complete consumption of starting material
as monitored by TLC and/or GC-MS analysis. After the reaction was finished, the reaction mixture was
filtered, organic layer was dried over Na;SO4. Then removal of the solvent, the crude product was
purified by column chromatography (petroleum ether/ethyl acetate, 5 : 1) to provide the desired
products 3. An amplified experiment conducted in the presence of ACP 1a (2.36 g, 10 mmol), 2-0x0-2-
phenylacetic acid 2a (1.5 equiv), AgNO3 (10 mol %), K>S>0s (2 equiv) and DMF (70 mL) at 50 °C
under argon atmosphere for 120 h could deliver the target product 3aa in 61% yield (2074.9 mg).

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (phenyl)methanone (3aa)’": Yield: 59.8 mg, 88%;
yellow solid; mp 85.5-86.0 °C (uncorrected); 'H NMR (400 MHz, CDCl3) &: 7.74 (d, J = 8.4 Hz, 3H),
7.55(t,J= 7.2 Hz, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.33-7.26 (m, 5H), 7.22 (t, J = 8.0 Hz, 1H), 6.84 (d, J =
7.2 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 5.07 (s, 2H), 2.92 (t, J = 8.0 Hz, 2H), 2.75 (t, J = 8.0 Hz, 2H).
BC{IH}NMR (100 MHz, CDCl3) &: 197.4, 155.6, 139.2, 138.6, 136.7, 135.9, 135.4, 131.3, 130.8,
129.2, 128.4, 128.0, 127.7, 126.6, 122.0, 120.5, 110.3, 69.9, 27.8, 21.7. HRMS (ESI-TOF) m/z:
C24H2102 (M + H)* calcd for 341.1536, found 341.1543.

(8-Methoxy-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3ba): Yield: 38.0 mg, 72%; yellow solid;
mp 132.8-133.1 °C (uncorrected); 'H NMR (400 MHz, CDCl3) &: 7.77-7.74 (m, 2H), 7.58-7.53 (m, 2H),
7.49-7.45 (m, 2H), 7.24 (t, J = 8.0 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 3.77 (s,
3H), 2.90 (t, J= 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H). *C{IH}NMR (100 MHz, CDCl;) 8: 197.5, 156.5,
139.1, 138.5, 136.0, 134.7, 131.4, 130.8, 129.3, 128.1, 121.5, 120.1, 108.7, 55.4, 27.9, 22.4. HRMS

(ESI-TOF) m/z: CisH1702 (M + H)" caled for 265.1223, found 265.1229.
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(8-Nitro-3,4-dihydronaphthalen-2-yl) (phenyl)methanone (3ca): Yield: 29.6 mg, 53%; yellow solid;
mp 84.8-85.0 °C (uncorrected); 'H NMR (400 MHz, CDCls) &: 7.83-7.81 (m, 3H), 7.64 (s, 1H), 7.61-
7.58 (m, 1H), 7.53-7.49 (m, 3H), 7.40 (t, J = 8.0 Hz, 1H), 3.01 (t, J = 8.0 Hz, 2H), 2.82-2.78 (m, 2H).
BC{IH}NMR (100 MHz, CDCls) &: 196.7, 147.8, 140.8, 140.0, 137.2, 133.0, 132.5, 132.4, 1294,
129.3, 128.5, 126.8, 123.1, 28.0, 21.3. HRMS (ESI-TOF) m/z: Ci7H14aNO3 (M + H)" calcd for 280.0968,
found 280.0974.

(7-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3da): Yield: 53.0 mg, 78%,; gray oil;
'"H NMR (400 MHz, CDCl3) &: 7.74 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.2 Hz,
2H), 7.42-7.36 (m, 5H), 7.14 (t, J = 8.4 Hz, 1H), 7.08 (s, 1H), 6.92-6.89 (m, 1H), 6.79-6.78 (m, 1H),
5.04 (s, 2H), 2.89 (t, J = 8.0 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H). *C{1H}NMR (100 MHz, CDCl;) &:
197.6, 157.4, 140.4, 138.3, 137.4, 137.0, 133.6, 131.6, 129.2, 128.6, 128.2, 127.9, 127.2, 127.0, 125.8,
121.7, 113.8, 70.2, 22.1, 20.1. HRMS (ESI-TOF) m/z: C24H2102 (M + H)" calcd for 341.1536, found
341.1545.

(7-Methoxy-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3ea): Yield: 32.6 mg, 62%; yellow solid;
mp 88.7-88.2 °C (uncorrected); '"H NMR (400 MHz, CDCl3) &: 7.75-7.73 (m, 2H), 7.57-7.54 (m, 1H),
7.50-7.46 (m, 2H), 7.14 (d, J = 8.4 Hz, 1H), 7.09 (s, 1H), 6.85-6.82 (m, 1H), 6.70-6.69 (m, 1H), 3.87 (s,
3H), 2.89 (t, J= 8.0 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H). *C{IH}NMR (100 MHz, CDCl;) &: 197.5, 158.3,
140.4, 138.3, 137.9, 133.4, 131.7, 129.6, 129.2, 128.9, 128.2, 115.4, 113.8, 55.4, 26.6, 23.2. HRMS
(ESI-TOF) m/z: Ci1sH1702 (M + H)" caled for 265.1223, found 265.1229.

(5-Methoxy-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3ea’): Yield: 8.1 mg, 15%; yellow oil;
'"H NMR (400 MHz, CDCl;3) &: 775-7.73 (m, 2H), 7.58-7.47 (m, 3H), 7.19-7.15 (m, 1H), 7.11-7.10 (m,
1H), 6.90 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 7.24 Hz, 1H), 3.87 (s, 3H), 2.94 (t, J= 7.6 Hz, 2H), 2.73 (t, J
= 8.0 Hz, 2H). BC{IH}NMR (100 MHz, CDCls) &: 197.5, 156.3, 140.3, 138.3, 137.4, 133.5, 131.6,
129.2, 128.2, 127.0, 125.3, 121.4, 112.2, 55.6, 22.2, 19.9. HRMS (ESI-TOF) m/z: Ci1sHi70, (M + H)*

calcd for 265.1223, found 265.1229.
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(6-Methoxy-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3fa): Yield: 44.4 mg, 84%:; yellow solid;
mp 62.9-63.2 °C (uncorrected); '"H NMR (400 MHz, CDCl3) &: 7.72-7.70 (m, 2H), 7.57-7.53 (m, 1H),
7.49-7.45 (m, 2H), 7.13 (s, 1H), 7.08 (d, J = 8.4 Hz, 1H), 6.78-6.72 (m, 2H), 3.84 (s, 3H), 2.93 (t, J =
8.0 Hz, 2H), 2.74 (t, J = 8.4 Hz, 2H). *C{IH}NMR (100 MHz, CDCIl;) &: 197.3, 161.1, 140.8, 139.7,
138.7, 134.9, 131.3, 130.4, 129.1, 128.2, 125.6, 113.8, 111.8, 55.3, 28.1, 22.4. HRMS (ESI-TOF) m/z:
CisHi702 (M + H)* calcd for 265.1223, found 265.1229.

