A GENERAL METHOD FOR THE SYNTHESIS OF 2-ARYLPYRROLES

Jean Paul Boukou-Poba, Michel Farmier and Roger Guilard
Laboratoire de synthèse et d'électrosynthèse organométallique
associé au C.N.R.S. (IA 33), Université de Dijon, 21000 Dijon, France.

Abstract : Reaction of methyl azidoacetate with β -arylacroleins, followed by cyclisation of the obtained derivatives easily leads to arylpyrroles. N M R and mass spectra data are given and the Vilsmeier formylation of some arylpyrroles is described.

A very large number of bisarylic systems has been described (1 - 4) but few arylary-lic compounds are known (5 - 6): for example when pyrrole is one of the cycles, only 2-phenyl-pyrrole (7) and more recently 2-(2'-thienyl)pyrrole (8) have been described.

We present in this article a general method for the preparation of 2-arylpyrroles, based on the use of Hemetsberger reaction way (9), which can be schematized as follows :

$$Ar - CH = CH - CHO$$

$$\stackrel{H_2C}{\longrightarrow} N_3$$

$$Ar - CH = CH - CHO$$

$$\stackrel{H_2C}{\longrightarrow} N_3$$

$$Ar - CH = CH - CHO$$

$$\stackrel{H_2C}{\longrightarrow} N_3$$

$$Ar - CH = CH - CHO$$

$$\stackrel{M_3}{\longrightarrow} CCOCH_3$$

$$\stackrel{M_1}{\longrightarrow} CCOCH$$

$$\stackrel{M_1}{\longrightarrow} CCCCH$$

To 50 ml of sodium methanolate (prepared by starting from 50 ml of MeOH and 6.10^{-2} at. g. of Na), a mixture of 10^{-2} M. of β -arylacrolein and 6.10^{-2} M. of methyl azidoacetate was added dropwise. After addition and stirring for an additional 1 h at - 10° C, water was added to the solution and the azide obtained, $\underline{2}$, was extracted with ether (some azides are unstable and spontaneously tend to cyclize to the esters $\underline{3}$). The azide $\underline{2}$ was refluxed in xylene, yielding quantitatively the ester $\underline{3}$. It is worth noting that the cyclisation systematically concerns the carbon atom 5 of the lateral chain but not the carbon in ortho position to the chain, so that the formation of an ester of structure $\underline{6}$ has never been observed.

1718 No. 19

$$(\underbrace{\text{Ar}}_{0})^{\text{H}} \text{Cooch}_{3}$$

Hydrolysis (aqueous solution of KOH 12 %) of the ester $\frac{3}{2}$, followed by decarboxylation of the acid $\frac{4}{2}$ (with baryum promoted copper chromite as catalyst in quinoleine) leads to 2-arylpyrrole $\frac{5}{2}$ with a satisfactory global yield.

The yields of the various reactions so as the melting points of the synthesized products are summarized in table I.

Ar	Transforma- tions	<u>l</u> i	→ <u>2</u> i	<u>2</u> i	→ <u>3</u> i	<u>3</u> i -	→ <u>4</u> i	<u>4</u> i → <u>5</u> i		
	Starting products	Yd	m.p.	Yd	m.p.	Yd	m.p.	Yd	m.p.	
phenyl	<u>l</u> a	75	56	92	146	78	178	65	130*	
2'-thienyl	<u>l</u> b	72	62	90	113	75	174	46	7 2**	
3'-thienyl	<u>l</u> c	78	52	87	160	89	192	57	154	
2'-furyl	<u>l</u> d	76	44	90	126	79	160	68	44	
3'-furyl	<u>l</u> e	52	68	92	140	79	190	43	72	

Table I

*m.p. Litt (7): 127 - 132°C; **m.p. Litt (8): 62°C. Yd: yield %.

The mass spectra of 2-arylpyrroles have been studied, the main fragments are the following :

In all cases, the molecular peak is the base peak and the characteristic fragmenta-

tion patterns of the pyrrolic (C_2H_2 , HCN, C_2H_3 and CH_2N^*), thiophenic (C_2H_2 , CHS*) and furanic (CHO*) cycles are observed.

The NMR characteristics of the 2-arylpyrroles obtained are listed in table II :

Table II: NMR data of the 2-arylpyrroles, $\frac{5}{5}$ $\frac{4}{3}$ $\frac{3}{2}$ $\frac{2}{N}$ $\frac{4}{5}$ (solvent (CD₃)₂SO).

