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ABSTRACT: While X-ray crystallography routinely provides structural characterization of kinetically stable pre-catalysts and
intermediates, elucidation of the structures of transient reactive intermediates, which are intimately engaged in bond-breaking and
-making during catalysis, is generally not possible. Here, we demonstrate in crystallo synthesis of Rh, nitrenoids that participate in
catalytic C—H amination, and we characterize these transient intermediates as triplet adducts of Rh,. Further, we observe the impact
of coordinating substrate, which is present in excess during catalysis, on the structure of transient Rh, nitrenoids. By providing
structural characterization of authentic C—H functionalization intermediates, and not kinetically stabilized model complexes, these
experiments provide the opportunity to define critical structure—activity relationships.
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the construction of C—N bonds via C—H amination and olefin
aziridination reactions (Figure 1a)."~** Despite the ubiquity of
Rh, nitrenoid intermediates in nitrene transfer catalysis, the
structures of Rh, nitrenoids that participate in C—H amination
have eluded experimental scrutiny. We have been interested in
the characterization of transient intermediates involved in C— =Rh= ;lﬁgfriﬁi’é’ﬁ :Flilh: solid-state Sl
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Figure 1. (a) Rh,-catalyzed intramolecular nitrene transfer via
adamantyl azide complex enabled structural characterization 8 (a) Rhy-cataly

transient Rh, nitrenoid intermediates. (b) In situ generation of a

of a transient triplet nitrenoid adduct of Rh,; however,
rearrangement of the nitrene fragment prevented observation
of C—H amination in this system (Figure 1b).”> We
hypothesized that generation of a Rh, nitrenoid bearing a
proximal C—H bond would enable characterization of transient
nitrene intermediates that were competent intermediates for
intramolecular C—H amination (Figure 1c). Here, we report
the characterization of a pair of transient Rh, nitrenoids that
participate in solid-state C—H amination. These structural
snapshots of a C—H amination reaction provide an
opportunity to directly evaluate the impact of coordinating
ligands on the structure of reactive intermediates in C—H
functionalization.
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Rh, adamantyl nitrenoid enables crystallographic characterization;
rapid rearrangement prevents C—H functionalization. (c) Character-
ization of transient Rh, nitrenoids enables observation of the impact
of coordinating ligands on reactive amination intermediates.
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We initiated our studies by examining the coordination
chemistry of Rh,(esp), (1) with o-biphenyl azide (2) (esp =
a,a,a’,a'-tetramethyl-1,3-benzenedipropionate). These sub-
strates were selected because Rh,(esp), (1) is among the
most widely used catalysts for nitrene transfer chemistry, and
o-biphenyl azides have been shown to participate in intra-
molecular amination.”* An equimolar mixture of 1 and 2 in
CDCl, displays 'H NMR spectral features consistent with a 1:1
adduct (i.e., 3a, Figure 2a, Figures S1 and S2). IR analysis of 3a

(a)

Rhy(esp), (1)

(b)

Figure 2. (a) Synthesis and reaction chemistry of Rh, complex 3a. (b)
Displacement ellipsoid plots of 3a and 4a (50% probability). H-atoms
and solvent are omitted. Selected metrics: for 3a, Rh(1)-N(1) =
2.244(3) A, N(1)—C(1) = 1.441(S) A, Rh(1)—Rh(2) = 2.3850(4) A,
Rh(1)—N(1)—C(1) = 125.0(2)°; for 4a, Rh(1)-N(1) = 2.341(3) A,
Rh(1)—Rh(2) = 2.3835(3) A.

in a KBr pellet displays azide stretching modes at 2129 and
2101 cm™" (for comparison, 2125 and 2089 cm™'in 2) (Figure
S3). Single crystals of 3a were obtained by slow evaporation of
a CH,CI, solution of a 1:1 mixture of 1 and 2 at —35 °C
(Figure 2b). The metrical parameters of the Rh, fragment and
the biphenyl azide moiety in 3a are similar to those of
Rh,(esp), (Rh—Rh: 1 = 2.3817(9) A; 3a = 2.3850(4) A) and
2, respectively.””