(6-Methyl-3,4-dihydronaphthalen-2-yl) (phenyl)methanone (3ga): Yield: 39.7 mg, 80%; yellow oil; 'H
NMR (400 MHz, CDCls) 6: 7.76 (d, J = 8.0 Hz, 2H), 7.58-7.55 (m, 1H), 7.50-7.46 (m, 2H), 7.40 (s, 1H),
7.17 (t, J= 7.6 Hz, 1H), 7.06 (t, J = 8.0 Hz, 2H), 2.91 (t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H), 2.27
(s, 3H). PC{IH}NMR (100 MHz, CDCls) &: 197.5, 138.4, 137.8, 137.4, 137.0, 136.1, 131.7, 130.9,
129.5, 129.3, 128.6, 128.2, 125.6, 28.2, 22.4, 18.9. HRMS (ESI-TOF) m/z: C1gH170 (M + H)" calcd for
249.1274, found 249.1279.

Phenyl(6-phenyl-3,4-dihydronaphthalen-2-yl)methanone (3ha): Yield: 46.5 mg, 75%; yellow solid;
mp 93.8-94.2 °C (uncorrected); '"H NMR (400 MHz, CDCl3) &: 7.75 (d, J = 8.4 Hz, 2H), 7.63-7.60 (m,
2H), 7.57 (d, J = 7.2 Hz, 1H), 7.51-7.44 (m, 6H), 7.37 (t, J= 7.6 Hz, 1H), 7.21 (t, J = 7.6 Hz, 2H), 3.03
(t, J = 8.0 Hz, 2H), 2.81 (t, J = 8.0 Hz, 2H). *C{IH}NMR (100 MHz, CDCls) 8: 197.4, 142.7, 140.4,
140.1, 138.4, 137.9, 137.3, 131.6, 129.2, 129.2, 128.8, 128.2, 127.7, 127.0, 126.6, 125.5, 27.7, 22.8.
HRMS (ESI-TOF) m/z: C23H190 (M + H)* calcd for 311.1430, found 311.1436.

(8-Chloro-3,4-dihydronaphthalen-2-yl) (phenyl)methanone (3ia): Yield: 38.6 mg, 72%; yellow solid;
mp 69.5-70.0 °C (uncorrected); '"H NMR (400 MHz, CDCl3) 8: 7.74-7.72 (m, 2H), 7.59-7.55 (m, 1H),
7.50-7.46 (m, 2H), 7.19-7.17 (m, 2H), 7.07 (t, J = 7.6 Hz, 2H), 2.93 (t, J = 8.0 Hz, 2H), 2.75 (t, J = 8.0
Hz, 2H). BC{IH}NMR (100 MHz, CDCl3) &: 197.2, 139.1, 139.0, 138.1, 137.6, 135.3, 131.8, 131.0,
129.8, 129.1, 128.3, 128.0, 126.9, 27.4, 22.5. HRMS (ESI-TOF) m/z: Ci7H14**C1O (M + H)" caled for

269.0728, found 269.0735.
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6-Benzoyl-7,8-dihydronaphthalene-2-carbonitrile (3ja): Yield: 34.2 mg, 66%; yellow solid; mp 98,2-
99.0 °C (uncorrected); '"H NMR (400 MHz, CDCl3) 8: 7.75 (d, J = 8.4 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H),
7.52-7.48 (m, 4H), 7.22 (d, J = 8.4 Hz, 1H), 7.10 (s, 1H), 2.99 (t, J = 8.0 Hz, 2H), 2.79 (t, J = 8.4 Hz,
2H). BC{IH}NMR (100 MHz, CDCl;) &: 196.8, 140.5, 138.0, 137.5, 137.3, 136.7, 132.2, 131.0, 130.7,
129.2, 128.7, 128.4, 118.7, 112.5, 27.1, 22,6. HRMS (ESI-TOF) m/z: CisHisNO (M + H)* caled for
260.1070, found 260.1076.

(6,8-Dimethoxy-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3ka): Yield: 41.7 mg, 71%; yellow
solid; mp 100.9-101.1 °C (uncorrected); 'H NMR (400 MHz, CDCls) &: 7.74-7.71 (m, 2H), 7.55-7.51
(m, 2H), 7.48-7.44 (m, 2H), 6.38-6.37 (m, 1H), 6.28-6.27 (m, 1H), 3.84 (s, 3H), 3.75 (s, 3H), 2.90-2.85
(m, 2H), 2.71 (t, J= 8.0 Hz, 2H). BC{IH}NMR (100 MHz, CDCls) 8: 197.3, 162.2, 158.1, 140.9, 138.9,
135.5, 133.4, 131.1, 129.2, 128.1 (2C), 115.0, 104.8, 96.2, 55.4, 28.6, 22.3. HRMS (ESI-TOF) m/z:
Ci9H1903 (M + H)* calcd for 295.1329, found 295.1338.

