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ABSTRACT:  Copper-catalyzed conjugate proto-silylation reaction of α, β-unsaturated sulfonyl ketimines has been developed. 
The corresponding E- and Z-stereoselective functionalized allylsilane products were obtained in good yields respectively via 
tuning the ligands used in the reactions. Furthermore, the highly enantioselective (E)-β-tosylamine-substituted allylsilanes were 
also achieved in the presence of chiral Pybox ligand. And the corresponding products could be easily transformed into other 
useful synthons.  
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INTRODUCTION 

Tremendous efforts have been devoted to discovering new 
methodologies for the synthesis of the allylic silanes because 
of their broad applications in organic synthesis and materials 
science.

1
 Among them, transition-metals such as Ni,

2
 Pd,

3
 Pt

4
 

catalyzed silaborations of 1,3-dienes or allenes, and 
Cu-catalyzed allylic substitution

5
 with use of Suginome 

silaboronate reagent
6
 have emerged as very powerful tools 

for the preparation of these compounds. Nevertheless, to 
access the multi-substituted functionalized allylsilanes, the 
development of practical and efficient methods still remains 
highly desirable. Therefore, we design a copper-catalyzed 
conjugate proto-silylation of α, β-unsaturated ketimines to 
synthesize the stereo- and enantio-selective functionalized 
allylsilanes via trapping the double bond generated in situ 
during silyl-addition process (Scheme 1). It is worth noting 
that the transition-metal-catalyzed silyl-additions to 
conjugate carbonyl systems have attracted much attention. 
For instance, in 1988 Hayashi initially disclosed a 
1,4-disilylation reaction with palladium catalyst.

3a, 7a
 

Alternatively, Oestreich,
7b

 Hoveyda,
7c

 Riant,
7d

 Córdova,
7e

 
Santos,

7f
 and Procter

7g
 et al. elegantly developed different 

strategies using Rh(I)-binap, Cu(I)-NHC, Cu(I)-dppf, 
Cu(I)-amine or Cu(II)-4-picoline etc

8
 system for the 

conjugate silyl-addition, respectively. Unfortunately, these 
methods are difficult to access the allylsilane product. 

On the other hand, a few examples of conjugate addition 
to α, β-unsaturated imines to access nitrogen-containing 
moieties have also been studied. However, the works mainly 
focused on the construction of C-C bond by using organozinc 
reagents,

9
 organocuprates,

10
 organoboronic acids,

11
 and other 

carbon-based nucleophiles in the presence of Rh, La,
12

 or Cu 
catalyst. So far, only scarce examples of heteroatom-carbon 
bond formation via conjugate addition to α, β-unsaturated 

imines have been documented. Firstly, in 2009 Palacios et al. 
reported a non-enantioselective conjugate addition of amines 
to active α, β-unsaturated imines derived from α-amino 
phosphonates.

13a
 After that, Leung and co-workers developed 

a Pd-catalyzed asymmetric addition of Ph2PH to α, 
β-unsaturated sulfonyl ketimines and got the solo 
(Z)-configuration enaminophosphines.

13b
 Recently, a 

copper-catalyzed conjugate borylation of ketimines was also 
addressed to prepare β-boronate-substituted imines.

13c
 

Unfortunately, so far there no study disclosed the stereo- 
and/or enantio-selective silyl-addition to α, β-unsaturated 
ketimines. In connection with our continuous interest in C-Si 
bond formation,

14
 herein we would like to communicate the 

results of copper-catalyzed conjugate proto-silylation of α, 
β-unsaturated ketimines to access highly stereo- and 
enantio-selective β-tosylamine-substituted allylsilanes. 

