Radical Cations of some Low-potential Viologen Compounds

Reduction Potentials and Electron-transfer Reactions

BY ROBERT F. ANDERSON* AND KANTILAL B. PATEL

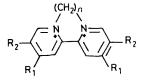
Cancer Research Campaign, Gray Laboratory, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN

Received 28th November, 1983

The one-electron reduction potentials (E^1) of certain pyrazinediium, diazepinediium and diazocinediium viologen compounds substituted with methyl groups, V^{2+} , have been determined from the position of the one-electron transfer equilibria with reference compounds using pulse radiolysis. E^1 ranges from -491 ± 6 mV (vs NHE) for 6,7-dihydro-2,11-dimethyldipyrido-[1,2-a:2',1'-c]pyrazinediium dibromide (V21²⁺) to -832 ± 11 mV for 6,7,8,9-tetrahydro-2,3,12,13-tetramethyldipyrido[1,2-a:2',1'-c][1,4]diazocinediium dibromide (V42²⁺).

The rates of reduction by e_{aq}^- were found to be independent of E^1 whereas the rates of electron transfer from CO_2^- and $(CH_3)_2$ COH species do show a dependence on E^1 for V^{2+} compounds of lowest E^1 . Marcus-type treatment of the rate-constant data yields a rate constant of electron exchange between propan-2-oxyl radicals and acetone in the range $(2-6) \times 10^6$ dm³ mol⁻¹ s⁻¹ and between the radical cation of 6,7-dihydro-2,3,10,11-tetramethyldipyrido[1,2-a:2',1'-c]-pyrazinediium dibromide (V22⁺⁺) and its unreduced form (V22²⁺) of 5×10^7 dm³ mol⁻¹ s⁻¹.

Since the discovery of the first viologen-type herbicide, diquat (6,7-dihydrodipyrido-[1,2-a:2'1'-c]pyrazinediium dibromide),¹ much interest has been shown in this class of compound. The electrochemistry of the related 1,1'-disubstituted 4,4'-bipyridinium compounds had been known for some time in that stable highly coloured radical cations are formed upon one-electron reduction.² The correlation between the reduction potential of both classes of viologen compounds and the degree of herbicidal action has been made.^{3,4} This early work promoted the use of diquat, methyl viologen (1,1'-dimethyl-4,4'-bipyridinium dichloride) and benzyl viologen (1,1'-dibenzyl-4,4'-bypyridinium dichloride) as redox indicators. Recent work has shown that viologen compounds can be used as electron-transfer agents in the photoreduction of water.⁵


The pulse-radiolysis method of measuring equilibrium constants (K^1) of free-radical electron-transfer reactions^{6, 7}

$$S^{-} + R \rightleftharpoons S + R^{-} \tag{1}$$

has been extended to measure one-electron reduction potentials (E^1) of compounds (S) using redox indicators (R) of known potential.^{8,9} Recently low-potential viologen compounds (V^{2+}) have been used to determine the low-lying E^1 of the NAD⁺/NAD⁺ couple^{10,11} and also E^1 of the cancer chemotherapeutic acridine, amsacrine.¹² Full details of the radical spectra (V^{++}) of the V^{2+} compounds, their E^1 determinations and rates of electron transfer have not been published and are included in this study.

EXPERIMENTAL

All V^{2+} compounds were prepared from their 2,2'-dipyrido precursors as dibromide salts by the general quaternisation procedure of Homer and Tomlinson,¹³ but using 1,2-dichlorobenzene as the solvent.¹⁴ 2,2'-Dipyridine,¹⁵ 5,5'-dimethyl-2,2'-dipyridine¹⁶ and 4,4',5,5'-tetramethyl-2,2'-dipyridine were prepared by the action of Rayney nickel on pyridine, 4-methylpyridine and 4,5-dimethylpyridine, respectively. Pure salts were obtained following several recrystallizations from aqueous methanol + acetone. The prepared compounds are designated Vxy^{2+} where x is the number of methylene groups bridging the pyridine rings and y is the number of methyl groups substituted on each pyridine ring (see table 1). The general structure is shown below.