(5,8-Dimethoxy-3,4-dihydronaphthalen-2-yl) (phenyl)methanone (3la): Yield: 39.4 mg, 67%; yellow
solid; mp 99.8-100.1 °C (uncorrected); 'H NMR (400 MHz, CDCls) &: 7.76-7.74 (m, 2H), 7.54-7.53 (m,
2H), 7.49-7.45 (m, 2H), 6.85 (d, J = 9.2 Hz, 1H), 6.67 (d, J = 9.2Hz, 1H), 3.82 (s, 3H), 3.73 (s, 3H),
2.93-2.89 (m, 2H), 2.71-2.67 (m, 2H). *C{IH}NMR (100 MHz, CDCI;) &: 197.5, 151.0, 150.3, 138.5,
136.2, 134.7, 131.5, 129.3, 128.1, 126.9, 122.6, 113.1, 108.4, 56.1, 55.7, 21.7, 20.4. HRMS (ESI-TOF)
m/z: C19H1903 (M + H)* calcd for 295.1329, found 295.1338.

(8-Bromo-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3ma): Yield: 38.7 mg, 62%; yellow solid;
mp 109.8-110.2 °C (uncorrected); 'H NMR (400 MHz, CDCl3) &: 7.80-7.78 (m, 2H), 7.58-7.53 (m, 1H),
7.52-7.48 (m, 3H), 7.4-7.43 (m, 1H), 7.17-7.09 (m, 2H), 2.94 (t, J = 8.0 Hz, 2H), 2.7-2.72 (m, 2H).
BC{IH}NMR (100 MHz, CDCl3) &: 197.0, 140.0, 138.9, 138.0, 137.9, 132.0, 131.1, 130.5, 129.4,
128.3 (2C), 127.0, 124.5, 28.4, 22.2. HRMS (ESI-TOF) m/z: C17H14”°BrO (M + H)" caled for 313.0223,

found 313.0227.

16

ACS Paragon Plus Environment



Page 17 of 34 The Journal of Organic Chemistry

oNOYTULT D WN =

(8-Bromo-6-fluoro-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3na): Yield: 49.5 mg, 75%:;
yellow solid; mp 68.8-69.2 °C (uncorrected); '"H NMR (400 MHz, CDCls) 8: 7.79-7.77 (m, 2H), 7.60-
7.57 (m, 1H), 7.52-7.48 (m, 3H), 7.21-7.18 (m, 1H), 6.94-6.91 (m, 1H), 2.93 (t, J = 8.0 Hz, 2H), 2.73 (t,
J = 8.0 Hz, 2H). PC{IH}NMR (100 MHz, CDCI3) &: 196.8, 162.4 (d, J = 253.2 Hz, 1C), 141.9, 141.8,
138.2, 137.8, 137.1, 132.0, 129.3, 128.4 (t, J = 6.7 Hz, 1C), 124.6 (d, J = 10.1 Hz, 1C), 118.3 (d, J =
24.5 Hz, 1C), 114.5 (d, J = 21.4 Hz, 1C), 28.8, 21,8. ’F NMR (282 MHz, CDCls): 3: -108.8 (s, 1F);
HRMS (ESI-TOF) m/z: Ci7Hi3”Br!FO (M + H)" caled for 331.0128, found 331.0134.

(8-Bromo-6-chloro-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3oa): Yield: 54.7 mg, 79%;
yellow solid; mp 62.7-63.1 °C (uncorrected); '"H NMR (400 MHz, CDCls) 8: 7.79-7.77 (m, 2H), 7.61-
7.57 (m, 1H), 7.52-7.46 (m, 4H), 7.18 (s, 1H), 2.92 (t, J = 8.0 Hz, 2H), 2.75-2.71 (m, 2H).
BC{IH}NMR (100 MHz, CDCl3) &: 196.7, 140.9, 139.1, 137.7, 136.9, 135.4, 132.1, 130.7, 130.6,
129.4, 128.3, 127.3, 124.4, 28.4, 22.0. HRMS (ESI-TOF) m/z: C17H;3”°Br¥*ClIO (M + H)* calcd for
346.9833, found 346.9839.

(3,4-Dihydronaphthalen-2-yl) (phenyl)methanone (3pa): Yield: 32.8 mg, 70%; yellow oil; '"H NMR
(400 MHz, CDCls) o: 7.74 (t, J = 8.6 Hz, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.30-
7.26 (m, 1H), 7.23-7.19 (m, 2H), 7.15-7.14 (m, 2H), 2.96 (t, J = 8.0 Hz, 2H), 2.76 (t, J = 8.0 Hz, 2H).
BC{IH}NMR (100 MHz, CDCl3) &: 197.5, 140.4, 138.3, 137.5, 137.4, 132.5, 131.6, 129.9, 129.2,
128.8, 128.2, 127.8, 126.8, 27.5, 22.7. HRMS (ESI-TOF) m/z: C17Hi150 (M + H)" caled for 235.1117,
found 235.1123.

Phenyl(1-phenyl-3,4-dihydronaphthalen-2-yl)methanone (3sa): Yield: 51.5 mg, 83%; white oil; 'H
NMR (400 MHz, CDCl3) &: 7.73-7.71 (m, 2H), 7.37-7.33 (m, 1H), 7.27-7.22 (m, 4H), 7.14-7.10 (m,
6H), 6.87 (d, J = 7.6 Hz, 1H), 3.03 (t, J = 7.2 Hz, 2H), 2.73 (t, J = 8.0 Hz, 2H). *C{IH}NMR (100
MHz, CDCls) &: 200.2, 140.4, 137.6, 137.0, 136.9, 136.0, 135.0, 132.5, 130.2, 129.1, 128.3, 128.0,
127.9, 127.6, 127.5, 127.3, 126.5, 28.1, 27.3. HRMS (ESI-TOF) m/z: C23Hi19O (M + H)" calcd for

311.1430, found 311.1436.
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(6-Methoxy-1-(4-methoxyphenyl)-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3ta): Yield: 62.9
mg, 85%; yellow oil; '"H NMR (400 MHz, CDCls) &: 7.68 (d, J = 8.4 Hz, 2H), 7.33-7.31 (m, 1H), 7.23-
7.19 (m, 2H), 7.02-7.00 (m, 2H), 6.86-6.82 (m, 2H), 6.66-6.63 (m, 3H), 3.83 (s, 3H), 3.69 (s, 3H), 2.97
(t, J= 7.6 Hz, 2H), 2.73-2.69 (m, 2H). BC{1H}NMR (100 MHz, CDCl5) &: 200.7, 159.6, 158.9, 140.9,
139.2, 137.6, 133.2, 132.1, 131.5, 130.3, 129.0, 128.9, 128.3, 127.9, 113.5, 113.3, 111.2, 55.3, 55.1,
28.7,27.5. HRMS (ESI-TOF) m/z: C2sH2303 (M + H)" caled for 371.1642, found 371.1647.