RESULTS AND DISCUSSION 

Initially, the reaction of copper-catalyzed conjugate 
proto-silylation of α, β-unsaturated ketimine was examined 
with use of ketimine 1a and Suginome silaboronate 2, and the 
results were shown in Table 1. We first conducted the 
reaction with various Cu(I) and Cu(II) salts under basic 
condition (Table 1, entries 1-4). It was found that both of 
them could provide the desired product. Especially, in 
presence of 10 mol % Cu(OTf)2 and 20 mol % Na3PO4 as the 
additive, the major product with a 
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Scheme 1. Copper-Catalyzed Stereo- and 
Enantio-selective 1, 4-Proto-silylation of α, 
β-Unsaturated Ketimine. 

Table 1. Optimization of Reaction Conditions of 
Non-enantioselective Product.a 

 

 

Entry 
Cu 

(mol %) 
Base 

(equiv) 
Solvent 

(V/V=2/1) 
T 

(℃℃℃℃) 
E/Z 
(%)b 

Yield 
(%)c 

1 CuCl Na3PO4 (0.2) dioxane-tBuOH 50 26:74 46 

2 CuBr Na3PO4 (0.2) dioxane-tBuOH 50 37:63 23 

3 Cu(OAc)2 Na3PO4 (0.2) dioxane-tBuOH 50 20:80 63 

4 Cu(OTf)2 
Na3PO4 

(0.2) 
dioxane-tBuO

H 
50 7:93 91(89) 

5 Cu(OTf)2 K3PO4 (0.2) dioxane-tBuOH 50 14:86 61 

6 Cu(OTf)2 - dioxane-tBuOH 50 - trace 

7 - Na3PO4 (0.2) dioxane-tBuOH 50 - trace 

8 Cu(OTf)2 Na3PO4 (0.2) dioxane-tBuOH 25 15:85 66 

9 Cu(OTf)2 DIPEA (0.2) dioxane-tBuOH 25 72:28 40 

10 Cu(OTf)2 DIPEA (3.0) dioxane-tBuOH 25 75:25 60 

11 Cu(OTf)2 DIPEA (3.0) 
m-Xylene-tBuO

H 
25 82:18 70 

12d Cu(OTf)2 DIPEA (3.0) 
m-Xylene-tBuO

H 
-5 88:12 20 

13d, e Cu(OTf)2 DIPEA (3.0) 
m-Xylene-tBuO

H 
-5 99:1 46 

14 d, e, f CuTc DIPEA (3.0) 
m-Xylene-tBuO

H 
-5 92:8 80 

15d, e Cu(OAc)2 DIPEA (3.0) 
m-Xylene-tBuO

H 
-5 98:2 86(83) 

16d, e, g Cu(CHB)2 DIPEA (3.0) 
m-Xylene-tBuO

H 
-5 98:2 92(90) 

17d, e, h Cu(CHB)2 DIPEA (3.0) 
m-Xylene-tBuO

H 
-5 99:1 91(90) 

a
Reaction conditions: 1a (0.2 mmol), 2 (0.4 mmol), copper 

catalyst, and base in the solvent (1.50 mL in total volume) 
was heated for the indicated time.

 b
The

 
ratio between E and Z 

isomers was determined by crude
 1

H-NMR analysis. 
c
The 

yield given
 
is for single E or Z isomer which was determined 

by 
1
H-NMR (2, 4, 5-trichloropyrimidine as an internal 

standard). And the isolated yield is in the parentheses.
 d

The 
reaction time is 36 h. 

e
10 mol % 2, 2'-bipyridine was added as 

the ligand. 
f
CuTc = ((thiophene-2-carbonyl)oxy)copper. 

g
Cu(CHB)2 = copper bis(4-cyclohexylbutyrate). 

h
5 mol % 

Cu(CHB)2 was used in the reaction. 

