SHORT COMMUNICATIONS

bba 23556

Uridine diphosphate β -glucuronic acid. A new substrate for β -glucuronidase

The glucosiduronic acids which are isolated from urine are always of the β -configuration with reference to the oside linkage. Yet the accepted glucuronyl donor, uridine diphosphate glucuronic acid (UDPGlcUA) is of the opposite, α -configuration. It is tacitly, therefore, assumed that glucuronyltransferase produces inversion of the oside linkage as the glucuronic acid combines with aglycone acceptor¹. The latter mechanism has never been clarified.

One need not postulate that the same enzyme was catalyzing both an inversion and a group transfer at the same time if the UDPGlcUA was of the β -oside configuration to begin with. Such a compound, uridine diphosphate β -glucuronic acid (β -UDPGlcUA), has so far not been isolated from natural sources but has been synthesized² and was found in a preliminary experiment to be unsatisfactory as a glucuronyl donor using a microsomal suspension and p-nitrophenol as the acceptor.

On the other hand, β -UDPGlcUA could be a substrate for β -glucuronidase and would then serve as a glucuronyl donor in a transfer reaction.

In order to examine these possibilities, it was first necessary to prepare β -UDPGlcUA of high purity, to characterize it, to devise conditions for separating it from uridine diphosphate α -glucuronic acid (α -UDPGlcUA) and to carry out hydrolytic reactions with β -glucuronidase. This paper describes the results of these experiments.

Materials. Starting materials for the synthesis of β -UDPGlcUA included 1,3dicyclohexyl guanidinium uridine 5'-phosphoramidate (graciously supplied by Takeda Chemical Industries, Osaka, Japan) and the triethyl ammonium salt of β -glucuronic acid 1-phosphate (β -GlcUA-1-P) prepared in this laboratory, α -UDPGlcUA, UDP, UMP used as standards were obtained from Sigma Chemical Co., U.S.A. Silica gel (F₂₅₄, 10 cm \times 20 cm) plates used for thin-layer chromatography were supplied by E. Merck, Germany. Other reagents were obtained from commercial sources and were of reagent grade.

Mouse urinary β -glucuronidase purified according to PETTENGILL AND FISHMAN⁴ of specific activity 50000, was the enzyme source.

Synthesis of β -UDPGlcUA. The method of HONJO et al.², was employed to synthesize the β -UDPGlcUA with modifications. Thus, I g of the cyclohexylamine salt of β -GlcUA-I-P^{5,6} was converted to its triethylammonium salt and I,3-dicyclohexyl guanidinium uridine 5'-phosphoramidate (I.6 g) in pyridine (200 ml) was added to it. The pyridine mixture was incubated at 37° for 8 days with occasional stirring. Product formation was checked periodically on thin-layer chromatographic plates with an aliquot of the reaction mixture by developing them in the solvent 0.5 M ammonium acetate buffer (pH 3.8) – ethanol (2:5, v/v) with α -UDPGlcUA as standard. The spots

Abbreviations: β -GlcUA-1-P, β -glucuronic acid 1-phosphate; α -UDPGlcUA, uridine diphosphate α -glucuronic acid; β -UDPGlcUA, uridine diphosphate β -glucuronic acid.

were identified under ultraviolet light and developed with a conc. H_2SO_4 -ethanol (1:1, v/v) spray with heating. To enhance the purity of β -UDPGlcUA the product was passed through a second charcoal column and the fractions of β -UDPGlcUA were pooled, evaporated to dryness at 20°, redissolved in small amounts of water, and analysed.

Observations. The R_F values obtained in descending paper chromatography and thin-layer chromatographic plates are presented in Table I which shows that there is a good separation of the uridine phosphates and 1,3-dicyclohexyl guanidinium uridine 5'-phosphoramidate which are the probable impurities of the synthesized β -UDPGlcUA. However, thin-layer chromatography and not paper chromatography was able to separate α -UDPGlcUA and β -UDPGlcUA.

TABLE I

 R_F values for β -UDPGlcUA, α -UDPGlcUA and their precursors

Solvent for paper chromatography: ammonium acetate-ethanol $(3:7.5, v/v)^6$, 8 h. Solvent for thin-layer chromatography: 0.5 M ammonium acetate buffer (pH 3.8)-ethanol (2:5, v/v).

Compound	R _F values			
	Paper chromatography	Thin-layer chromatography		
UMP	0.31	0.35		
UDP	0.40	0.06		
α -UDPGlcUA	0.28	0.10		
β -UDPGlcUA	0.30	0.25		
UMP-NH ₂ *	0.45	0.50		

* 1,3-dicyclohexyl guanidinium uridine 5'-phosphoramidate.