6,7-Dihydro-2,11-dimethyldipyrido[1,2-*a*:2',1'-*c*]pyrazinediium dibromide (V21²⁺), 7,8dihydro-2,12-dimethyl-6*H*-dipyrido[1,2-*a*:2',1'-*c*][1,4]diazepinediium dibromide (V31²⁺) and 6,7,8,9-tetrahydro-2,13-dimethyldipyrido[1,2-*a*:2',1'-*c*] [1,4]diazocinediium dibromide (V41²⁺) were prepared by the method of ref. (14). 6,7-Dihydro-2,3,10,11-tetramethyldipyrido-[1,2-*a*:2',1'-*c*]pyrazinediium dibromide (V22²⁺): m.p. 281 °C; elementary analysis 6.8% N (calc. 6.4%); C₁₆H₂₀N₂Br₂·H₂O, λ_{max} (H₂O) = 252 and 316 nm (ε = 12150 and 24600). 7,8-Dihydro-2,3,11,12-tetramethyl-6*H*-dipyrido[1,2-*a*:2',1'-*c*][1,4]diazepinediium dibromide (V32²⁺) was prepared by the method of ref. (17). 6,7,8,9-Tetrahydro-2,3,12,13-tetramethyldipyrido[1,2-*a*:2',1'-*c*][1,4]diazocinediium dibromide (V42²⁺): m.p. > 300 °C; elementary analysis 6.4% N (calc. 6.0%); C₁₈H₂₄N₂Br₂·H₂O, λ_{max} (H₂O) = 281 nm (ε = 13200).

1-(2-Hydroxy-3-methoxypropyl)-2-methyl-4-nitroimidazole (AM-1) was donated by Dr A. Michalowski, Instytut Onkologii, Warsaw, Poland; 1-methylnicotinamide (MN^+) was obtained from Sigma and all other reagents used were of AnalaR grade.

Details of both the Linac¹⁸ and Van de Graaff¹⁹ accelerator pulse-radiolysis and radicaldetection systems have been published. Dosimetry was carried out using aerated KSCN solution assuming the $(SCN)_2^{-}$ radical produced had a radiation chemical yield, G, of 0.29 μ mol J⁻¹ with a molar absorptivity, ε , of 7600 dm³ mol⁻¹ cm⁻¹ at 480 nm.²⁰ Radical absorption spectra are presented as the product of the radiation chemical yield, G, and the molar absorptivity.

Pulse radiolysis [ca. 0.3 Gy(J kg⁻¹) in 0.05–0.2 μ s] was carried out in oxygen-free distilled water which was purified by a Milli-Q system (Millipore Inc.) and adjusted to pH 7.0 using phosphate buffers (2 mmol dm⁻³). The oxidizing radical species formed on the radiolysis of water

$$H_2O \longleftarrow e_{ad}^-, OH, H^+, H_2O_2, H_2, H_3O^+$$
 (2)

were either scavenged by added 2-methylpropan-2-ol $(0.2 \text{ mol } dm^{-3})$ to form a radical that does not undergo electron transfer

$$:OH(H:) + (CH_3)_3COH \rightarrow :CH_2(CH_3)_2COH + H_2O(H_2)$$
(3)

or converted into the reducing species CO_2^{-} and $(CH_3)_2$ COH by their reaction with added sodium formate (0.1 mol dm⁻³) or propan-2-ol (0.2 mol dm⁻³):

$$^{\circ}OH(H^{\circ}) + HCOO^{-} \rightarrow CO_{2}^{\circ-} + H_{2}O(H_{2})$$
(4)

$$OH(H^{\cdot}) + (CH_3)_2 CHOH \rightarrow (CH_3)_2 \dot{C}OH + H_2O(H_2).$$
(5)

The reactions of CO_2^- and $(CH_3)_2\dot{C}OH$ species were studied in saturated solutions of N_2O , which effectively converts e_{aq}^- into CO_2^- and $(CH_3)_2\dot{C}OH$ species through

$$N_2O + e_{aq}^- \rightarrow OH + N_2 + OH^-$$
(6)

followed by reaction (4) or (5).

R. F. ANDERSON AND K. B. PATEL

Choosing suitable concentrations of V^{2+} and R ensures that the reducing species are scavenged quickly enough to enable the establishment of equilibrium (1) to be studied. At constant radiation dose $(G\varepsilon)_{obs}$ is proportional to the optical density observed when both S⁻ and R⁻ are present at equilibrium and is proportional to the optical density of solutions containing only S or R, $(G\varepsilon)_{S^-}$ and $(G\varepsilon)_{R^-}$, by

$$K^{1} = \frac{[\mathbf{R}^{\cdot-}][\mathbf{S}]}{[\mathbf{S}^{\cdot-}][\mathbf{R}]} = \left(\frac{(G\varepsilon)_{obs} - (G\varepsilon)_{\mathbf{S}^{\cdot-}}}{(G\varepsilon)_{\mathbf{R}^{\cdot-}} - (G\varepsilon)_{obs}}\right) \frac{[\mathbf{S}]}{[\mathbf{R}]}.$$
(7)

The position of equilibrium (1) will be influenced by the ionic strength (I) of the solution if either both reductants or products are charged.²¹ The difference in one-electron reduction potential, ΔE^{1} , between two redox compounds is given by

$$\Delta E^{1} = (\mathbf{R}T/n\mathbf{F}) \ln (K^{1}f_{r}) = 59(\log K^{1} + \log f_{r})$$
(8)

at T = 295 K, where f_r is the activity-coefficient ratio. The activity of individual ions cannot be determined, but the mean activity coefficient, f_{\pm} , of ions of charge z_1 and z_2 in a fully dissociated aqueous electrolyte can be estimated using the Debye-Hückel formulation:²²

$$\log f_{+} = -0.507 |z_{1}z_{2}| I^{1/2} (1 + 3.28a_{1}I^{1/2})^{-1}$$
(9)

where a_i is the ion-size parameter (taken as 0.5 nm).