 

(Z)-configuration (Z/E = 97:3) was obtained in 89% isolated 
yield (entry 4). Nonetheless, the change of base or reaction 
temperature noticeably decreased the reaction efficiency 
(Table 1, entries 5 and 8). It was also observed that the ratio 

of (E)-isomer greatly increased in the presence of organic 
base N, N'-diisopropylethylamine (DIPEA). Thus, we 
hypothesized that increasing the steric hindrance around the 
copper center could regulate the product’s stereoselectivity. 
Therefore, the 2,2′-bipyridine with strong 
coordinated-ability was introduced to this catalytic system 
(Table 1, entry 13). It is worth noting that the desired product 
can be obtained in a moderate yield but with an excellent 
(Z)-stereoselectivity. After further carefully screening the 
copper salts, pleasingly, the (E)-isomer of 
β-tosylamine-substituted allylsilane could be isolated in high 
yield and with excellent stereoselectivity by using Cu(CHB)2 
(copper bis (4-cyclohexylbutyrate)) as a catalyst. Notably, the 
copper catalyst and base used in reaction were both crucial 
to afford the desired product (Table 1, entries 6 and 7). 

With the optimal conditions determined, the substrate 
scope of α, β-unsaturated ketimine was explored for (Z)- and 
(E)-stereoselective synthesis of β-tosylamine-substituted 
allylsilanes, respectively. The results are presented in Tables 
2 and 3. In both cases, different N-arylsulfonyl ketimines 
reacted with dimethylphenylsilylpinacolborane 
(Me2PhSi-Bpin) 2. The results showed that the tosylsulfonyl 
group more favored the formation of specifically 
stereoselective product in a good yield. Next, the substituent 
effect of R

1
 and R

2
 was also investigated. As indicated in 

Tables 2 and 3, varying the position of R
1 
and R

2
 substituents 

on the phenyl ring, regardless of the electron-donating or 
electron-withdrawing group, the corresponding products 
could be obtained in good to high yields and with a high to 
excellent level of stereoselective control. Moreover, both 
these processes tolerated a wide range of functionalized 
groups, such as ester, halogens (F, Cl, Br) and heterocycles 
(thienyl, furyl). The relative stereo configuration of 
(Z)-isomer product 3a was confirmed by X-ray single crystal 
diffraction analysis (CCDC No: 1837165). 

Table 2. Non-enantioselective Conjugate 
Proto-silylation of α, β-Unsaturated Ketimines for 
the Synthesis of (Z)-isomer Allylsilane.a, b 
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 3

NH SiMe2Ph

Z-3a, PG = Ts, Z/E = 93:7,

89% yield

Z-3b, PG = PhSO2, Z/E = 98:2,

80% yield

Z-3c, PG = 4-ClPhSO2,

Z/E = 91:9, 72% yield

Z-3d, PG = 2- NaphthylSO2,

Z/E = 90:10, 82% yield

PG

NH

Ph

SiMe2Ph

Z-3f, R = Me, Z/E = 93:7,

89% yield
Z-3g, R = F, Z/E = 91:9,

56% yield
Z-3h, R = Cl, Z/E = 95:5,

62% yield
Z-3i, R = Br, Z/E = 91:9,

72% yield
Z-3j, R = COOMe, Z/E = 93:7,

50% yield
Z-3k, R = OMe, Z/E = 85:15,

60% yield

Ts

R

NH

Ph

SiMe2Ph
Ts

Z-3l, Z/E = 94:6,
74% yield

NH

Ph

SiMe2Ph

Z-3m, Z/E = 93:7,
89% yield

NH

Ph

SiMe2Ph

Z-3e, Z/E = 92:8,

85% yield

F

Me

NH

Ph

SiMe2Ph

Z-3n, Z/E = 93:7,

51% yield

Ts

Ts

Ts

S

R1

NH

R2

SiMe2Ph

R1

NPG

R2 +
Me2PhSi-Bpin

Cu(OTf)2 (10 mol %)
Na3PO4 (20 mol %)

1,4-dioxane-tBuOH (2:1)

50 °C, 3 h
[2.0 equiv]