Complex 3a participates in solid-state, intramolecular C—H
amination. Either photolysis (335 < A < 610 nm) or
thermolysis (60 °C) of a KBr pellet of complex 3a results in
the formation of carbazole complex 4a (Figure 2b).>* Solid-
state conversion was evidenced by the disappearance of the
stretching frequencies at 2129 and 2101 cm™ and the
appearance of peaks at 726, 575, and 508 cm™' (Figures S6
and S7).*° The final IR spectrum overlays with that of an
authentic sample of 4a prepared by treatment of Rh,(esp),
with carbazole (Figures S11 and S12). The formation of 4a
was further confirmed by '"H NMR following extraction of
photolyzed or thermolyzed KBr pellets with CDCl; (Figures
S13 and S14).

Intramolecular C—H amination within the coordination
sphere of 3a to generate 4a presumably proceeds via Rh,
nitrenoid Sa (Figure 3a). Evidence of facile N, elimination
from 3a was obtained from flux-dependent matrix-assisted laser
desorption/ionization mass spectrometry (MALDI-MS) meas-
urements (Figure 3b). A signal corresponding to Rh,(esp),"
(m/z = 758.3599, calcd 758.0828) was observed at low laser
power; as the flux of the ablation laser was increased, a new
signal corresponding to the nitrenoid fragment
Rh,(esp),(C,HoN)* (m/z = 924.5538, caled 925.1563)
emerged.
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Figure 3. (a) Conversion of Rh, azide complex 3a to carbazole adduct 4a proceeds via transient Rh, nitrenoid Sa. (b) Flux-dependent MALDI-MS
shows an ion corresponding to Rh,(esp),(C;,H;(N)*; ablation laser flux increased from (i) to (iii). (iv) Simulated isotopic distribution for
Rh,(esp),(C,H oN)*. (c) Left: Displacement ellipsoid plot of Sa (50% probability). H-atoms, N,, and solvent are omitted. Right: Rotated ellipsoid
plot of Sa (50% probability). H-atoms, esp ligand, and solvent are omitted. Selected metrics: Rh(1)—N(1) = 2.055(4) A, N(1)—C(1) = 1.335(7)
A, Rh(1)—Rh(1) = 2.3953(4) A, Rh(1)—N(1)—C(1) = 140.6(4)°. (d) Rh K-edge EXAFS data (spectral fitting range 1.0—3.0 A, blue trace) of
Rh,(esp),(C,HoN) (Sa, experimental, black trace, and fit data, red trace).
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Photolysis (4 = 365 nm) of a single crystal of 3a under
cryogenic conditions (100 K) promoted in crystallo synthesis
of Rh, nitrenoid Sa-N, (Figure 3c). Reaction progress was
monitored by periodic collection of X-ray crystal structures
(synchrotron radiation, 4 = 0.41328 A). Refinement of the
resulting data indicated that the extrusion of N, generates Rh,
nitrenoid Sa-N, with 90% chemical conversion (Figure 3c).””
Elimination of N, from 3a is accompanied by the contraction
of Rh(1)—N(1) from 2.244(3) A (3a) to 2.055(4) A (5a-N,).
Concurrently, contraction of N(1)—C(1) from 1.441(S) A to
1.335(7) A and expansion of the Rh(1)—N(1)—C(1) bond
angle from 125.0(2)° to 140.6(4)° are observed.”® The
Rh(1)—Rh(2) bond distance remained unchanged (3a:
2.3850(4) A, 5a-N,: 2.3953(4) A). The evolved N, was
refined at 90% occupancy, which is consistent with the single-
crystal-to-single-crystal chemical conversion of the azide
fragment in 3a to the nitrene fragment in Sa. In crystallo
conversion of 3a to Sa-N, could also be accomplished more
slowly by sustained exposure to synchrotron radiation (4 =
0.41328 A) without photolysis. This observation is similar to
X-ray-stimulated N, extrusion reactions previously observed in
both Rh,->> and Co-azide’ complexes, and other X-ray
stimulated reactions.” We were not able to observe conversion
of 5a-N, to 4a via a second single-crystal-to-single-crystal
transformation; slow warming of a crystal of 5a-N, to promote
C—H amination resulted in sample amorphization.

