Dramatic enhancement of the alkene metathesis activity of Mo imido alkylidene complexes upon replacement of one *t*BuO by a surface siloxy ligand[†]

Frédéric Blanc,^a Nuria Rendón,^a Romain Berthoud,^a Jean-Marie Basset,^a Christophe Copéret,^{*a} Zachary J. Tonzetich^b and Richard R. Schrock^b

Received 3rd January 2008, Accepted 3rd April 2008 First published as an Advance Article on the web 23rd April 2008 DOI: 10.1039/b805686m

 $[(\equiv SiO)Mo(\equiv NAr)(=CHCMe_2R)(OtBu)]$, a well-defined silica supported alkene metathesis catalyst precursor, shows a dramatic enhancement of activity and selectivity compared to $[Mo(\equiv NAr)(=CHCMe_2R)(OtBu)_2]$ and $[(\equiv SiO)Mo(\equiv NAr)(=CHCMe_2R)(CH_2tBu)]$, respectively.

Alkene metathesis is a key reaction to make carbon-carbon bonds, and it has been applied to a wide range of applications ranging from petrochemical to fine chemical products.¹ Despite tremendous advances in the past few years, there is still a challenge to prepare more active and more robust catalysts. With this in mind, we and others have worked on the development of well-defined heterogeneous alkene metathesis catalysts.² In particular, we have shown that silica supported Mo-, W- and Re-based catalyst precursors, of general formula $[(Y)M(\equiv ER)(=CHtBu)(X)]$ (Y = \equiv SiO), are highly active (X = CH₂tBu; M = Re, ER = CtBu; ³ M = Mo, ER = NR;⁴ or M = W, $ER = NAr^5$) and selective (X = NPh_2 , M = Mo and ER = NR), and overall their performances in term of activity and stability-often out-performed those of their homogeneous analogues.6 These improved catalytic properties have been associated with the presence of a siloxy ligand (Y = \equiv SiO) in combination with one σ -donating ligand (X = tCH₂R or NR_2)⁷ as well as site isolation. Here, we show that the replacement of only one of the tBuO ligand in 1-R by a siloxy ligand upon its grafting on silica partially dehydroxylated at 700 °C (SiO₂₋₍₇₀₀₎) is enough to yield a highly active well-defined alkene metathesis catalyst precursor 2-R (Scheme 1).

^aUniversité de Lyon, Institut de Chimie de Lyon, Laboratoire de Chimie, Catalyse, Polymères et Procédés, CNRS-ESCPE Lyon, 43 bd du 11 Novembre 1918, F-69616, Villeurbanne, Cedex, France. E-mail: coperet@cpe.fr; Fax: +33472431795; Tel: +33472431811

† Electronic supplementary information (ESI) available: Full experimental details and all figures. See DOI: 10.1039/b805686m

When a silica disk of SiO₂₋₍₇₀₀₎ was immersed in a pentane solution of 1-Ph, the IR signal associated with the surface silanols at 3747 cm⁻¹ mostly disappeared as new IR bands associated with the v(C-H) and $\delta(C-H)$ of hydrocarbyl ligands appeared in the 3000-2700 and 1500-1350 cm⁻¹ regions, respectively (Fig. S1 in the electronic supporting information, ESI[†]). Additional IR signals are also observed between 3000–3700 cm⁻¹ and assigned as follows: the signals at 3088, 3065 and 3028 cm⁻¹ correspond to aromatic C-H bonds, and the signal at 3609 cm⁻¹ to residual OH groups interacting with aromatic ligands and not accessible for further grafting.⁵ Moreover, when a mixture of 1-Ph (109 mg, 0.20 mmol) in pentane (10 mL) was contacted and stirred for 30 min at 25 °C with SiO₂₋₍₇₀₀₎ (720 mg, 0.19 mmol of \equiv SiOH), silica turned yellow and tBuOH was formed. The Mo elemental analysis (2.05%_{wt}) corresponds to 0.21 mmol of Mo g⁻¹ of solids in agreement with the consumption of most surface silanols (ca. 82%), which is consistent with IR data. Moreover, these materials contain on average 27 \pm 2 carbons and 1.0 \pm 0.5 nitrogens per grafted Mo from elemental analysis, which is in good agreement with the proposed structure 2-Ph, for which 26 C/Mo and 1 N/Mo are expected.