PG

1 2

3
Z-isomer

3a

NH

Ph

SiMe2Ph

Z-3o, R = Me, Z/E = 90:10,

65% yield
Z-3p, R = OBn, Z/E = 91:9,

68% yield
Z-3q, R = OMe, Z/E = 91:9,

45% yield
Z-3r, R = Cl, Z/E = 94:6,

88% yield
Z-3s, R = Br, Z/E = 91:9,

61% yield
Z-3t, R = Ph, Z/E = 94:6,

86% yield

R

Ts
NH

Ph

SiMe2Ph

Z-3v, Z/E = 95:5,

63% yield

S

Ts

NH

Ph

SiMe2Ph

Z-3x, Z/E = 93:7,

61% yield

NH

Ph

SiMe2Ph

Z-3w, Z/E = 92:8,

71% yield

NH

Ph

SiMe2Ph

Z-3u, Z/E = 92:8,

80% yield

O

TsTs

Ts

OMe

OMe

 

a
Reaction conditions: the mixture of 1 (0.2 mmol), 2 (0.4 

mmol), Cu(OTf)2 (0.02 mmol), Na3PO4 (0.04 mmol) in 
1,4-dioxane/

t
BuOH (2:1, 1.5 mL) solution was stirred for 3 h at 

50˚C under argon atmosphere. 
b
The isolated yield is for Z- 

isomer only. 

Base on the investigation for the synthesis 
non-enantioselective E-isomer allylsilane products, we 
embarked on developing the methodology of asymmetric 
conjugate proto-silylation to α, β-unsaturated ketimines. 
According to the previous reports on Cu(II)-catalyzed 
asymmetric addition reactions, we first tested various chiral 
ligands such as chiral phosphoric acid,

15
 phosphine,

16
 NHC,

17
 

phosphoramide
18

 and oxazoline
19 

etc. for current asymmetric 
silyl addition reaction. Unfortunately, only very poor 
enantioselectivity of the desired product was observed. 
When the commercially available Pybox-

i
Pr (L1) was used to 

this catalytic system, the compound 4a was obtained in a 
high yield and with a moderate enantiomeric ratio (89:11). 
Therefore, to obtain a high-level enantioselectivity, various 
substituted Pybox ligands were subjected to this addition 
reaction (Table 4). Consequently, after a careful screening, 
we realized that the Pybox ligand with an alkyl-substituent 
would afford a better result than the one bearing 

Table 3. Non-enantioselective Conjugate 
Proto-silylation of α, β-Unsaturated Ketimines for 
the Synthesis of (E)-Isomer Allylsilane.a

 

Ph

SiMe2Ph

PGHN

E-4a, PG = Ts,

E/Z = 99:1, 90% yield
E-4b, PG = PhSO2,

E/Z > 99:1, 70% yield
E-4c, PG = 4-ClPhSO2,

E/Z = 98:2, 85% yield
E-4d, PG = 2-NaphthylSO2,

E/Z = 98:2, 87% yield E-4n, E/Z > 99:1,
84% yield

Ph

SiMe2Ph

TsHN

S

Ph

SiMe2Ph

TsHN

E-4f, R = Me,
E/Z > 99:1, 71% yield

E-4g, R = F,

E/Z = 97:3, 78% yield
E-4h, R = Cl,

E/Z = 94:6, 60% yield
E-4i, R = Br,

E/Z = 97:3, 74% yield
E-4k, R = OMe,

E/Z = 94:6, 69% yield

R

Ph

SiMe2Ph

TsHN

E-4e, E/Z = 98:2, 67% yield

Me

Ph

SiMe2Ph

TsHN

E-4l, E/Z > 99:1, 71% yield

E-4m, E/Z > 99:1,

94% yield

Ph

SiMe2Ph

TsHN

F

Ph SiMe2Ph

TsHN

4v, E/Z = 99:1, 92% yield

S

Ph SiMe2Ph

TsHN

E-4x, E/Z > 99:1,

75% yield

4u, E/Z > 99:1, 88% yield

Ph SiMe2Ph

TsHN
OMe

OMe

Ph SiMe2Ph

TsHN

E-4w, E/Z = 97:3,
96% yield

O

Cu(CHB)2 (5.0 mol %)
2,2'-bipyridine (10 mol %)