To further probe the structure of Sa, Rh K-edge extended X-
ray absorption fine structure (EXAFS) analysis was pursued.
Data obtained for nitrenoid Sa (generated by sustained (2 h)
exposure of a boron nitride pellet of 3a to synchrotron
radiation (A = 0.41328 A)) was fit with four and half Rh—N/O
interactions (2.03(1) A) and one Rh—Rh interaction
(2.401(6) A) (Figure S16 and Table S6).*>*' The first-shell
Rh—N/O scatters were not distinguishable due to the limited
resolution (0.22 A = n/(2Ak)). These metrical parameters are
consistent with those obtained from in crystallo synthesis of Sa-
N,. Comparison of the X-ray absorption near-edge structure
(XANES) data of Rhy(esp), 3a, and Sa suggests that all
complexes feature a Rh,[ILII] core (Figure S17).

The experimental metrical parameters of Sa are in excellent
agreement with density functional theory (DFT) optimization
of the triplet electronic configuration (i.e., >[$a]) carried out at
the wB97XD**/SDD (Rh)*~* and 6-31G(d) (light
atoms)*®*” levels of theory.”® Consistent with the assigned
electronic configuration, AE e gnger = —12.2 keal-mol ™.
Comparison of various computational strategies that have been
used in the past to examine Rh,-catalyzed reactions revealed
that while the optimized structures of 1 and 3a were well
captured by several methods, the optimized geometry of
reactive intermediate Sa displayed significant variation (Tables
S7-S9).

During catalysis, substrate 2 is present in significant excess
with respect to Rh, catalyst 1.”* Slow evaporation of a CHCI,
solution of 1 that contained excess 2 afforded single crystals of
3b, in which each Rh center is coordinated by an azide ligand
(Figure 4). The metrical parameters of complexes 3a and 3b
are similar except the Rh(1)—-N(1) bond distance in 3b
(2.280(4) A) is longer than the corresponding distance in 3a
(2.244(3) A), which is consistent with a significant structural
trans influence of the coordinated azide ligand.

Similar to 3a, bis-azide complex 3b participates in
photochemically (335 < 4 < 610 nm) and thermally (60 °C)
promoted solid-state, intramolecular C—H amination. IR
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Figure 4. (a) Synthesis and photochemistry of Rh, bis-azide 3b. (b)
Displacement ellipsoid plots of 3b and Sb (50% probability). H-atoms
and solvent are omitted. Selected metrics: for 3b, Rh(1)—-N(1) =
2.280(4) A, N(1)—C(1) = 1.436(6) A, Rh(1)—Rh(1) = 2.3872(6) A,
Rh(1)-N(1)—C(1) = 125.1(3)°; for 5b, Rh(1)—N(1) = 2.10(4) A,
N(1)-C(1) = 1.36(4) A, Rh(1)—Rh(1) = 2.4061(8) A, Rh(1)—
N(1)-C(1) = 127(2)°.

spectra obtained during either photolysis or thermolysis of a
KBr pellet of 3b revealed the disappearance of signals at 2129
and 2101 cm™" and the evolution of new peaks at 726, 575,
and 508 cm™ (Figures S18 and S19). 'H NMR analysis
following extraction of either the photolyzed or thermolyzed
KBr pellet with CDCI; revealed a 2:1 ratio of carbazole to
Rh,(esp), (Figures S13 and S20), which indicates that both
azide ligands undergo cyclization to carbazole under these
conditions.