RESULTS

RADICAL SPECTRA AND ONE-ELECTRON REDUCTION RATES OF THE V^{2+} compounds

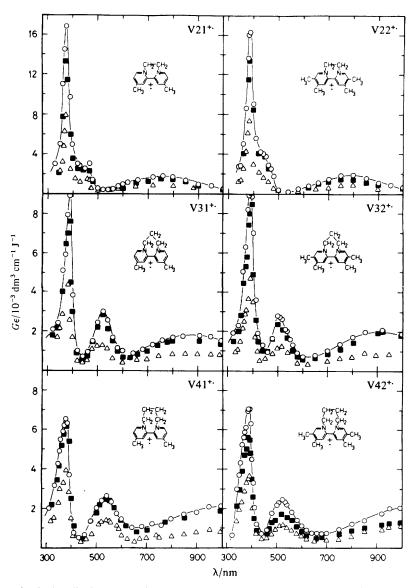
All of the V²⁺ compounds scavenged e_{aq}^- , CO_2^{--} and $(CH_3)_2$ COH species to form radical spectra which were measured a few microseconds after the pulse see (fig. 1):

$$\mathbf{e}_{\mathbf{aq}}^{-} + \mathbf{V}^{2+} \to \mathbf{V}^{*+} \tag{10}$$

$$\mathrm{CO}_{2}^{*-} + \mathrm{V}^{2+} \to \mathrm{V}^{*+} + \mathrm{CO}_{2} \tag{11}$$

$$(CH_3)_2COH + V^{2+} \rightarrow V^{+} + (CH_3)_2CO + H^+.$$
 (12)

The concentration of $V^{2+}(0.25 \text{ mmol dm}^{-3})$ and the small dose size (ca. 0.3 Gy) were used to minimise any dimerisation through


$$\mathbf{V}^{+} + \mathbf{V}^{+} \rightleftharpoons \mathbf{V}_2^{2+}.\tag{13}$$

Similar radical absorption bands were produced by all 3 reductants upon their reaction with each V²⁺ compound. The positions of the absorption bands of the methyl-substituted radical cations, V⁺⁺, are similar to those of the non-methyl-substituted V⁺⁺ reported earlier.^{23, 24} At any given wavelength the measured $G\varepsilon$ following reduction by CO₂⁻⁻ is slightly more than double that arising from reduction by e_{aq}, as the yield of 'OH radicals which escape the radiation spur is increased in N₂O-saturated solution and H⁺ atoms contribute to the formation of CO₂⁻⁻ by reaction (4). Electron transfer from (CH₃)₂COH to the V²⁺ compounds gave G ε values slightly lower than for CO₂⁻⁻, except for V42⁺⁺ where all absorption bands are markedly smaller.

The rates of e_{aq}^- scavenging and electron transfer from CO_2^{--} and $(CH_3)_2\dot{C}OH$ to the V²⁺ compounds were determined from the first-order kinetic build-up of the absorption band centred near 380 nm as a function of [V²⁺]. Typically triplicate determinations for each of 3 concentrations [20-60 μ mol dm⁻³ for e_{aq}^- rate; 30-90 μ mol dm⁻³ for the CO₂⁻ and (CH₃)₂COH transfer rates] were made. The rate constants are presented in table 1.

2695

Published on 01 January 1984. Downloaded by University of Michigan Library on 30/10/2014 15:19:05

Fig. 1. Optical radical spectra of the viologens produced by pulse radiolysis (0.3 Gy in 0.1 μ s) of the viologens (0.25 mmol dm⁻³) in oxygen-free solutions containing: \bigcirc , sodium formate (0.1 mol dm⁻³) and N₂O (25 mmol dm⁻³) measured after *ca.* 10 μ s; \blacksquare , propan-2-ol (0.2 mol dm⁻³) and N₂O (25 mmol dm⁻³) measured after *ca.* 50 μ s; \triangle , 2-methylpropan-2-ol (0.2 mol dm⁻³) measured after *ca.* 2 μ s.