DIPEA (3.0 equiv)

m-xylene-tBuOH (2:1)

-5 °C, 36 h

PGHN

R1

R2

SiMe2Ph

R1

NPG

R2

+ Me2PhSi-Bpin
[2.0 equiv]

1 2 4
E-isomer

Ph

R

SiMe2Ph

TsHN

E-4o, R = Me, E/Z > 99:1,
87% yield

E-4q, R = OMe, E/Z = 97:3,

88% yield
E-4r, R = Cl, E/Z > 99:1,

83% yield
E-4s, R = Br, E/Z = 98:2,

73% yield
E-4t, R = Ph, E/Z = 98:2,

73% yield

a
Reaction conditions: The mixture of 1 (0.2 mmol), 2 (0.4 

mmol), Cu(CHB)2 (0.01 mmol), 2, 2'-bipyridine (0.02 mmol), 
and DIPEA (0.6 mmol) in m-xylene/ 

t
BuOH (2:1, 1.5 mL) was 

stirred for 36 h at -5 °C under argon atmosphere. 
b
The 

isolated yield is for E- isomer only. 

with an aryl substituent. However, bulkier alkyl-substituted 
Pybox ligands especially the one with the tert-butyl 
substituent will significantly decrease the product’s 
enantioselectivity. This was possibly due to the weak 
interaction between the ligand and the copper atom center 
caused by the large steric hindrance. Thus, the less bulky 
iso-butyl-substituted Pybox was prepared and examined for 
this reaction. Pleasingly, the desired product was isolated in 
90% yield and with 91.5:8.5 enantiomeric ratio. Furthermore, 
we recognized that if connecting a phenyl substituent on the 
pyridyl ring

20
 to result a π-π interaction between the ligand 

and dimethylphenylsilyl group should increase the product’s 
enantioselectivity. Thus, we synthesized the chiral (S, 

S)-4-Ph-Pybox-
s
Bu as a ligand for this reaction and observed 

a slightly increased enantioselectivity of the product. It is 
worth noting that our hypothesis has also been proved by the 
poor results by changing the (S, S)-4-Ph-Pybox-

s
Bu ligand 

into (S, S)-4-tert-butyl-Ph-Pybox-
s
Bu or (S, 

S)-4-Mes-Pybox-
s
Bu, which will diminish the π-π interaction 

between the phenyl rings due to their increased space 
resistance. Finally, we found that the desired allylsilane 4a 
could be obtained in 90% yield and with 95:5 enantiomeric 
ratio in presence of 5 mol % copper bis 
(4-cyclohexylbutyrate), 20 mol % (S, S)-4-Ph-Pybox-

s
Bu, and 
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 4

2,6-di-tert-butylpyridine (3.0 equiv) in the mixed solvents of 

m-xylene and tert-butanol (V: V = 2:1) at -15 ℃ (entry 10). 

Table 4. Optimization of Reaction Conditions for the 
Synthesis of Enantioenriched (E)-Isomer Allylsilane.a 

 

Entry 
Ligand 

(mol 
%) 

