
l&ah&m Laters. VoL31. No.27. pp 38175820.1990 Oo4OAO39m $3.00 + .OO 
PIhtCdinGrrrtBlith Perg- Ftess pk 

LIGAND-BASED IMPROVEMENT OF ENANTIOSELECTIVITY IN THE CATALYTIC 
ASYMMETRIC DIHYDROXYLATION OF DIALKYL SUBSTITUTED OLEFINS 

Tomoyuki Shibatal, De&n G. Gilheanyz, Brent K. Blackbum and K. Barry Sharpless* 

Department of Chemistry, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 02139, USA 

Summary: A high level of asymmetric induction was achieved in the asymmetric 
dihydroxylation of dialkyl substituted olefins using 9-0-aryldihydroquinidines as ligands. 

The catalytic asymmetric dihydroxylation (ADI- of trans-disubstituted olefins mediated 

by a cinchona alkaloid-osmium tetroxide complex 3~4 is now well established, and useful 

applications of the chiral diol products are starting to appear.5 In our previous reports3 we 

showed that, while the enantiomeric excesses of the diols resulting from ADH of aryl 

substituted olefins using dihydroquinidine (DHQD) pchlorobenzoate 3 were satisfactory 

(>90%), there was room for improvement in the enantioselectivity of the ADH of dialkyl 

substituted olefms. As a part of a continuing effort to develop more effective ligands for the 

ADH, we have prepared and screened a number of cinchona alkaloid derivatives in the 

stoichiometric ADH process.6 One result of this study is the finding that aryl ethers of 
dihydroquinidine (e. g. 1 and 2)W are excellent ligands for the ADH of dialkyl substituted 

olefins. 

1 R: phenyl 

2 R: o-methoxyphenyl 

3 R: pchlorobenzoate 

We first examined the stoichiometric ADH of various dialkyl substituted olefins using the 

phenyl ether derivative 1 (Table 1). The stoichiometric ADH of olefins was performed by 
adding 1 eq of olefm to a 1:l mixture of 0~04 and 1 in dry toluene (O.lM in 1) followed by a 

reductive work-up using LiAlI-I4 to give the (R,R)-diol in 60-95% yield with good to excellent 
enantiomeric excess. It is noteworthy that reactions with a&unsaturated esters also 

proceeded with much improved enantio- and diastereoselectivities (SO%, entries 7 and 8, 

Table 1) using this new ligand 1. By lowering the reaction temperature to -78%, the reaction 

with straight chain dialkyl substituted olefins proceeded with very high enantioselectivities 
(Z93%, entries 2,4 and 6, Table 1). In the several cases which were plotted the variance in ee 
with temperature closely followed the Arrhenius relationship. 
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Table 1. Stoichiometric ADH using 1 

Reaction temp %eea %eea with3 
K) (for comparison) 

0 85 

-78 95 

71 

\h -;8 
88 

93 

0 ‘89 

-78 94 

73 

79 

-COOEt o 90 67 

omCOOMeb o 

t 

(j 
97c ti 

aEnantiomeric excess was determined by GLC or HPLC analysis of the bis-Mosher ester 
derivatives.8’9 ?he reaction was worked up with NaHSOs in H20-THF12c. ‘Diastereo- 
merit excess. 

Next, various DHQD aryllo ether derivatives were examined as chiral ligands for the 

ADH of (E)+hexene (Table 2). Reactions with all of the aryl ether derivatives tried exhibited 
higher enantioselectivities than that with DHQD pchlorobenzoate 3. The highest enantio- 
selectivitiy was obtained with 9-o-(~-methoxyphenyI)_dihydroquinidine (entry 2, Table 2). 

Finally, we examined the new ligand in the catalytic ADH of (El+hexene. The results 
are summarized in Table 3. The catalytic ADH reactions (entries 1-3, Table 3) were carried out 
by slow addition of (EWhexene (1 eq) to a mixture of l(0.25 eq), N-methyhnorpholine 
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Table 2. Stoichiometric ADH of (El-3-hexertea 
- 

in toluene, 0 ‘c g;\ 
* 

2)LAH &-I 
Entry 1 2 3 4 5 

88 81 

aEe with DHQD pchlorobenzoate 3 was 7l% 

76 75 

N-oxide OUMO, 1.5 eq) and OS04 (0.004 eq) in acetone-water (10/l, v/v) at OC, followed by 

work-up with Na&C#b. The catalytic reaction was slow, and slower addition of olefin than 

that in the reaction with 3 was required. However, the reaction proceeded much faster upon 

addition of tetraethylammonium acetate (2 eq> to the reaction mixture (entry 4, Table 3). 

Potassium ferricyanidel* was also examined as the secondary oxidant (entries 5 and 6, Table 

3). In these cases, slow addition of 01&m was not required. To a mixture of (E)-3-hexene (1 
eq), 1 or 2 (0.25 eq), &Fe(CN)6 (3 eq) and Kg@ (3 eq) in terf-butyl alcohol-water (1 /l, v/v) 

was added CkO4 (0.0125 eq) at rt; the resulting mixture was stirred at rt for 20 hr. Reductive 

work-up @Ja#O$ gave the diol in 8590% yield with essentially the same ee as that obtained 

in the stoichiometric reaction.**h 

Table 3. Catalytic ADH of (EWhexene 

Entry L&and 0~04 Secondary Additive Reaction Reaction %ee 

oxidant Temp (Cc) Tie (hr) 

1 1 0.4mol% NM0 0 16 70 

2 1 0.4 NM0 0 30 75 

3 1 0.4 NM0 0 120 85 

4 1 0.4 NM0 Et&JOAc 0 16 82 

5 1 1.25 w+d~~6 Kzco3 rt 20 a3 

6 2 1.25 WeoJ)6 K2co3 rt 20 89 



In conclusion, DHQD pchlorobenzoate 3 is preferable for the ADH of aryl substituted 

olefms while DHQD aryl ether 1 or 2 is advised for the reaction of dialkyl- or alkyl 

carboalkoxy-substituted olefins. Enantioselectivities in the dihydroxylation of dialkyl 

substituted oleiins which were previously only possible through the use of stoichiometric 

reagents at low temperaturel* can now be obtained in the catalytic ADH using these newly 

developed ligands at mom temperature. 
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