(6-Methyl-1-p-tolyl-3,4-dihydronaphthalen-2-yl) (phenyl)methanone (3ua): Yield: 54.1 mg, 80%;
yellow solid; mp 102.5-103.0 °C (uncorrected); 'H NMR (400 MHz, CDCl3) 8: 7.73-7.70 (m, 2H), 7.37-
7.33 (m, 1H), 7.26-7.22 (m, 2H), 7.08 (s, 1H), 6.99 (d, J = 8.0 Hz, 2H), 6.92 (d, /= 8.0 Hz, 3H), 6.79 (d,
J = 8.0 Hz, 1H), 2.96 (t, J = 8.0 Hz, 2H), 2.71-2.67 (m, 2H), 2.35 (s, 3H), 2.20 (s, 3H). *C{IH}NMR
(100 MHz, CDCls) 3: 200.4, 140.7, 138.3, 137.3, 137.2, 137.0, 134.8, 134.8, 132.5, 132.2, 130.0, 129.1,
128.6, 128.3, 127.9, 127.4, 127.1, 28.2, 27.5, 21,2, 21.1. HRMS (ESI-TOF) m/z: C2sH230 (M + H)*
calcd for 339.1743, found 339.1749.

(6-Fluoro-1-(4-fluorophenyl)-3,4-dihydronaphthalen-2-yl) (phenyl)methanone (3va): Yield: 53.3 mg,
77%; yellow solid; mp 97.8-98.2 °C (uncorrected); '"H NMR (400 MHz, CDCl3) &: 7.72-7.69 (m, 2H),
7.42-7.37 (m, 1H), 7.26 (t, J = 8.0 Hz, 2H), 7.09-7.05 (m, 2H), 7.00-6.98 (m, 1H), 6.85-6.80 (m, 4H),
3.01 (t, J = 7.6 Hz, 2H), 2.74-2.70 (m, 2H). *C{IH}NMR (100 MHz, CDCls) &: 200.0, 162.4 (d, J =
247.9 Hz, 1C), 162.1 (d, J=246.0 Hz, 1C), 139.5 (d, J="7.9 Hz, 1C), 138.7, 136.8, 135.6 (d, /= 2.0 Hz,
1C), 133.4 (d, J=3.3 Hz, 1C), 132.7, 131.8 (d, J = 8.1 Hz, 1C), 130.6, 129.0, 128.9 (d, J = 8.5 Hz, 1C),
128.1,115.6 (d, J=21.4 Hz, 1C), 114.7 (d, J=21.7 Hz, 1C), 113.2 (d, J = 21.1 Hz, 1C), 28.2, 27.0. '°F
NMR (282 MHz, CDCls): 8: -112.7 (s, 1F), -113.8 (s, 1F). HRMS (ESI-TOF) m/z: C23H17"F20 (M +
H)" calcd for 347.1242, found 347.1247.

(6-Chloro-1-(4-chlorophenyl)-3,4-dihydronaphthalen-2-yl) (phenyl)methanone (3wa): Yield: 59.0 mg,
78%; yellow solid; mp 74.5-75.0 °C (uncorrected); '"H NMR (400 MHz, CDCl3) &: 7.71 (d, J = 7.2 Hz,

2H), 7.41 (d, J = 7.6 Hz, 1H), 7.31-7.25 (m, 3H), 7.13-7.08 (m, 3H), 7.05-7.03 (m, 2H), 6.74 (d, J = 8.4
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Hz, 1H), 2.9 (t, J = 7.6 Hz, 2H), 2.70 (t, J = 8.4 Hz, 2H). 3C{IH}NMR (100 MHz, CDCL) §: 199.4,

1

g 138.5, 138.2, 136.8, 136.5, 135.6, 134.0, 133.8, 133.2, 132.9, 131.3, 129.0, 128.4, 128.3, 128.2, 127.7,
g 126.7,27.8,27.0. HRMS (ESI-TOF) m/z: C23H17°CL1,0 (M + H)" calcd for 379.0651, found 379.0656.

Z (6-Bromo-1-(4-bromophenyl)-3,4-dihydronaphthalen-2-yl)(phenyl)methanone (3xa): Yield: 67.4 mg,
?O 72%; gray oil; 'TH NMR (400 MHz, CDCls) 8: 7.71 (d, J = 7.2 Hz, 2H), 7.42 (d, J = 7.2 Hz, 2H), 7.31-
1; 7.24 (m, 5H), 7.00-6.96 (m, 2H), 6.68 (d, J = 8.0 Hz, 1H), 2.99 (t, J = 8.0 Hz, 2H), 2.71-2.67 (m, 2H).
1

:Z' BC{IH}NMR (100 MHz, CDCls) &: 199.4, 138.7, 138.2, 136.9, 136.5, 136.0, 133.6, 133.0, 131.6,
:? 131.3, 130.5, 129.7, 129.0, 128.4, 128.3, 122.3, 122.0, 27.7, 27.0. HRMS (ESI-TOF) m/z: C23H17”°Br,0
B (M + H)" calcd for 468.9641, found 468.9626.

2(12) (8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (4-methoxyphenyl)methanone (3ab)’3": Yield: 64.4 mg,
;i 87%; yellow solid; mp 116.3-117.0 °C (uncorrected); 'H NMR (400 MHz, CDCls) 8: 7.80 (d, J = 8.8 Hz,
32 2H), 7.69 (s, 1H), 7.34-7.30 (m, SH), 7.21 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 6.84 (d, /= 7.6
gé Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 5.09 (s, 2H), 3.89 (s, 3H), 2.91 (t, /= 7.6 Hz, 2H), 2.73 (t, J = 8.0 Hz,
2(1) 2H). BC{IH}NMR (100 MHz, CDCl;) &: 196.2, 162.4, 155.5, 139.1, 136.9, 136.2, 133.8, 131,6, 131.0,
gg 130.5, 128.5, 127.8, 126.7, 122.2, 120.5, 113.3, 110.3, 70.0, 55.4, 27.9, 22.3. HRMS (ESI-TOF) m/z:
gg C2sH2303 (M + H)* caled for 371.1642, found 371.1655.