Further characterisation of this material was performed by solid state NMR spectroscopy. In the ¹H MAS NMR spectrum of 2-Ph (Fig. S2[†]), the signals can be assigned as follows: 11.5 (=CHCMe₂Ph), 7.1 (Csp²-H), 3.5 (CHMe₂), 1.1 (=CHCMe₂Ph, CMe₃ and CHMe₂). The ¹³C CP MAS spectrum of 2-Ph contains 10 resolved signals (Fig. S3[†]), assigned as follows: 22 $\{CH(CH_3)_2\}, 27 \{=CHC(CH_3)_2Ph + C(CH_3)_3\}, 30 \{CH(CH_3)_2\},\$ 52 {=CHC(CH₃)₂Ph}, 78 { $C(CH_3)_3$ }, 122–153 {Ar}. While no signal corresponding to the alkylidene carbon resonance $\{=CHC(CH_3)_2Ph\}$ could be observed on 2-Ph, a signal at 272 ppm is detected when grafting is performed with 1-Me, $[Mo(\equiv NAr)(=*CHtBu)(OtBu)_2]$ 99% ¹³C labeled at the alkylidene carbon (Fig. S4 and S5[†]). These assignments were further corroborated by 2D ¹H-¹³C HETCOR experiment (Fig. 1),⁸ and in particular a strong correlation was observed for the carbon signal at 272 ppm and the corresponding alkylidene proton at 11.2 ppm.

Overall, the disappearance of most of the band at 3747 cm⁻¹ and the evolution of *t*BuOH upon grafting, the elemental analysis and the NMR data are fully consistent with the formation of **2-Ph**. Note that the grafting of **1-Ph** by sublimation on SiO₂₋₍₂₀₀₎ yields a mixture of surface complexes.⁹ This shows the advantage of using SiO₂₋₍₇₀₀₎, a silica surface, which has isolated silanols and which thereby yields well-defined monosiloxy species.

^bDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA

Fig. 1 Solid state NMR spectra of **2-R** recorded at a spinning rate of 12.5 kHz. The ¹³C spectra were recorded under SPINAL-64 ¹H¹⁰ decoupling at $v_1^{\rm H} = 100$ kHz. The recycle delay was set to 2 s. Stars (*) indicates spinning side bands of the alkylidene resonance. (a) ¹³C CP spectrum of **2-Ph** acquired with 20 000 scans and a contact time of 10 ms. (b) ¹³C CP MAS spectrum of **2-Me** acquired with 4 180 scans and a contact time of 1 ms. (c) ¹H-¹³C HETCOR spectrum of **2-Me** acquired in 48 t₁ points with 512 scans each. A contact time of 1 ms was used for CP. (d) Single pulse ¹H MAS spectrum of **2-Me** acquired with 8 scans.

Finally, contacting 2-Ph with propene in a flow reactor (ca. 400 mL min⁻¹; 32 mol propene mol Mo⁻¹ s⁻¹) gives selectively ethene and 2-butenes (>99.9%, no other alkene is detected) with an initial activity of 1.9 s⁻¹, yielding overall a cumulated TON of 51200 over 1550 min (Fig. 2). The catalytic performances of this system are greatly improved by comparison with $[(\equiv SiO)(tBuCH_2)Mo(\equiv NAr)(=CHCMe_2R^2)]^{4c}$ in term of selectivity and stability, the latter displaying a butene selectivity of 99.6% (2-butenes/all butene isomers), an initial activity of 2 s⁻¹ and a cumulated TON over 1 500 min of 20 000.4d,g This further shows that the formation of alkene by-products could be related to the presence of the pendant alkyl ligand. Moreover, using 0.05 mol% of 2-Ph (Fig. S6[†]), it is possible to reach the thermodynamic equilibrium in the self-metathesis of ethyl oleate (EO) within 24 h with initial activity of 4.1 mol EO (mol Mo min)⁻¹, while **1-Ph** is nearly inactive (initial activity of 0.6 mol EO (mol Mo min)⁻¹ and only 4% conversion after 24 h).

These results nicely illustrate the activation of a Mo-based olefin metathesis catalyst precursor by the siloxy ligand and the importance in the choice of the ligands.

Acknowledgements

F.B. and R.B. are grateful to the French ministry of education, research and technology (MENRT) for a graduate fellowship.