ONE-ELECTRON REDUCTION POTENTIALS OF THE REFERENCE COMPOUNDS

The E^1 of the V²⁺ compounds were determined relative to V30²⁺ (triquat) as the reference standard. The E^1 of V30²⁺ has been well established by voltammetry^{4, 13, 25} and we take $E^1 = -548 \pm 5 \text{ mV}$ as the mean of these values. Because of the exceptionally low potential of the V²⁺ compounds two intermediary low-potential

16
2
<u> </u>
30/10/2014 15:19:
<u> </u>
4.1
_
4
<u> </u>
0
2
\geq
$\underline{\circ}$
\sim
Ó
n 30
_
=
0
>
- 11
22
<u> </u>
y of Michigan Lib
-
H
50
·=
P.
<u> </u>
9
2
÷
5
- 1
2
- G
5
- 1
.=
\mathbf{r}
y Univ
~
5
Ð
ъ
3
0
7
2
•
Ð.
4
òò
6
1
~
8
- 3 -
8
5
5
-
0
~
-
ō
io p
o pa
hed or
shed or
lished or
blished or
ublished or
Published or

	structure	re (see p. 2694)	694)							
designation	n R	R	R ₂	E^1/mV^a	$k_{10}/10^{10} \mathrm{dm^3}$	$k_{10}/10^{10} \mathrm{dm^3\ mol^{-1}\ s^{-1b}\ } k_{11}/10^9 \mathrm{dm^3\ mol^{-1}\ s^{-1b}}$	₁₁ /10 ⁹ dm ³	3 mol ⁻¹ s ⁻¹		$k_{12}/10^9 \mathrm{dm^3 \ mol^{-1} \ s^{-1b}}$
$V20^{2+}$	2	H	Н	-356±5°	5.04	pl	12°	9.	7	0.1
V21 ²⁺ V30 ²⁺	n n	CH ₃	н	491 ± 6 548 ± 57	5.0	d.	11	e	ι ν (*	2.8 2.0
$V22^{2+}$	n 14	CH,	CH.	-613+5	5.5		6		, (1	9.
$V40^{2+}$	3	, H	Η	-635 ± 5^{g}	5.5	<i>p</i>	5	9e	(*)	0.1
$V31^{2+}$	ŝ	CH ₃	Н	-690 ± 6	5.5		41	5.8	(f)	3.2
V41 ²⁺	4	CH ₃	Н	-740 ± 6	5.0	_	4	4.2	C	.55
$V32^{2+}$	e	CH ₃	CH ₃	-777 ± 6	5.5		ç	6.3	0	.90
V42 ²⁺	4	CH ₃	CH ₃	-832 ± 11	5.0	-	ч	1.2	0	.17
^a Data from table 3. ^g ref. (4) and (23). Table 3. Equilibri	table 3;). ŝquilibriu:	^b error < 10% ; m data (K) and o	(0%; ^c ref. (3); and one-electron	 a revised f revised f revised p 	ta from table 3; ^b error < 10%; ^e ref. (3); ^d revised from ref. (23); ^e in agreement with ref. (24); ^f ref. (4), (13) and (23). and (23). Table 3. Equilibrium data (K) and one-electron reduction potentials (E^1) of V ²⁺ compounds relative to reference compounds (R)	e in agreem V ²⁺ compour	ent with nds relativ	ref. (24); e to refer	f ref. (4), (ence compour	e in agreement with ref. (24); f ref. (4), (13) and (25); $^\circ$ V2 ⁺ compounds relative to reference compounds (R)
			AM-1 ^a			$V22^{2+a}$			$E^1(\mathrm{V}^{2+}/\mathrm{V})$	$E^{1}(V^{2+}/V^{+})/mV$
reference, K , V^{2+} compound		K^b	$59 \log f_{\rm r}^c$	$\Delta E/\mathrm{mV}$	K	$\Delta E/\mathrm{mV}$	k_1^{d}	k_{-1}^{e}	vs AM-1	<i>vs</i> V22 ²⁺
V21 ²⁺ V22 ²⁺ V31 ²⁺ V32 ²⁺ V41 ²⁺ V42 ²⁺	0.05 5.1 3.42 43	$\begin{array}{c} 0.032 \pm 0.003\\ 5.72 \pm 0.74\\ 1.50 \pm 16\\ 3400 \pm 300\\ 432 \pm 19\end{array}$		-96 ± 2 45 ± 3 128 ± 3 208 ± 3 155 ± 3 	$ \begin{array}{c}$	$\begin{array}{c} & - \\ & 71 \pm 1 \\ 165 \pm 2 \\ 132 \pm 3 \\ 219 \pm 8 \end{array}$	2.4 6.0 6.3	15 1.0 1.6 0.13	$ \begin{array}{r} -491 \pm 6 \\ -618 \pm 6 \\ -695 \pm 6 \\ -775 \pm 6 \\ -735 \pm 6 \\ -73$	