;73 (8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (4-(methylthio)phenyl)methanone (3ac): Yield: 61.0 mg,
ig 79%; white solid; mp 119.8-120.4 °C (uncorrected); 'H NMR (400 MHz, CDCls) &: 7.72-7.70 (m, 3H),
% 7.37-7.28 (m, 7H), 7.22 (t, J = 7.6 Hz, 1H), 6.84 (d, J= 7.2 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 5.09 (s,
P 2H), 2.91 (t, J = 8.0 Hz, 2H), 2.73 (t, J = 8.0 Hz, 2H), 2.54 (s, 3H). 3C{IH}NMR (100 MHz, CDCls) &
j? 196.4, 155.6, 143.6, 139.1, 136.8, 136.0, 134.7, 130.7, 129.9, 128.7, 128.5, 127.8, 126.7, 124.8, 122.0,
gg 120.5, 110.3, 69.9, 27.9, 22.0, 14.9. HRMS (ESI-TOF) m/z: C25sH230.S (M + H)" calcd for 387.1413,
. found 387.1419.

gi (8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (p-tolyl)methanone (3ad)’": Yield: 58.1 mg, 82%; yellow
gg solid; mp 106.7-108.0 °C (uncorrected); 'H NMR (400 MHz, CDCl3) 6: 7.72 (s, 1H), 7.67 (d, J = 8.0 Hz,
S5
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2H), 7.31 (s, SH), 7.26-7.23 (m, 2H), 7.20 (d, /= 7.6 Hz, 1H), 6.83 (d, /= 7.6 Hz, 1H), 6.78 (d, J = 8.0
Hz, 1H), 5.08 (s, 2H), 2.91 (t, J= 8.0 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H), 2.45 (s, 3H). *C{IH}NMR (100
MHz, CDCls) &: 197.1, 155.6, 141.9, 139.1, 136.9, 136.1, 135.8, 134.7, 130.6, 129.5, 128.7, 128.4,
127.7, 126.7, 122.2, 120.5, 110.4, 69.9, 27.9, 22.0, 21.6. HRMS (ESI-TOF) m/z: CsH2302 (M + H)*
calcd for 355.1693, found 355.1699.
(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(4-isopropylphenyl)methanone (3ae): Yield: 66.5 mg,
87%; mp 69.2-70.3 °C (uncorrected); '"H NMR (400 MHz, CDCl;3) 8: 7.72 (t, J = 8.4 Hz, 3H), 7.34-7.29
(m, 7H), 7.23 (t, J = 8.0 Hz, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.80 (d, J = 8.4 Hz, 1H), 5.08 (s, 2H), 3.02-
2.96 (m, 1H), 2.92 (t, J = 8.0 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H), 1.30 (d, J = 7.2 Hz, 6H). *C{IH}NMR
(100 MHz, CDCls) 6: 197.0, 155.6, 152.7, 139.1, 136.8, 136.1, 134.7, 130.6, 129.6, 128.5, 128.4, 127.8,
126.8, 126.1, 122.1, 120.5, 110.2, 70.0, 34.2, 27.9, 23.8, 21.9. HRMS (ESI-TOF) m/z: C27H270, (M +
H)* calcd for 383.2006, found 383.2011.
[1,1"-Biphenyl]-4-yl(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)methanone (3af): Yield: 66.6 mg,
80%; yellow solid; 113.5-114.3 °C (uncorrected); 'H NMR (400 MHz, CDCls) &: 7.85-7.84 (m, 2H),
7.83-7.82 (m, 1H), 7.68-7.64 (m, 4H), 7.50 (t, J = 7.6 Hz, 2H), 7.43 (d, J = 7.2 Hz, 1H), 7.32-7.29 (m,
2H), 7.25-7.21 (m, 4H), 6.65 (d, J = 7.2 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 5.08 (s, 2H), 2.93 (t, J = 8.0
Hz, 2H), 2.77 (t, J = 8.0 Hz, 2H). *C{1H}NMR (100 MHz, CDCl3) &: 196.9, 155.6, 144.1, 140.2, 139.2,
137.3, 136.8, 136.1, 135.2, 130.8, 129.9, 128.9, 128.9, 128.5, 127.9, 127.8, 127.2, 126.7, 122.1, 120.5,
110.4, 70.0, 27.9, 21.9. HRMS (ESI-TOF) m/z: C30H2502 (M + H)" calcd for 417.1849, found 417.1855.
(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (4-fluorophenyl)methanone (3ag): Yield: 55.1 mg, 77%;
white solid; mp 105.8-106.2 °C (uncorrected); 'H NMR (400 MHz, CDCls) 8: 7.79-7.76 (m, 2H), 7.68
(s, 1H), 7.35-7.29 (m, 5H), 7.23 (t, J = 8.4 Hz, 1H), 7.13 (t, J = 8.8 Hz, 2H), 6.84 (d, J = 7.6 Hz, 1H),
6.79 (d, J = 8.0 Hz, 1H), 5.08 (s, 2H), 2.91 (t, J = 7.6 Hz, 2H), 2.73 (t, J = 8.0 Hz, 2H). BC{1H}NMR
(100 MHz, CDCls) ¢: 195.9, 164.7 (d, J = 250.4 Hz, 1C), 155.6, 139.1, 136.7, 135.8, 135.2, 131.7,