The uridine absorption in ultraviolet light was compared with the standard α -UDPGlcUA in solution at pH 1.0 (1 M HCl) and was read in a DU-spectrophotometer from 248 to 280 nm. The products were also developed and compared by descending paper chromatography with the solvent ammonium acetate-ethanol (3:7.5, v/v)² with the standards of α -UDPGlcUA, UDP, 1,3-dicyclohexyl guanidinium uridine 5'-phosphoramidate, UMP.

Conditions for β -UDPGlcUA as substrate for β -glucuronidase (Table II). The enzyme used was purified mouse urinary β -glucuronidase⁴. The substrates were standard α -UDPGlcUA and synthesized β -UDPGlcUA in 0.2 M acetate buffer (pH 4.5), saccharolactone (0.67 mM) was used as an inhibitor. The reaction mixture was incubated at 37° for 24 h, chilled to stop the reaction and the FISHMAN AND GREEN⁷ method was applied directly.

The FISHMAN AND GREEN⁷ test for bound glucuronic acid of the synthesized compound recovers the amount of glucuronic acid expected from the companion measurements of the ultraviolet absorption at 260 nm, made on β -UDPGlcUA.

The results of hydrolysis of β -UDPGlcUA was presented in Table II which shows that β -UDPGlcUA is a substrate for β -glucuronidase since 12 out of 13 μ g of its glucuronic acid were liberated in the enzyme digest. Saccharolactone inhibited hydrolysis by 75 %. On the other hand, no glucuronic acid was released from α -UDPGlcUA by β -glucuronidase. The ultraviolet absorption spectra of β -UDPGlcUA at 262 nm is indistinguishable from that of α -UDPGlcUA. It has been found (Table I) that β -UDPGlcUA travels close to α -UDPGlcUA on paper but can be separated from it by thin-layer chromatography. The above results indicate that the β -UDPGlcUA synthesized was sufficiently pure to be used as a substrate for β -glucuronidase. Indeed, it is a valid substrate (Table II) for β -glucuronidase which was also verified by the well known saccharolactone inhibition of β -glucuronidase.

TABLE II

Test substrate	Enzyme	Substrate	Saccharo- lactone	Glucuronic acid in the incubation mixture (µg)		
				Total	Bound	Free
α-UDPGlcUA	+	+		10.0	10.0	0.0
	—	+		10.0	10.0	0.0
	+	+	+	10.0	10.0	0.0
	+	-	-	0.0	0.0	0.0
β-UDPGlcUA	+	+	_	13.0	1.0	12.0
	<u> </u>	÷	_	13.0	13.0	0.0
	+	+	+	13.0	10.0	3.0
	+	-		0.0	0.0	0.0

One wonders whether β -UDPGlcUA may be a constituent of normal mammalian cells. In this regard, attention may be directed to the endogenous glucuronide synthesis of homogenates⁸ unrelated to UDPGlcUA glucuronyltransferase as a likely location of β -UDPGlcUA.

This study was aided in part by U.S. Public Health Service Research Career Award No. 5-K6-CA-18, 453-05 to William H. Fishman.

Department of Pathology (Oncology),		Indrajit Das
Tufts University School of		Mark A. Wentworth
Medicine and the Cancer Research Department,		Hiroyuki Ide
New England Medical Center Hospitals,		Hsien Gieh Sie
30 Bennet Street, Boston, Mass. 02 111 (U.S.A.)		William H. Fishman*

I G. J. DUTTON, Glucuronic Acid Free and Combined, Academic Press, New York, 1966, p. 216.

2 M. HONJO, Y. FURUKAWA, K. IMAI, H. MORIYAMA AND K. TANAKA, Chem. Pharm. Bull. Tokyo, 10 (1962) 225.

- 3 W. H. FISHMAN, in D. GLICK, Methods of Biochemical Analysis, Vol. 15, Interscience, New York, 1967, p. 82.
- 4 O. S. PETTENGILL AND W. H. FISHMAN, J. Biol. Chem., 237 (1962) 24.
- 5 O. TOUSTER AND V. H. REYNOLDS, J. Biol. Chem., 197 (1952) 863.
- 6 E. W. PUTMAN AND W. Z. HASSID, J. Am. Chem. Soc., 79 (1957) 5057.
- 7 W. H. FISHMAN AND S. GREEN, J. Biol. Chem., 225 (1957) 435.
- 8 G. J. DUTTON, Glucuronic Acid Free and Combined, Academic Press, New York, 1966, p. 195.

Received September 8th, 1969

* To whom reprint requests should be addressed.