R. F. ANDERSON AND K. B. PATEL

^{*a*} $E^{T}(AM-1/AM-1^{--}) = -583 \pm 5 \text{ mV}$; $E^{T}(V22^{2+}/V22^{++}) = -613 \pm 5 \text{ mV}$ (see table 2); ^{*b*} observed equilibrium constant; ^{*c*} calculated using eqn (9); ^{*d*} units 10⁸ dm³ mol⁻¹ s⁻¹; ^{*e*} units 10⁶ dm³ mol⁻¹ s⁻¹. FAR 1

88

View Article Online

2697

2698 RADICAL CATIONS OF SOME LOW-POTENTIAL VIOLOGEN COMPOUNDS

$R^{-} + V30^{2+} \rightleftharpoons R + V30^{+}$								
reference, R	K ^b	$\Delta E/\mathrm{mV}$	59 $\log f_{\rm r}^{\ c}/{\rm mV}$	$E^{1}(\mathbf{R}/\mathbf{R})/\mathrm{mV}$				
AM-1 V22 ²⁺	$2.75 \pm 0.13 \\ 12.40 \pm 0.32$	25 ± 1 65 ± 1	10 0	$-583\pm 5\\-613\pm 5$				

Table 2. Equilibrium data (K^1) and one-electron reduction potentials (E^1) of reference compounds (R) relative to $V30^{2+}$ (triquat)^{*a*}

^{*a*} E^1 (V30²⁺/V30⁺) taken as -548 ± 5 mV, ref. (4), (13) and (25); ^{*b*} observed equilibrium constant; ^{*c*} calculated using eqn (9).

compounds (AM-1 and V22²⁺) were used as reference compounds. The use of V22²⁺ to establish equilibria with lower-potential V²⁺ compounds was possible by making use of the radical absorption band centred near 530 nm seen for the propano- and butano-bridged V²⁺ compounds which is shifted to lower wavelengths in the ethano-bridged V²⁺ compounds (see fig. 1). Possible errors in the application of eqn (9) are avoided when V22²⁺ is used to determine K^1 values as the forward and reverse reactions [equilibrium (1)] are symmetric in charge.

Equilibria between V30²⁺ (100–600 μ mol dm⁻³) and both AM-1 (0.5–1.0 mmol dm⁻³) and V22²⁺ (0.75–1.5 mmol dm⁻³) in solutions containing propan-2-ol (0.2 mol dm⁻³) was observed at 530 nm. The data obtained from 5 mixtures of each pair of solutions (I < 0.012) together with the determined E^1 values are presented in table 2.

ONE-ELECTRON REDUCTION POTENTIALS OF V^{2+} compounds

The E^1 of all V²⁺ compounds were determined against AM-1 and/or V22²⁺. The V⁺⁺, AM-1⁻⁻ and V22⁺⁺ species were produced in solutions containing propan-2-ol, except for V42⁺⁺ where 2-methylpropan-2-ol was used.

Four mixtures of both V²⁺ (50–100 μ mol dm⁻³) + AM-1 (2.5–5.0 mmol dm⁻³) and V22²⁺ (100–300 μ mol dm⁻³) + AM-1 (50–100 μ mol dm⁻³) were used to study the position of equilibrium (1). Measurements were made at 400 nm within a few tens of microseconds of the pulse where V21⁺⁺ and V22⁺⁺ absorb and AM-1⁻⁻ does so only minimally.

Two sets of equilibria between V31²⁺, V32²⁺ and V41²⁺ with both AM-1 and V22²⁺ were established. In all cases [V31²⁺], [V32²⁺] and [V41²⁺] were in excess of [AM-1] and [V22²⁺]. Measurements were made at 530 nm in every case of 4 mixtures of AM-1 (15-80 μ mol dm⁻³) + V²⁺ (1-4 mmol dm⁻³) within 200 μ s of the pulse.

Equilibria between four mixtures of $V42^{2+}$ (1-5 mmol dm⁻³)+ $V22^{2+}$ (10-25 μ mol dm⁻³) were also observed some 250 μ s after the pulse.

The rate of approach to equilibrium was also studied. Since in every case $[V^{+}]$, $[V22^{+}] < [V^{2+}]$, $[V22^{2+}]$ the first-order rate constant for the approach to equilibrium (1), k_{obs} , is given by

$$k_{\rm obs}/s^{-1} = k_1[V22^{2+}] + k_{-1}[V^{2+}].$$
 (14)

Plots of $k_{obs}/[V^{2+}]$ against $[V22^{2+}]/[V^{2+}]$ yield k_1 from the slope and k_{-1} from the intercept. These rate constants are presented in tables 2 and 3.

