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Dramatic enhancement of the alkene metathesis activity of Mo imido
alkylidene complexes upon replacement of one tBuO by a surface
siloxy ligand†
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[(≡SiO)Mo(≡NAr)(=CHCMe2R)(OtBu)], a well-defined
silica supported alkene metathesis catalyst precursor,
shows a dramatic enhancement of activity and selectivity
compared to [Mo(≡NAr)(=CHCMe2R)(OtBu)2] and
[(≡SiO)Mo(≡NAr)(=CHCMe2R)(CH2tBu)], respectively.

Alkene metathesis is a key reaction to make carbon–carbon bonds,
and it has been applied to a wide range of applications ranging
from petrochemical to fine chemical products.1 Despite tremen-
dous advances in the past few years, there is still a challenge to
prepare more active and more robust catalysts. With this in mind,
we and others have worked on the development of well-defined
heterogeneous alkene metathesis catalysts.2 In particular, we have
shown that silica supported Mo-, W- and Re-based catalyst
precursors, of general formula [(Y)M(≡ER)(=CHtBu)(X)] (Y =
≡SiO), are highly active (X = CH2tBu; M = Re, ER = CtBu;3 M =
Mo, ER = NR;4 or M = W, ER = NAr5) and selective (X =
NPh2, M = Mo and ER = NR), and overall their performances—
in term of activity and stability—often out-performed those of
their homogeneous analogues.6 These improved catalytic proper-
ties have been associated with the presence of a siloxy ligand (Y =
≡SiO) in combination with one r-donating ligand (X = tCH2R or
NR2)7 as well as site isolation. Here, we show that the replacement
of only one of the tBuO ligand in 1-R by a siloxy ligand upon
its grafting on silica partially dehydroxylated at 700 ◦C (SiO2-(700))
is enough to yield a highly active well-defined alkene metathesis
catalyst precursor 2-R (Scheme 1).
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When a silica disk of SiO2-(700) was immersed in a pentane
solution of 1-Ph, the IR signal associated with the surface silanols
at 3747 cm−1 mostly disappeared as new IR bands associated
with the m(C–H) and d(C–H) of hydrocarbyl ligands appeared in
the 3000–2700 and 1500–1350 cm−1 regions, respectively (Fig. S1
in the electronic supporting information, ESI†). Additional IR
signals are also observed between 3000–3700 cm−1 and assigned
as follows: the signals at 3088, 3065 and 3028 cm−1 correspond
to aromatic C–H bonds, and the signal at 3609 cm−1 to residual
OH groups interacting with aromatic ligands and not accessible
for further grafting.5 Moreover, when a mixture of 1-Ph (109 mg,
0.20 mmol) in pentane (10 mL) was contacted and stirred for
30 min at 25 ◦C with SiO2-(700) (720 mg, 0.19 mmol of ≡SiOH),
silica turned yellow and tBuOH was formed. The Mo elemental
analysis (2.05%wt) corresponds to 0.21 mmol of Mo g−1 of solids
in agreement with the consumption of most surface silanols (ca.
82%), which is consistent with IR data. Moreover, these materials
contain on average 27 ± 2 carbons and 1.0 ± 0.5 nitrogens per
grafted Mo from elemental analysis, which is in good agreement
with the proposed structure 2-Ph, for which 26 C/Mo and 1 N/Mo
are expected.

Further characterisation of this material was performed by
solid state NMR spectroscopy. In the 1H MAS NMR spectrum
of 2-Ph (Fig. S2†), the signals can be assigned as follows: 11.5
(=CHCMe2Ph), 7.1 (Csp2-H), 3.5 (CHMe2), 1.1 (=CHCMe2Ph,
CMe3 and CHMe2). The 13C CP MAS spectrum of 2-Ph con-
tains 10 resolved signals (Fig. S3†), assigned as follows: 22
{CH(CH3)2}, 27 {=CHC(CH3)2Ph + C(CH3)3}, 30 {CH(CH3)2},
52 {=CHC(CH3)2Ph}, 78 {C(CH3)3}, 122–153 {Ar}. While
no signal corresponding to the alkylidene carbon resonance
{=CHC(CH3)2Ph} could be observed on 2-Ph, a signal at
272 ppm is detected when grafting is performed with 1-Me,
[Mo(≡NAr)(=*CHtBu)(OtBu)2] 99% 13C labeled at the alkylidene
carbon (Fig. S4 and S5†). These assignments were further
corroborated by 2D 1H-13C HETCOR experiment (Fig. 1),8 and
in particular a strong correlation was observed for the carbon
signal at 272 ppm and the corresponding alkylidene proton
at 11.2 ppm.

Overall, the disappearance of most of the band at 3747 cm−1

and the evolution of tBuOH upon grafting, the elemental analysis
and the NMR data are fully consistent with the formation of 2-Ph.
Note that the grafting of 1-Ph by sublimation on SiO2-(200) yields a
mixture of surface complexes.9 This shows the advantage of using
SiO2-(700), a silica surface, which has isolated silanols and which
thereby yields well-defined monosiloxy species.
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Fig. 1 Solid state NMR spectra of 2-R recorded at a spinning rate
of 12.5 kHz. The 13C spectra were recorded under SPINAL-64 1H10

decoupling at m1
H = 100 kHz. The recycle delay was set to 2 s. Stars

(*) indicates spinning side bands of the alkylidene resonance. (a) 13C CP
spectrum of 2-Ph acquired with 20 000 scans and a contact time of 10 ms.
(b) 13C CP MAS spectrum of 2-Me acquired with 4 180 scans and a contact
time of 1 ms. (c) 1H-13C HETCOR spectrum of 2-Me acquired in 48 t1

points with 512 scans each. A contact time of 1 ms was used for CP.
(d) Single pulse 1H MAS spectrum of 2-Me acquired with 8 scans.

Finally, contacting 2-Ph with propene in a flow reactor (ca.
400 mL min−1; 32 mol propene mol Mo−1 s−1) gives selectively
ethene and 2-butenes (>99.9%, no other alkene is detected)
with an initial activity of 1.9 s−1, yielding overall a cumulated
TON of 51200 over 1550 min (Fig. 2). The catalytic perfor-
mances of this system are greatly improved by comparison
with [(≡SiO)(tBuCH2)Mo(≡NAr)(=CHCMe2R2)]4c in term of
selectivity and stability, the latter displaying a butene selectivity
of 99.6% (2-butenes/all butene isomers), an initial activity of
2 s−1 and a cumulated TON over 1 500 min of 20 000.4d,g This
further shows that the formation of alkene by-products could be
related to the presence of the pendant alkyl ligand. Moreover,
using 0.05 mol% of 2-Ph (Fig. S6†), it is possible to reach the
thermodynamic equilibrium in the self-metathesis of ethyl oleate
(EO) within 24 h with initial activity of 4.1 mol EO (mol Mo
min)−1, while 1-Ph is nearly inactive (initial activity of 0.6 mol EO
(mol Mo min)−1 and only 4% conversion after 24 h).

These results nicely illustrate the activation of a Mo-based
olefin metathesis catalyst precursor by the siloxy ligand and the
importance in the choice of the ligands.
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