131.6, 130.9, 128.5 (d, J = 6.9 Hz, 1C), 127.9 (d, J = 3.2 HZ, 10), 126.7, 121.9, 120.5, 115.1 (d, J =
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21.6 Hz, 1C), 110.3, 69.9, 27.8, 21.9. 'F NMR (282 MHz, CDCI3) &: -108.0 (s, 1F). HRMS (ESI-TOF)
m/z: C24H20"’FO2 (M + H)" caled for 359.1442, found 359.1447.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (4-chlorophenyl)methanone (3ah)’?": Yield: 56.1 mg,
75%; yellow solid; mp 150.2-151.3 °C (uncorrected); 'H NMR (400 MHz, CDCl;) 8: 7.70-7.67 (m, 3H),
7.43 (d, J = 8.4 Hz, 2H), 7.37-7.36 (m, 3H), 7.34-7.28 (m, 2H), 7.23 (d, J= 8.0 Hz, 1H), 6.85 (d,J=7.6
Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 5.08 (s, 2H), 2.92 (t, J = 8.0 Hz, 2H), 2.73 (t, J = 8.0 Hz, 2H).
BC{IH}NMR (100 MHz, CDCl3) &: 196.1, 155.7, 139.2, 137.5, 136.9, 136.7, 135.7, 131.1, 130.6,
128.5 (2C), 128.3, 1279, 126.6, 121.9, 120.5, 110.3, 69.9, 27.8, 21.7. HRMS (ESI-TOF) m/z:
C24H10**C102 (M + H)" calced for 375.1146, found 375.1153.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(4-bromophenyl)methanone (3ai): Yield: 55.2 mg, 66%;
yellow solid; mp 146.7-147.3 °C (uncorrected); 'H NMR (400 MHz, CDCl3) &: 7.69 (s, 1H), 7.62-7.57
(m, 4H), 7.36-7.33 (m, 3H), 7.31-7.29 (m, 2H), 7.24 (t, J = 8.0 Hz, 1H), 6.84 (d, J = 7.2 Hz, 1H), 6.80
(d, J = 8.4 Hz, 1H), 5.08 (s, 2H), 2.91 (t, J = 8.0 Hz, 2H), 2.73 ( t, J = 8.0 Hz, 2H). C{IH}NMR (100
MHz, CDCls) &: 196.2, 155.7, 139.2, 137.4, 136.7, 1359, 135.7, 131.3, 131.1, 130.8, 128.5, 127.9,
126.6, 126.0, 121.8, 120.5, 110.3, 69.9, 27.7, 21,6. HRMS (ESI-TOF) m/z: C24H20"’BrO, (M + H)* calcd
for 419.0641, found 419.0647.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (4-(trifluoromethyl)phenyl)methanone  (3aj)’?".  Yield:
49.8 mg, 61%; yellow solid; mp 128.9-129.7 °C (uncorrected); 'H NMR (400 MHz, CDCl3) 8: 7.80 (d, J
= 8.0 Hz, 2H), 7.70-7.68 (m, 3H), 7.32-7.29 (m, 3H), 7.28-7.23 (m, 3H), 6.85 (d, J= 7.2 Hz, 1H), 6.80
(d, J = 8.4 Hz, 1H), 5.05 (s, 2H), 2.93 (t, J = 8.0 Hz, 2H), 2.75 (t, J = 8.0 Hz, 2H). BC{1H}NMR (100
MHz, CDClz) 6: 195.9, 155.8, 141.9, 139.2, 136.7, 136.5, 135.5, 132.6 (q, J = 32.2 Hz, 1C), 1314,
129.3, 128.4, 128.0, 126.6, 125.0 (q, J = 3.8 Hz, 1C), 123.8 (d, J = 270.8 Hz, 1C), 121.7, 120.6, 110.3,
70.0, 27.7, 21.3. ’F NMR (282 MHz, CDCI3) 8: -62.7 (s, 3F). HRMS (ESI-TOF) m/z: C25H20"°F30, (M

+ H)" calcd for 409.1410, found 409.1418.
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(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(3-methoxyphenyl)methanone (3al)’*". Yield: 60.7 mg,
82%; yellow solid; 125.1-126.2 °C (uncorrected); '"H NMR (400 MHz, CDCls) &: 7.76 (s, 1H), 7.35-7.26
(m, 8H), 7.22 (t, J= 7.6 Hz, 1H), 7.11-7.10 (m, 1H), 6.84 (d, /= 7.6 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H),
5.08 (s, 2H), 3.81 (s, 3H), 2.92 (t, J = 8.0 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H). *C{1H}NMR (100 MHz,
CDCl) o: 197.1, 159.3, 155.6, 139.9, 139.2, 136.7, 135.9, 135.4, 130.8, 129.0, 128.5, 127.8, 126.6,
122.0, 121.8, 120.5, 117.9, 113.4, 110.3, 69.9, 55.3, 27.8, 21.7. HRMS (ESI-TOF) m/z: C25sH2303 (M +
H)* calcd for 371.1642, found 371.1655.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(m-tolyl)methanone (3am): Yield: 53.8 mg, 76%; yellow
solid; 67.8-68.3 °C (uncorrected); 'H NMR (400 MHz, CDCls) &: 7.73 (s, 1H), 7.55-7.52 (m, 2H), 7.35-
7.28 (m, 7H), 7.22 (t, J = 8.0 Hz, 1H), 6.84 (d, J = 7.2 Hz,1H), 6.79 (d, J = 8.0 Hz, 1H), 5.07 (s, 2H),
2.92 (t, J = 8.0 Hz, 2H), 2.74 (t, J = 8.0 Hz, 2H), 2.38 (s, 3H). *C{IH}NMR (100 MHz, CDCl;) é:
197.7, 155.7, 139.3, 138.7, 138.0, 136.9, 136.1, 135.3, 132.1, 130.8, 129.8, 128.5, 127.9, 127.8, 126.7,
126.5, 122.1, 120.6, 110.3, 69.9, 27.9, 21.8, 21.4. HRMS (ESI-TOF) m/z: C2sH230, (M + H)* calcd for
355.1693, found 355.1699.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(3-chlorophenyl)methanone (3an): Yield: 52.4 mg, 70%;
yellow solid; mp 126.5-127.0 °C (uncorrected); '"H NMR (400 MHz, CDCls) &: 7.73-7.71 (m, 2H), 7.60
(d, J= 7.6 Hz, 1H), 7.54-7.51 (m, 1H), 7.40-7.30 (m, 6H), 7.24 (t, J= 7.2 Hz, 1H), 6.84 (d, J = 7.6 Hz,
1H), 6.80 (d, J = 8.4 Hz, 1H), 5.08 (s, 2H), 2.92 (t, J = 8.0 Hz, 2H), 2.73 (t, J = 8.0 Hz, 2H).
BC{IH}NMR (100 MHz, CDCls) &: 195.7, 155.8, 140.3, 139.2, 136.7, 135.9, 135.6, 134.2, 131.2,
131.1, 129.4, 129.2, 128.5, 127.9, 127.3, 126.7, 121.8, 120.5, 110.3, 70.0, 27.8, 21.7. HRMS (ESI-TOF)
m/z: C24H20**Cl102 (M + H)" caled for 375.1146, found 375.1153.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(o-tolyl)methanone (3ao): Yield: 52.4 mg, 74%; yellow
solid; mp 86.2-87.0 °C (uncorrected); '"H NMR (400 MHz, CDCl3) 8: 7.57 (s, 1H), 7.39-7.35 (m, 1H),
7.32-7.29 (m, 4H), 7.26-7.22 (m, 3H), 7.20-7.18 (m, 2H), 6.84 (d, J = 7.2 Hz, 1H), 6.77 (d, J = 8.0 Hz,

