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Abstract: A 14-step synthesis of the central tetrahydrofuran portion 4
of the elfamycin antibiotic aurodox is described, starting from the D-
lyxose derivative 5. The key steps are template-directed intramolecular
C-glycosidation by cation-mediated cyclisation of thioglycoside 6, and
chelation-controlled addition of ethynylmagnesium bromide to
aldehyde 8.

As part of our programme to develop template-directed cyclisation
reactions for C-glycoside synthesis,1 we recently described2 the silver(I)
triflate-mediated conversion of thioglycosidic silyl enol ethers 1 into
bicyclic C-glycosides 2 (Scheme 1). These transformations proceeded in
good yields and with good diastereoselectivities; further synthetic
elaboration gave the products (or their derivatives) of overall
intermolecular delivery of nucleophilic carbon functionality to the
anomeric centre, syn- with respect to the neighbouring hydroxyl group.

Scheme 1

We became interested in the application of this methodology to target-
oriented synthesis, and chose fragment 4 corresponding to the central
tetrahydrofuran portion of the elfamycin antibiotic aurodox 33 as an
appropriate candidate. The retrosynthetic analysis is shown in Scheme
2; our plan was to introduce the dienyl side-chain by chelation-
controlled addition of an appropriate organometallic nucleophile to the
aldehyde 8, which would be made from the product 7 of cyclisation of
substrate 6, in turn derived from D-lyxose derivative 5.

Compound 4 was a compelling goal for several reasons. Firstly, it
possesses a syn-relationship between the anomeric C–C bond and the
neighbouring oxygen atom on the five-membered ring, and as such

seemed an ideal target molecule to exemplify our intramolecular
delivery-based approach.4 Secondly, it contains a fully oxygenated five-
membered sugar-derived template; we considered that the crowded
environment created by the all-β disposition of the oxygenated
substituents, and the potentially destabilising effect of these substituents
on the anomeric cationic intermediate would provide a stern test for our
strategy. Finally, unlike the major products 2 of the previous cyclisation
reactions on six-membered templates, compound 4 bears a syn
relationship between the ex-anomeric hydrogen atom and the
substituent on the vicinal exocyclic stereocentre. Inspection of our
pictorial model for the cyclisation process led us to believe that the anti-
selectivity observed previously would be reversed on account of the
crowded nature of the substrate β-face, favouring 7 over 9 (Scheme 3),
and we were keen to test this hypothesis. This Letter reports the results
of these investigations.

Scheme 3

Target substrate 6 (Scheme 2) was readily assembled from protected D-
lyxose 55 according to the route used in our methodological studies.6

Thus, thioglycosidation7 of 5 and desilylation gave thioglycosidic
alcohol 10, whose sodium salt was alkylated with tosylate 11.8 The
resulting ether was subjected to ozonolysis, followed by silyl enol
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etherification to give the Z- enol ether 6 in good overall yield as a single
regioisomer. Addition of a solution of 6 to silver(I) triflate in CH2Cl2
resulted in clean formation of a single product, which was identified as 7
on the basis of n.O.e.s between H-1 and H-6 (11%), and H-5 and the
benzylidene ortho-proton (2%).9 Next, compound 7 was subjected to
regioselective Baeyer–Villiger reaction in the presence of buffered
peracetic acid containing TFA and MgSO4 as a drying agent; the
expected structure of the resulting crystalline lactone–acetal 12 was
confirmed by X-ray crystallography.10 Treatment of 12 with
HN(Me)OMe·HCl–Me3Al11 resulted in smooth ring-opening to give the
crystalline N-methoxyamide 13, which was silylated, and reduced using
LiAlH 4–THF12 to give the aldehyde 8 (Scheme 4).

The final stages of our synthesis of 4 involved introduction of the E,E-
configured 1,3-diene-containing side-chain. Our plan was to effect syn-
carbometallation of an ethynyl group and then chain-extend this by
coupling with a suitable hydroxy-containing iodoalkene. It was
anticipated that the correct stereochemistry adjacent to the requisite
terminal alkyne would be secured by delivery of acetylide anion in a
chelation-controlled fashion to the re- face of the carbonyl function in
silyloxyaldehyde 8. In the event, addition of ethynylmagnesium
bromide to 8 resulted in the high-yielding formation of two
diastereomeric secondary alcohols 14 and 15 in a ca. 3:1 ratio.
Assignment of S-configuration to the newly-formed stereocentre in the
major compound followed from the observation of its CF3 resonance
120 Hz upfield from that of the minor, R-isomer in the 19F nmr
spectrum (376.5 MHz) of the derived Mosher's esters.13 Also, the major
product 17 of addition of isopropenylmagnesium bromide to 8 was
shown by X-ray crystallographic analysis10 to have the S-configuration
at this centre. Separation of 14 and 15 could be achieved by reversed-
phase HPLC, but it was found to be more convenient to process these as
a mixture. Thus, methylation of 14/15 under standard conditions,
followed by stannylcupration14 using Bu3Sn(Bu)CuCNLi2

15 and
quenching with iodomethane gave 16 in 50% yield, together with ca.
20% of the minor diastereomer; the isomers were now readily separated

by flash column chromatography.16 Finally, coupling of 16 with E-3-
iodo-2-propen-1-ol17 mediated by copper(I) thiophene-2-carboxylate18

gave the target compound 4 in an unoptimised yield of 35%.19 The
completion of the synthesis of 4 is shown in Scheme 5.20 

In summary, we have demonstrated that template-directed
intramolecular C-glycosidation is an effective strategy for the assembly
of a stereochemically complex C-glycoside, with good to excellent
stereoselectivity. We are investigating also the application of this
approach to the synthesis of C-disaccharides, and the results of these
studies will be published in due course.
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