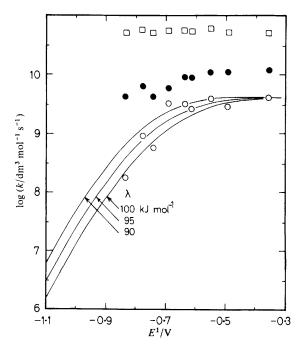
2699

band I		band II		band III		
radical species	λ_{\max}/nm	ϵ /dm ³ mol ⁻¹ cm ⁻¹	λ_{\max}/nm	ℓ /dm ³ mol ⁻¹ cm ⁻¹	λ_{\max}/nm	<i>د</i> /dm³ mol ⁻¹ cm ⁻¹
V21.+	380	26250	450 ^b	5000	790	3125
V22·+	390	25000	450 ^b	4700	790	3125
V31 ⁺⁺	380	13900	520	4400	900	3000
V32*+	390	13900	520	4200	900	3125
V41 ⁺⁺	380	10625	540	3750	990	3275
V42*+	390	10625	535	3750	990	3275

Table 4. Absorption bands and extinction coefficient^a of one-electron reduced methyl-
substituted viologens (V^{*+}) .

^{*a*} Calculated from fig. 1 assuming $G(CO_2^{\cdot-}) = 0.66 \ \mu \text{mol J}^{-1}$; ^{*b*} shoulder.

ONE-ELECTRON REDUCTION POTENTIAL OF 1-METHYLNICOTINAMIDE (MN^+)


In a previous study V41²⁺ was used as the reference standard to determine E^1 for the NAD⁺/NAD[•] and MN⁺/MN[•] couples.¹⁰ These potentials were checked using the lower-potential compound V42²⁺ where K^1 should be smaller. Whereas a mixture of NAD⁺ (5 mmol dm⁻³) + V42²⁺ (35 μ mol dm⁻³) gave an expected $K^1 = 23$ [$\Delta E^1 = 80$ mV and on correction $E^1(NAD^+/NAD^*) = -0.92$ V] a similar mixture of MN⁺ + V42²⁺ gave a much greater K^1 . Furthermore no equilibrium could be obtained with mixtures of MN⁺ + V32²⁺.

Equilibria between 4 mixtures of MN⁺ (15 mmol dm⁻³) + V42²⁺ (25–40 μ mol dm⁻³) were observed some 30 μ s after the pulse. Measurements yielded $K^1 = 800 \pm 60$ and after correction $E^1(MN^+/MN^*) = -1.01 \pm 0.01$ V. In these experiments 2-methyl-propan-2-ol was used and not propan-2-ol as in the previous work. The use of 2-methylpropan-2-ol resulted in a smaller conversion into V42⁺⁺ at equilibrium than with propan-2-ol and hence the necessary correction to the low [V42²⁺] in the calculation of K^1 and in the determination of the rates of electron transfer (see above) is kept to a minimum. These experiments caution against the use of propan-2-ol in experiments with very-low-potential compounds where slow rates of electron transfer might give rise to a false equilibrium being measured.

DISCUSSION

The radical spectra of all the methyl-substituted viologens (V⁺⁺) show similar features to the radical spectra of unsubstituted viologens^{23, 24} in having 3 absorption bands: I(380–390 nm), II(450–535 nm) and III(790–990 nm) (see table 4). Only band I decreases in intensity upon increasing length of the methylene bridge. This effect might be related to a progressive loss in the probability of transition with departure from coplanarity. Methyl substitution slightly decreases the intensity of band I by *ca*. 10–15% [*cf.* ref. (23) and (24)] but the position of this band and the position and intensities of bands II and III are unaffected.

The measured E^1 value for V21²⁺ agrees well with the original value obtained by potentiometric titration¹³ and also with a recent value obtained by cyclic voltammetry.²⁶ A range of E^1 values for V31²⁺ has been published²⁷ but our value agrees with the

Fig. 2. Dependence of the rate constants of e_{aq}^- scavenging, \Box , and electron transfer from $(CH_3)_2$ COH, \bigcirc , and CO_2^{--} , \bigoplus , to V^{2+} compounds on $E^1(V^{2+}/V^{++})$. The lines are calculated using the equations of Marcus as described in the text for the free-energy dependence of electron transfer from $(CH_3)_2$ COH.

recent measurements²⁶ whereas our value of E^1 for V41²⁺ is 40 mV higher. A recent value for V32²⁺ determined in acetonitrile and corrected to the aqueous phase¹⁷ is also in agreement with our direct measurements.