Base E / Z (%)b 
Yield 
(%)c 

er (%)d 

1 L1 (10) DIPEA 97:3 94 89:11 

2 L2 (10) DIPEA 80:20 63 56.5:43.5 

3 L3 (10) DIPEA 94:6 92 80:20 

4 L4 (10) DIPEA > 99:1 98 60:40 

5 L5 (10) DIPEA 80:20 63 55.5:44.5 

6 L6 (10) DIPEA 98:2 90 91.5:8.5 

7 L7 (10) DIPEA 95:5 88 93.5:6.5 

8 L7 (10) 
2,6-di-tert-butylpyridi

ne 
97:3 93(90) 94:6 

9 L7 (15) 
2,6-di-tert-butylpyridi

ne 
95:5 90 94:6 

10 
L7 

(20) 
2,6-di-tert-butylpyri

dine 
95:5 91 (90) 95:5 

11e L7 (20) 
2,6-di-tert-butylpyridi

ne 
98:2 85 93.5:6.5 

12 
L8 

(20) 
2,6-di-tert-butylpyridi

ne 
96:4 91 90:10 

13 
L9 

(20) 
2,6-di-tert-butylpyridi

ne 
96:4 91 93:7 

 
a
Unless noted otherwise, the reaction was conducted 

according to following conditions: 1 (0.2 mmol), 2 (0.4 mmol), 
Cu(CHB)2 (0.01 mmol), ligand (0.04 mmol), and base (0.6 
mmol) in m-Xylene/

t
BuOH (2:1, 1.5 mL) were stirred for 36 h 

at -15 °C under argon atmosphere. And the isolated yield is 
for E- isomer. 

b
The ratio of the isomers was determined by 

crude 
1
H-NMR analysis. 

c
The yield was determined by 

1
H-NMR (2, 4, 5-trichloropyrimidine as an internal standard). 
And the isolated yield was given in the parentheses. 

d
The 

enantiomeric ratios were determined by HPLC with the 
chiral column. 

e
Cu(OAc)2 was used in place of Cu(CHB)2. 

On account of the optimal conditions, the practicability of 
the Cu(II)/(S, S)-4-Ph-Pybox-

s
Bu species catalyzed 

asymmetric conjugate proto-silylation of various α, 

β-unsaturated ketimines was confirmed (Table 5). The 
reaction could be conducted with different ketimines with a 
tolerance of both electron-donating and-withdrawing 
substituents. And the desired E-stereoisomers with high 
enantiomeric ratios were obtained in good to high yields. In 
most of cases, better enantioselectivity and lower reactivity 

were observed for the electron-rich substrates, which could 
be explained by the lower electrophilicity and stronger 
interaction between the ketimine and the 
[Me2PhSi-Cu(II)]/Pybox species generated in situ. The 
compound 4x was determined to be (R)-configuration by 
single-crystal X-ray diffraction analysis (CCDC No: 1837166). 

Taking into account the previous reports on activation of 
Si-B bond and the formation of [Me2PhSi-Cu(II)] reactive 
intermediate,

7e
 we proposed a stereochemical model for 

generating the enantioenriched β-tosylamine-substituted 
allylsilane (Figure 1). Comparing, in transition state A with B, 
the minimum steric interaction between the isobutyl group 
of the ligand and the tosyl group of the substrate as well as 
the π-π stacking interaction of phenyl rings, both favor the 
nucleophilic [Me2PhSi-Cu(II)] intermediate to attack the 
double bond from the Re-face and afford the (R)-isomer 
preferentially. 