In crystallo expulsion of N, from 3b enabled characterization
of Rh, nitrenoid Sb-N,, which differs from Sa-N, by the
presence of a coordinated o-biphenylazide ligand on the distal
Rh center (Figure 4b). In crystallo reaction progress was
monitored by periodic collection of X-ray crystal structures.
Refinement of the resulting data indicated that the extrusion of
N, generated Rh, nitrenoid 5b-N, in 43% chemical conversion
(Figure 4). The Rh centers in both 3b and Sb-N, are
symmetry equivalent, and thus loss of N, results in positional
disorder of the unreacted biphenyl azide and newly generated
biphenyl nitrene moieties (i.e., each Rh center modeled as 50%
Cy,H;(N; and C;,H;(N occupancy). Extrusion of N, from 3b
resulted in the contraction of Rh(1)—N(1) from 2.280(4) A
(3b) to 2.10(4) A (5b-N,). Concurrent with the expulsion of
N, and the contraction of the Rh(1)—N(1) bond, N(1)—C(1)
contracted from 1.436(6) A to 1.36(4) A and the Rh(1)—
N(1)-C(1) bond angle expanded from 125.1(3)° to
127(2)°.*®* The Rh(1)—Rh(1) bond distance remained
essentially unchanged (i.e., 2.3872(6) A (3b); 2.4061(8) A
(5b-N,)). We were unable to locate the evolved N, in the
structure of Sb due to disorder with a lattice CHCl,.
Crystallinity was compromised at higher chemical conversions,
which prevented higher precision data from being obtained for
Sb.

DFT geometry optimization of >[5b] is well-matched to the
experimental data and AE = —16.8 kcal'mol™". The

triplet-singlet
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only significant deviation between experiment and theory is the
bond angle, which is measured to be 127(2)° and computed to
be 148.4° (consistent across computational methods examined,
Tables S10—S12). We hypothesize that the observed deviation
arises from crystal packing restrictions on in crystallo structural
reorganization, which prevent full relaxation of the Rh—N—-C
angle in Sb. Consistent with this hypothesis, the energy to
bend the nitrene linkage on the triplet surface is <2 kcal-mol ™"
(Table S13).

Comparison of the experimental structures of Sa-N, and Sb-
N, reveals the impact of coordinated axial ligands on the
reactive intermediate responsible for intramolecular C—H
amination. In the absence of a trans axial ligand to the nitrene
in Sa, the Rh(1)—N(1) bond is 2.055(4) A; in the presence of
a trans axial azide ligand to the nitrene in Sb, the Rh(1)—N(1)
bond distance is 2.10(4) A. The long Rh—N linkage in 5b
suggests a significant structural trans effect through the M—M
bond (Table S14).°°7** In addition to elongating the Rh—
nitrenoid bond, the presence of an axial ligand increases the
spin density on the nitrene nitrogen atom: natural bond order
(NBO) analysis of *[5a] and [5b] indicates the N-centered
spin density increases upon azide binding (Sa, 1.16 e7; Sb,
1.48 e7) (Figure S, Tables S15 and S16).

Figure 5. Calculated spin density plots for Rh, nitrenoid complexes
3[5a] and *[5b]; isolevel = 0.004.

In summary, we describe the structural characterization of a
pair of Rh, nitrenes that mediate intramolecular C—H
amination chemistry. In crystallo confinement enables direct
characterization of the species that are intimately involved in
bond-breaking and -making in catalysis. Importantly, by having
access to experimentally derived metrical parameters, we were
able to evaluate the fidelity of various commonly employed
computational approaches to the description of Rh,-catalyzed
processes, which provides critical but previously unavailable
insight into the fidelity of these models to experiment. These
observations demonstrate in situ crystallography to be a
powerful tool for characterizing authentic C—H activation
intermediates.
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