According to the Marcus theory²⁸ an observed rate constant, k_{obs} , can be related to the diffusion-controlled rate constant, k_{diff} , and the activation controlled rate constant, k_{act} , by

$$k_{\rm obs} = k_{\rm diff} k_{\rm act} / (k_{\rm act} + k_{\rm diff}).$$
(15)

The invariance of $k_{10}(e_{aq}^- + V^{2+})$ with E^1 is understood by $k_{obs} \approx k_{diff}$ when $k_{act} \gg k_{diff}$. The rate constants for electron transfer from CO_2^{-} and $(CH_3)_2COH$ to V^{2+} compounds are constant for V^{2+} compounds possessing $E^1 > ca$. -0.6 and -0.7 V, respectively, and can be taken as their k_{diff} . At lower potentials k_{obs} decreases with decreasing E^1 of the V^{2+} compounds (see table 1 and fig. 2).

The data for $k_{12}[(CH_3)_2COH + V^{2+}]$ vs $E^{1}(V^{2+}/V^{*+})$ can be fitted to the Marcus theory, which describes k_{act} as

$$k_{\rm act} = Z \exp\left(-\Delta G^*/RT\right) \tag{16}$$

where the free energy of activation, ΔG^* , when one of the reactants and products are uncharged, is related to the reorientation parameter, λ , and the standard free energy of the reaction, ΔG^{\ominus} , by

$$\Delta G^* = (\lambda/4) (1 + \Delta G^{\ominus} \lambda)^2. \tag{17}$$

2701

Several reports have substantiated this theoretical relationship which predicts a parabolic relationship between $\log k_{\rm obs}$ and ΔG^{\ominus} , or near linear over a limited range in ΔG^{\ominus} .^{29, 30}

 ΔG^{\ominus} values for the electron transfer from propan-2-oxyl radicals to V²⁺ compounds can be calculated from the ΔE^1 between $E^1[(CH_3)_2CO/(CH_3)_2\dot{C}OH]$ and $E^1(V^{2+}/V^{+})$ since $\Delta G^{\ominus} = nF\Delta E^1$. $E^1[(CH_3)_2CO/(CH_3)_2\dot{C}OH]$ is not known but is probably in the region of -1.2 to -1.0 V vs NHE.³¹ When $\Delta G^{\ominus} = 0$ the interpolated value of k is in the range $(2-6) \times 10^6$ dm³ mol⁻¹ s⁻¹ for $E^1[(CH_3)_2CO/(CH_3)_2\dot{C}OH] = -1.1$ V and $\lambda = 90-100$ kJ mol⁻¹, (see fig. 2). These rate constants are similar to the value of ca. 1.0×10^7 dm³ mol⁻¹ s⁻¹ found by e.s.r. for electron exchange between the propan-2-oxyl radical anion [(CH₃)₂CO⁻] and acetone in basic solution.²⁹

The rate constants for the forward and reverse electron-transfer reactions between the V22²⁺/V22⁺⁺ couple and other V²⁺/V⁺⁺ couples can also be plotted against the ΔG^{\ominus} of the reaction to yield the rate constant for electron exchange between V22⁺⁺ and V22²⁺ as 5×10^7 dm³ mol⁻¹ s⁻¹, (when $\Delta G^{\ominus} = 0$) (see fig. 3). This rate constant is the same as that predicted and found for many electron-exchange reactions of organic systems occurring in aqueous solution²⁹ and has been assumed in the free-energy correlation for catalysis of outer-sphere electron-transfer reactions by non-coordinated pyridine derivatives.³²

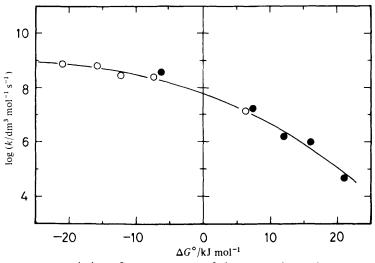


Fig. 3. Free-energy correlation of rate constants of electron exchange between one-electron reduced forms of V22²⁺ and other V²⁺ compounds. ○, Forward reaction and ●, reverse reaction of equilibrium (1).

The use of low-potential V²⁺ compounds and MN⁺ as reference standards may enable the possible influence of E^1 in structure–activity relationships³³ to be investigated for compounds of low electron affinity. Preliminary investigations show that certain uncouplers of oxidative phosphorylation have E^1 values in the now accessible range.³⁴

Also it has been found that the tetramethyl-substituted compound $V32^{2+}$ is much more resistant to hydrogenation than its unsubstituted derivative ($V30^{2+}$),¹⁷ but its E^1 value is lower than that required for optimum hydrogen formation when acting

2702 RADICAL CATIONS OF SOME LOW-POTENTIAL VIOLOGEN COMPOUNDS

as an electron-transfer agent. Our data suggest that compound $V22^{2+}$, which is also tetramethyl-substituted but possessing a higher E^1 than $V32^{2+}$, might well be a good candidate as a practical electron-transfer agent for the production of hydrogen.