	Carbon			PROTONS																
×	atom of Ar bounded	Compounds					THIO	PHFNIC	C OR FURANIC				PYRROLIC							
	to pyr-		н ₂ ,		н ₃ ,		н ₄ .		R ₅ '		Spectrum	J(H2)	н ₃		H ₄		н ₅		Spectrum	J(Hz)
			m/1	6	17/1	6	m/l	٥	m/ı	6		J(nz)	7a/1	å	m/1	δ	m/1	6		J(112)
s	21	<u>55</u>			2d/1	7 16	2d/1	7.02	2d/1	7 27	AHX	J ₃ , ₄ ,= 3.6 J ₃ , ₅ ,≈ 1.3 J ₄ , ₅ ,= 5.0	2d/1	6.28	24/1	6.09	24/1	6.79	хма	J ₃₄ = 3.5 J ₃₅ = 1.5 J ₄₅ = 2.7
S	3'	<u>5c</u>		7 44				7 35		7 48	ABC	J ₂ , 4, = 1.3 J ₂ , 5, = 2 8 J ₄ , 5, = 4 8	2d/1	6.35	2d/1	6 06	2d/1	6 75	АНХ	J ₃₄ = 3 4 J ₃₅ = 1 5 J ₄₅ = 2.7
٥	2'	<u>54</u>				6.50		6 47		7.52	АВХ	J ₃ , 4, = 3 3 J ₃ , 5, = 0 7 J ₄ , 5, = 1 8	2d/1	6.31	2d/†	6 08	2d/1	6 79	AMX	J ₃₄ = 3 4 J ₃₅ = 1 5 J ₄₅ = 2 6
0	3'	<u>5e</u>	24/1	7.86			2d/1	6.76	2d/1	7-64	хмх	J ₂₊₄₁ = 0.8 J ₂₊₅₁ = 1.6 J ₄₊₅₁ = 1.8	24/1	6 26	2d/1	6 07	26/	6 76	AFX	J ₃₄ = 3 3 J ₅ = 1 J J ₄₅ = - >

The NMR data of 2-phenylpyrrole are in good agreement with those of the litterature (10) and - for all the compounds - the pyrrolic protons give an A M X system. The A B X and A B C systems due to the thiophenic and furanic protons observed for 5d and 5c have been interpreted by a comparison with the calculated spectra (11).

The Vilsmeier formylation of the 2-(2'-thienyl and 2'-furyl) pyrroles and of the methyl 5-(2'-thienyl and 2'-furyl) pyrrole-2-carboxylates has been studied. The results can be schematized as shown below :

5-[2'-(5'-formyl) furyl] pyrrole-2-carbaldehyde will be made to react with a series of pyrromethane-5,5' dicarboxylic acids, in order to obtain "isocorrins", for which we plan to test the possibilities of coordination to metals.

Acknowledgments : We thank Professor P. Fournari for helpful discussions.

References

- H. Wynberg, A. Logothetis and D. VerPloeg, J. Amer. Chem. Soc., 79, 1972 (1957).
- 2 S. Gronowitz and H.-Q. Karlsson, Arkiv Kemi, 17, 89 (1960).
- 3 R. Grigg, Y. A. Knight and M. W. Sargent, J. Chem. Soc. (C),976 (1966).
- 4 M. Farnier, S. Soth and P. Fournari, Can. J. Chem., <u>54</u>, 1083 (1976).
- 5 H. Wynberg, H. J. M. Sinnige and H. M. J. C. Creemers, J. Org. Chem., 36, 1011 (1971).
- N. Gjos and S. Gronowitz, Acta Chem. Scand., 25, 2596 (1971).
- 7 A. Gossauer, Die Chemie der Pyrrole, Springer-Verlag, 1974, p. 276.
- 8 B. A. Trofimov, A. I. Mikhaleva, R. N. Nesterenko, A. N. Vasil'ev, A. S. Nakhmanovich and M. G. Voronkov, Khim. Geterotsikl. Soedin, 8, 1136 (1977).
- 9 (a) H. Hemetsberger, D. Knittel and H. Weidmann, Monatsh. Chem., 100, 1599 (1969).
 - (b) H. Hemetsberger and D. Knittel, Monatsh. Chem., 103, 194 (1972).
- 10 H. Berner, G. Schulz and H. Reinshagen, Monatsh. Chem., 108, 285 (1977).
- 11 The simulated spectra have been calculated by using IAOCN3 programm proposed by S. Castellano and A. A. Bothner-By, J. Chem. Phys., <u>41</u>, 3863 (1964).

(Received in UK 13 February 1979)