Fig. 2 Activity in propene metathesis catalysed by **2-Ph**. Top: cumulative TON as a function of time (min). Bottom: products selectivity as a function of time (min). Ethylene (\Diamond), *E*-2-butene (\Box), *Z*-2-butene (Δ).

N.R. thanks the Spanish MEC for a postdoctoral fellowship. C.C. is grateful to ANR for a young investigator grant (ANR JC05_46372). We are also indebted to the CNRS, ESCPE Lyon, the National Science Foundation for financial support. We thanked the European Large Scale Facility for NMR in Lyon, France (www.ralf-nmr.fr) for spectrometer time.

Notes and references

- 1 J. C. Mol, J. Mol. Catal. A: Chem., 2004, 213, 39.
- (a) K. C. Hultzsch, J. A. Jernelius, A. H. Hoveyda and R. R. Schrock, *Angew. Chem., Int. Ed.*, 2002, **41**, 589; (b) R. M. Kroell, N. Schuler, S. Lubbad and M. R. Buchmeiser, *Chem. Commun.*, 2003, 2742; (c) C. Copéret, *New J. Chem.*, 2004, **28**, 1; (d) S. J. Dolman, K. C. Hultzsch, F. Pezet, X. Teng, A. H. Hoveyda and R. R. Schrock, *J. Am. Chem.* Soc., 2004, **126**, 10945–10953; (e) D. Wang, R. Kroell, M. Mayr, K. Wurst and M. R. Buchmeiser, *Adv. Synth. Catal.*, 2006, **348**, 1567; (f) C. Copéret and J. M. Basset, *Adv. Synth. Catal.*, 2007, **349**, 78.
- 3 M. Chabanas, A. Baudouin, C. Copéret and J.-M. Basset, J. Am. Chem. Soc., 2001, 123, 2062.
- 4 (a) W. A. Herrmann, A. W. Stumpt, T. Priermeier, S. Bogdanovic, V. Dufaud and J.-M. Basset, Angew. Chem., Int. Ed. Engl., 1997, 35, 2803; (b) F. Blanc, M. Chabanas, C. Copéret, B. Fenet and E. Herdweck, J. Organomet. Chem., 2005, 690, 5014; (c) F. Blanc, C. Copéret, J. Thivolle-Cazat, J.-M. Basset, A. Lesage, L. Emsley, A. Sinha and R. R. Schrock, Angew. Chem., Int. Ed., 2006, 45, 1216; (d) F. Blanc, A. Salameh, J. Thivolle-Cazat, J.-M. Basset, C. Copéret, A. Sinha and R. R. Schrock, Compt. Rend. Chim., 2008, 11, 137; (e) F. Blanc, J. Thivolle-Cazat, J.-M. Basset, C. Copéret, A. Sinha, and R. R. Schrock, J. Am. Chem. Soc., 2007, 129, 1044; (f) F. Blanc, R. Berthoud, A. Salameh, J.-M. Basset, C. Copéret, R. Singh and R. R. Schrock, J. Am. Chem. Soc., 2007, 129, 8434; (g) C. Copéret, Dalton Trans., 2007, 5298.
- 5 B. Rhers, A. Salameh, A. Baudouin, E. A. Quadrelli, M. Taoufik, C. Copéret, F. Lefebvre, J.-M. Basset, X. Solans-Monfort, O. Eisenstein, W. W. Lukens, L. P. H. Lopez, A. Sinha and R. R. Schrock, *Organometallics*, 2006, **25**, 3554.

- 6 R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare and M. O'Regan, J. Am. Chem. Soc., 1990, **112**, 3875.
- 7 (a) X. Solans-Monfort, E. Clot, C. Copéret and O. Eisenstein, J. Am. Chem. Soc., 2005, **127**, 14015; (b) A. Poater, X. Solans-Monfort, E. Clot, C. Copéret and O. Eisenstein, J. Am. Chem. Soc., 2007, **129**, 8207.
- 8 R. Petroff Saint-Arroman, M. Chabanas, A. Baudouin, C. Copéret, J.-M. Basset, A. Lesage and L. Emsley, J. Am. Chem. Soc., 2001, 123, 3820.
- 9 S. I. Wolke and R. Buffon, J. Mol. Catal. A: Chem., 2000, 160, 181.
- 10 B. M. Fung, A. K. Khitrin and K. Ermolaev, J. Magn. Reson., 2000, 142, 97.