This work was financially supported by The Cancer Research Campaign.

- ¹ R. C. Brian, R. F. Homer, J. Stubbs and R. L. Jones, Nature (London), 1958, 181, 446.
- ² L. Michaelis and E. S. Hill, J. Gen. Physiol., 1933, 16, 859.
- ³ R. F. Homer, G. C. Mees and T. E. Tomlinson, J. Sci. Food Agric., 1960, 11, 309.
- ⁴ J. Volke, Collect. Czech. Chem. Commun., 1968, 33, 3044.
- ⁵ A. Moradpour, E. Amouyal, P. Keller and H. Kagan, Nouv. J. Chim., 1978, 2, 547.
- ⁶ S. Arai and L. M. Dorfman, Adv. Chem. Ser., 1968, 82, 378.
- ⁷ K. B. Patel and R. L. Willson, J. Chem. Soc., Faraday Trans. 1, 1973, 69, 814.
- ⁸ D. Meisel and P. Neta, J. Am. Chem., 1975, 97, 5198.
- ⁹ D. Meisel and G. Czapski, J. Phys. Chem., 1975, 79, 1503.
- ¹⁰ R. F. Anderson, Biochim. Biophys. Acta, 1980, 590, 277.
- ¹¹ J. A. Farrington, E. J. Land and A. J. Swallow, *Biochim. Biophys. Acta*, 1980, 590, 273.
- ¹² R. F. Anderson, J. E. Packer and W. A. Denny, J. Chem. Soc., Perkin Trans. 2, 1984, 49.
- ¹³ R. F. Homer and T. E. Tomlinson, J. Chem. Soc., 1960, 2498.
- ¹⁴ T. McL. Spotswood and C. I. Tanzer, Aust. J. Chem., 1967, 20, 1213.
- ¹⁵ G. M. Badger and W. H. F. Sasse, J. Chem. Soc., 1956, 616.
- ¹⁶ W. H. F. Sasse and C. P. Whittle, J. Chem. Soc., 1961, 1347.
- ¹⁷ A. Launikonis, J. W. Loder, A. W-H. Man, W. H. F. Sasse, L. A. Summers and D. Wells, *Aust. J. Chem.*, 1982, **35**, 1341.
- ¹⁸ G. E. Adams, J. W. Boag and B. D. Michael, Trans. Faraday Soc., 1965, 61, 1674.
- ¹⁹ B. Vojnovic, Ph.D. Thesis (University of London, 1983).
- ²⁰ J. H. Baxendale, P. L. T. Bevan and D. A. Stott, Trans. Faraday Soc., 1968, 64, 2389.
- ²¹ P. Wardman and E. D. Clarke, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 1377.
- ²² R. A. Robinson and R. H. Stokes, *Electrolyte Solutions* (Butterworths, London, 2nd edn, 1959).
- ²³ R. F. Anderson, Ber. Bunsenges. Phys. Chem., 1976, 80, 969.
- ²⁴ J. A. Farrington, M. Ebert and E. J. Land, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 665.
- ²⁵ E. Steckhan and T. Kuwana, Ber. Bunsenges. Phys. Chem., 1974, 78, 253.
- ²⁶ E. Amouyal, B. Zidler, P. Keller and A. Moradpour, Chem. Phys. Lett., 1980, 74, 315.
- ²⁷ L. A. Summers, The Bipyridinium Herbicides (Academic Press, London, 1980).
- ²⁸ R. A. Marcus, J. Phys. Chem., 1954, 24, 966; 1957, 26, 867; 1965, 43, 3479.
- ²⁹ D. Meisel, Chem. Phys. Lett., 1975, 34, 263.
- ³⁰ D. Meisel and R. W. Fessenden, J. Am. Chem. Soc., 1976, **98**, 7505; P. Wardman and E. D. Clarke, Biochem. Biophys. Res. Commun., 1976, **69**, 942; P. O'Neill and T. C. Jenkins, J. Chem. Soc., Faraday Trans. 1, 1979, **75**, 1912.
- ³¹ J. Lilie, G. Beck and A. Henglein, Ber. Bunsenges. Phys. Chem., 1971, 75, 458.
- 32 Y-T. Fanchiang, Int. J. Chem. Kinet., 1982, 14, 1305.
- ³³ C. Hansch, in Drug Design, ed. E. J. Arien (Academic Press, New York, 1971).
- ³⁴ R. F. Anderson and K. B. Patel, unpublished data.

(PAPER 3/2114)