1H), 5.02 (s, 2H), 2.91 (t, J = 8.0 Hz, 2H), 2.75 (t, J = 8.0 Hz, 2H), 2.32 (s, 3H). *C{IH}NMR (100

22

ACS Paragon Plus Environment



Page 23 of 34 The Journal of Organic Chemistry

oNOYTULT D WN =

MHz, CDCls) &: 199.5, 155.6, 139.4, 139.4, 137.0, 136.8, 136.7, 135.7, 131.1, 130.6, 129.2, 128.4,
127.7, 127.6, 126.3, 125.0, 122.1, 120.6, 110.3, 69.7, 27.8, 20.4, 19.7. HRMS (ESI-TOF) m/z: C25H230:
(M + H)* caled for 355.1693, found 355.1699.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (2-fluorophenyl)methanone (3ap): Yield: 50.8 mg, 71%;
yellow oil; 'H NMR (400 MHz, CDCls) &: 7.69 (s, 1H), 7.48-7.44 (m, 2H), 7.31-7.29 (m, 3H), 7.26-
7.21 (m, 4H), 7.12 (d, J = 9.2 Hz, 1H), 6.84 (d, J = 7.2 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.05 (s, 2H),
2.91 (t,J=17.6 Hz, 2H), 2.76 (t, J = 8.0 Hz, 2H). BC{IH}NMR (100 MHz, CDCl;) 6: 193.8, 159.5 (d, J
=248.4 Hz, 1C), 155.7, 139.5, 136.8 (d, /= 12.0 Hz, 1C), 136.6, 131.7 (d, /= 8.0 Hz, 1C), 131.3, 130.1
(d, J=3.2 Hz, 1C), 128.4, 127.8, 127.7, 127.6, 126,5, 123.9 (d, J = 3.5 Hz, 1C), 122.0, 120.6, 116.0 (d,
J=21.8 Hz, 1C), 110.3, 69.8, 27.7, 20.6; '°F NMR (282 MHz, CDCl5): 3: -113.4 (s, 1F). HRMS (ESI-
TOF) m/z: C24H20'FO2 (M + H)* caled for 359.1442, found 359.1447.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(2-chlorophenyl)methanone (3aq): Yield: 46.4 mg, 62%;
white solid; mp 125.6-126.0 °C (uncorrected); '"H NMR (400 MHz, CDCl3) &: 7.55 (s, 1H), 7.45-7.35
(m, 4H), 7.34-7.29 (m, 3H), 7.25-7.19 (m, 3H), 6.83 (d, J = 7.6 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 5.01
(s, 2H), 2.91 (t, J = 7.6 Hz, 2H), 2.76 (t, J = 8.0 Hz, 2H). *C{IH}NMR (100 MHz, CDCI3) &: 195.8,
155.7, 139.5, 139.1, 137.4, 136.7, 136.2, 131.4, 131.1, 130.3, 129.8, 128.8, 128.4, 127.6, 126.3, 126.3,
121.9, 120.6, 110.3, 69.8, 27.6, 20.2. HRMS (ESI-TOF) m/z: C24H20**C1O> (M + H)" calcd for 375.1146,
found 375.1153.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(3,4-dichlorophenyl)methanone (3ar): Yield: 43.3 mg,

58%; yellow solid; mp 78.6-79.2 °C (uncorrected); 'H NMR (400 MHz, CDCl3) &: 7.84-7.83 (m, 1H),
7.68 (s, 1H), 7.57-7.55 (m, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.36-7.27 (m, 5H), 7.24 (d, J = 7.6 Hz, 1H),
6.86-6.80 (m, 2H), 5.09 (s, 2H), 2.92 (t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.4 Hz, 2H). BC{IH}NMR (100
MHz, CDCL) o: 198.8, 155.7, 134.9, 137.5, 137.1, 136.6, 133.6, 131.2, 130.0, 128.3, 128.3, 127.6,
126.8, 126.4, 126.2, 125.6, 124.3, 120.5, 110.3, 69.7, 27.9, 20.8. HRMS (ESI-TOF) m/z: C24H16*C1,0;

(M + H)* caled for 409.0757, found 409.0764.