Table 5. Asymmetric Conjugate Proto-silylation of α, 

β-Unsaturated Ketimines.a, b 

Ph

SiMe2Ph

PGHN

4a, PG = Ts, E/Z = 95:5,
90% yield , 95:5 er

4b, PG = PhSO2, E/Z = 98:2,

87% yield , 92:8 er
4c, PG = 4-ClPhSO2, E/Z > 99:1,

74% yield, 85:15 er
4d, PG = 2-NaphthylSO2,

E/Z > 99:1, 61% yield, 92:8 er
4n, E/Z = 97:3,

71% yield, 92:8 er

Ph

SiMe2Ph

TsHN

S

SiMe2Ph

TsHN

4f, R = Me, E/Z = 97:3,
81% yield, 96:4 er

4g, R = F, E/Z = 94:6,

80% yield, 94:6 er
4h, R = Cl, E/Z = 94:6,

80% yield, 90:10 er
4i, R = Br, E/Z = 94:6,

80% yield, 91:9 er
4k, R = OMe, E/Z = 83:17,

54% yield, 95:5 er

R

Ph

SiMe2Ph

TsHN

4e, E/Z = 96:4,

59% yield, 90:10 er

Me

Ph

SiMe2Ph

TsHN

4l, E/Z = 98:2,

57% yield, 94:6 er

4m, E/Z = 98:2,
93% yield, 75:25 er

Ph

SiMe2Ph

TsHN

F

Ph SiMe2Ph

TsHN

4v, E/Z = 92:8,

73% yield, 92:8 er

S

Ph SiMe2Ph

TsHN

4x, E/Z > 99:1,

77% yield, 94:6 er

4u, E/Z = 98:2,

70% yield, 92:8 er

Ph SiMe2Ph

TsHN
OMe

OMe

Ph SiMe2Ph

TsHN

4w, E/Z = 97:3,
95% yield, 89:11 er

O

PGHN

R2

R1

SiMe2Ph

R2

NPG

R1
+ Me2PhSi-Bpin

Cu(CHB)2 (5.0 mol %)

(S,S)-4-Ph-Pybox-sBu (20 mol %)

2,6-di-tert-butylpyridine (3.0 equiv)

m-xylene-tBuOH (2:1)

-15 °C, 36 h
[2.0 equiv]

1 2
4

chiral E isomer

Ph

R

SiMe2Ph

TsHN

4o, R = Me, E/Z = 97:3,

79% yield, 95:5 er
4q, R = OMe, E/Z = 94:6,

79% yield, 95:5 er
4r, R = Cl, E/Z = 98:2,

79% yield, 92:8 er
4s, R = Br, E/Z = 97:3,

71% yield, 92:8 er
4t, R = Ph, E/Z = 98:2,

75% yield, 93:7 er

Ph

4x

 
a
Reaction conditions: The mixture of 1 (0.2 mmol), 2 (0.4 

mmol), Cu(CHB)2 (0.01 mmol), (S, S)-4-Ph-Pybox-
s
Bu (0.04 

mmol), and 2,6-di-tert-butylpyrdine (0.6 mmol) in 

Page 4 of 7

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 5

m-xylene/
t
BuOH (2:1, 1.5 mL) at -15 °C was stirred for 36 h 

under argon atmosphere. 
b
The isolated yield is for E-isomer 

only. 

 

Figure 1. Proposed Model for Formation of (R)-4a 
Compound. 

 
Scheme 2. Transformation of 

β-Tosylamine-Substituted Allylsilanes. 

Finally, the utility of β-tosylamine-substituted allylsilane 
products was demonstrated in Scheme 2. Notably, the 
gram-scaled synthesis of compound 4a was performed in 89% 
isolated yield  (2.21 g) and without loss of the 
enantioselectivity (95:5 er) in the presence of 5 mol % 
Cu(CHB)2 catalyst. The reduction of 4a with use of 
Et3SiH/BF3•OEt2 was carried out to provide the 
β-tosylamine-substituted benzylic silane in good yield (90%) 
and moderate diastereoselectivity (3.4:1 dr).

21
 In addition, the 

hydrolysis product 6 was obtained in high yield and with 
complete retention of enantiopurity when the compound 4a 
was treated with sulfuric acid in ethanol.

11b
 The 

Fleming-Tamao oxidation
22

 of the compound 4a successfully 
afforded the chiral 3-hydroxy-1,3-diphenylpropan-1-one 7 in 
91% yield and 93:7 er over two steps. 

CONCLUSION 

In conclusion, we have developed a protocol of 
copper-catalyzed stereo- and enantio-selective conjugate 
silyl-addition to sulfonyl ketimines. This work offers a simple 
and straightforward method for the synthesis of not only the 
(Z)-β-tosylamine-substituted allylsilane but also the E-isomer 
in good yields and with high enantioselectivities via simply 
tuning the reaction temperature and the ligand used. 
Moreover, the corresponding products are effective synthons 
for the preparation of useful compounds. 
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