23

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry Page 24 of 34

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (naphthalen-1-yl)methanone (3as) : Yield: 51.5 mg,
66%; yellow solid; mp 87.0-87.5 °C (uncorrected); 'H NMR (400 MHz, CDCls3) &: 8.03-8.01 (m, 1H),
7.98 (d, J = 8.0 Hz, 1H), 7.93-7.91 (m, 1H), 7.65 (s, 1H), 7.69-7.57 (m, 1H), 7.54-7.49 (m, 3H), 7.24-
7.19 (m, 4H), 7.03 (d, J = 7.2 Hz, 2H), 6.84 (d, J = 7.2 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 4.94 (s, 2H),
2.96 (t, J = 7.6 Hz, 2H), 2.87 (t, J = 7.6 Hz, 2H). BC{1H}NMR (100 MHz, CDCls) &: 198.7, 155.7,
139.4, 137.6, 137.2, 137.1, 136.6, 133.6, 131.2, 131.0, 130.0, 128.4, 128.3, 127.6, 126.8, 126.4 (2C),
126.2, 126.2, 125.7, 124.3, 122.1, 120.5, 110.4, 69.7, 27.9, 20.8. HRMS (ESI-TOF) m/z: C2sH2302 (M +
H)* calcd for 391.1693, found 391.1698.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(naphthalen-2-yl)methanone (3at): Yield: 47.6 mg, 61%;
yellow solid; mp 87.0-87.5 °C (uncorrected); 'H NMR (400 MHz, CDCl;3) &: 8.28 (s, 1H), 7.93-7.92 (m,
3H), 7.86 (d, J = 8.4 Hz, 1H), 7.81 (s, 1H), 7.62 (t, J = 7.2 Hz, 1H), 7.55 (t, /= 7.6 Hz, 1H), 7.24-7.16
(m, 3H), 7.07 (t,J = 7.6 Hz, 2H), 6.87 (d, /= 7.6 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 5.04 (s, 3H), 2.97 (t,
J = 8.0 Hz, 2H), 2.81 (t, J = 8.0 Hz, 2H). *C{1H}NMR (100 MHz, CDCls) 8: 197.3, 155.6, 139.2,
136.6, 136.2, 135.8, 135.4, 134.8, 132.3, 130.8, 130.2, 129.2, 128.4, 128.1, 127.7 127.7, 127.6, 126.6,
126.5, 125.8, 122.1, 120.5, 110.3, 69.9, 27.9, 21.9. HRMS (ESI-TOF) m/z: C2sH2302 (M + H)" calcd for
391.1693, found 391.1698.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl) (thiophen-2-yl)methanone (3aw)’3": Yield: 36.0 mg, 52%;
yellow oil; 'H NMR (400 MHz, CDCls) &: 7.98 (s, 1H), 7.71-7.70 (m, 1H), 7.64-7.63 (m, 1H), 7.41-
7.31 (m, SH), 7.22 (t, J = 8.0 Hz, 1H), 7.13-7.12 (m, 1H), 6.83 (t, J = 8.8 Hz, 2H), 5.13 (s, 2H), 2.91 (4,
J = 8.0 Hz, 2H), 2.73 (t, J = 8.0 Hz, 2H). BC{IH}NMR (100 MHz, CDCls) &: 188.3, 155.6, 143.6,
139.0, 136.8, 136.3, 132.7, 132.7, 132.6, 130.6, 128.5, 127.9, 127.5, 126.9, 122.0, 120.5, 110.3, 70.1,
27.8,22.5. HRMS (ESI-TOF) m/z: C22H1902S (M + H)" caled for 347.1100, found 347.1107.

(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)(furan-2-yl)methanone (3av): Yield: 33.0 mg, 50%;
yellow oil; 'H NMR (400 MHz, CDCI3) &: 8.18 (s, 1H), 7.62 (s, 1H), 7.45-7.40 (m, 2H), 7.39-7.33 (m,

3H), 7.23 (t, J = 8.0 Hz, 1H), 7.19-7.18 (m, 1H), 6.85-6.81 (m, 2H), 6.54-6.53 (m, 1H), 5.14 (s, 2H),

24

ACS Paragon Plus Environment



Page 25 of 34 The Journal of Organic Chemistry

oNOYTULT D WN =

2.89 (t, J = 8.0 Hz, 2H), 2.72 (t, J = 8.0 Hz, 2H). '3C NMR (100 MHz, CDCl3) &: 182.8, 155.8, 152.4,
146.1, 139.2, 136.9, 135.8, 132.8, 130.7, 128.5, 127.9, 126.9, 122.1, 120.5, 118.5, 111.7, 110.3, 70.2,
27.8,22.0. HRMS (ESI-TOF) m/z: C22H1903 (M + H)" caled for 331.1329, found 331.1334.

1-(8-(Benzyloxy)-3,4-dihydronaphthalen-2-yl)ethanone (3aw): Yield: 31.1 mg, 56%; gray solid; mp
74.8-75.1 °C (uncorrected); '"H NMR (400 MHz, CDCls) &: 7.92 (s, 1H), 7.46-7.39 (m, 4H), 7.37-7.33
(m, 1H), 7.21 (t, J = 8.0 Hz, 1H), 6.80 (d, J = 8.4 Hz, 2H), 5.16 (s, 2H), 2.80 (t, J = 8.4 Hz, 2H), 2.56 (t,
J = 8.0 Hz, 2H), 2.44 (s, 3H). BC{IH}NMR (100 MHz, CDCls) &: 198.9, 155.6, 139.3, 137.0, 136.8,
131.7, 130.7, 128.6, 128.0, 127.1, 121.9, 120.5, 110.3, 70.3, 27.8, 25.3, 20.4. HRMS (ESI-TOF) m/z:
Ci9H1902 (M + H)* calcd for 279.1380, found 279.1385.

1,3,3-Triphenylprop-2-en-1-one (5): Yield: 26.1 mg, 46%; yellow oil; 'H NMR (400 MHz, CDCl;) &:
791 (d, J=7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.42-7.36 (m, 7H), 7.28-7.24 (m, 3H), 7.19-7.17 (m,
2H), 7.12 (s, 1H). BC{IH}NMR (100 MHz, CDCls) 8: 192.7, 154.8, 141.3, 138.9, 138.1, 132.7, 129.7,
129.3, 128.7, 128.6, 128.4, 128.3, 128.0, 123.9. HRMS (ESI-TOF) m/z: C2;1Hi70 (M + H)" calcd for
285.1274, found 285.1279.

5-(Benzyloxy)-3-(1-(4-methoxyphenyl)vinyl)- 1,2-dihydronaphthalene (6): Yield: 48.6 mg, 66%; white
solid; mp 103.5-104.9 °C (uncorrected); 'H NMR (400 MHz, CDCls) &: 7.33-7.29 (m, 5H), 7.29-7.26
(m, 2H), 7.06 (d, J = 8.0 Hz, 1H), 6.91-6.89 (m, 3H), 6.78 (d, /= 7.6 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H),
5.39 (s, 1H), 5.15 (s, 1H), 5.00 (s, 2H), 3.84 (s, 3H), 2.89 (t, J = 8.0 Hz, 2H), 2.55 (t, J = 8.0 Hz, 2H).
BC{IH}NMR (100 MHz, CDCls) &: 158.9, 154.2, 150.3, 138.3, 137.3, 136.9, 133.9, 130.0, 128.3,
127.5 (2C), 126.6, 124.0, 121.7, 120.2, 113.3, 112.0, 110.3, 69.9, 55.2, 28.4, 24.8. HRMS (ESI-TOF)

m/z: C26H2502 (M + H)* calcd for 369.1849, found 369.1857.
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