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Abstract 

A novel 2D Cu(II) metal-organic framework, [(Cu(L)2(H2O)2(NO3)2]n (namely 1), 

can be synthesized by the self-assemble of 4-(5-methyl-3-pyridine)-1,2,4-triazole 

(namely L) and Cu(II) ion. The as-synthesized MOF 1 has mononuclear {CuN4O2} 

and only one coordination mode of this L. The inorganic parts and organic ligands are 

connected by each other to construct a 2D layer framework. The obtained MOF 1 has 

been characterized and analysed in detail by single crystal X-ray diffraction, powder 

X-ray diffraction (PXRD), elemental analysis, Fourier-transform infrared spectra 

(FT-IR), and thermogravimetric analysis (TGA). Furthermore, MOF 1 has open Cu 

metal sites and lots of N atoms as Lewis basic sites, resulting in that it can be 

employed as a heterogeneous catalysis for chemical transformation of CO2 and 

epoxides into targeted cyclic carbonate and Knoevenagel condensation reaction. It 

also can be reused four times at least without significantly reduced activity for these 

catalytic reactions. 

Keywords: metal-organic framework; catalysis; carbon dioxide; epoxide; 

Knoevenagel condensation reaction. 

Up to now, super large amounts of metal-organic frameworks (MOFs),[1-3] as a 

novel class of inorganic-organic hybrid crystalline materials, have really attracted 

surge of interesting, not only thanks to their fascinating structures,[4-6] but also their 

potential practical applications in small gas adsorption,[7-12] enzyme immobilization,[13, 

14] luminescence sensor,[15-27] optical device material,[28-30] and catalysis[31-35]. Among 

allthe related works, design and preparation of novel MOFs with interesting 

frameworks is still a very interesting research field. Various distinctive constructions 

and topologies have been successfully designed and generated by rationally using the 

synthetic strategy, including organic linker, metal cation, temperature, pH value, 

pressure, and solvent system.[36-39] Innumerous influencing factors, it is almost no 

doubt that the organic linkers really show a very important role to adjust and control 

the skeleton structures. Multifarious methods have been tried to design and prepare 
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novel linkers to synthesize interesting topologies and attractive frameworks. The 

neutral ligands based on pyridine rings without any carboxylic acid groups have been 

widely used to construct cationic MOFs,[40-44] which can be used as host materials for 

exchanging or capturing pollutions. Inspired by many similar investigations on design 

such MOFs, it is also very interesting research area to design and synthesize an 

organic ligand to construct these cationic MOFs in the crystallographic point, which 

not only can form lots of fascinating architectures but also excellent applications. As 

we know, CO2 is a common greenhouse gas to result in a series of serious problems to 

affect people’s life and health. The most promising method to solve this problem is 

CO2 capture and transformation. CO2 as C1 source can react with epoxides to 

generate cyclic carbonates, which is a useful raw and processed material in numerous 

industrial fields.[45] In addition, the Knoevenagel condensation reaction is also a 

common organic reaction and widely used in many application fields. Hence, it is a 

significant important job to design and prepare high-efficient heterogeneous catalysts 

for these reactions. 

In this communication, we selected a neutral organic ligand without carboxylic 

acid groups 4-(5-methyl-3-pyridine)-1,2,4-triazole (namely L).[46] As we expected, 

this ligand can be successfully assembled with Cu(NO3)2 to synthesize a novel 

two-dimensional (2D) cationic MOF material, [(Cu(L)2(H2O)2(NO3)2]n (namely 1). 

The blue block crystals can be generated via mixing this ligand and Cu(NO3)22.5H2O 

in a 20 mL capped vessel containing water and EtOH mixed solution and evaporation 

at room temperature for one week.[47] Meanwhile, the resultant 1 can be considered as 

a high-efficient heterogeneous catalysis not only for chemical conversion of CO2 and 

epoxides into cyclic carbonate without any solvent due to the open metal Cu(II) sites 

as Lewis acid sites, but also can catalyze the Knoevenagel condensation reaction 

because of their Lewis basic sites. 

The single crystal X-ray diffraction data showed that the obtained 2D MOF 1 

crystallizes in the trigonal crystal system and R–3c space group.[48] In the 
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corresponding asymmetric unit, it contains a half Cu(II), one L organic ligand, a half 

NO3
–, one third NO3

–, and one terminal coordinated H2O molecule (Fig. S1). As seen 

in Fig. 1a, the L ligand has only one coordination mode, which connects two 

crystallographic independence Cu(II) cations by the priding N atom and one atom in 

the 1,3,4-triazole group. On the other hand, each Cu(II) has only one coordinated 

mode and octahedral configurationas shown in Figs. 1b and 1c, which is linked with 

four nitrogen atoms (Cu-N = 2.0227-2.0314 Å) form three different ligands and two 

oxygen atoms (Cu-O = 2.4296 Å) coming from two coordinated water molecules. As 

illustrated in Figs. 1d and 1e, the terminal framework shows a 2D structure and packs 

as a hexagon structure, which also contains NO3
– in all structures as counter ions. The 

results obviously demonstrate that 1 not only has lots of open metal Cu(II) sites but 

also contains lots of free nitrogen atoms as Lewis basic sitessimultaneously, resulting 

in its great potential applications, especially in the catalytic field. 

 

Fig. 1.(a) The coordination mode of the L ligand; (b and c) the coordination environment 

octahedral configurationof Cu(II); (d and e) view of a single 2D network and the 2D networks 

along different axises (the hydrogen atoms are omitted for clarity and C, black; N, blue; O, red; Cu, 

green); (f) the triangle in the 2D layer. 

As obviously displayedin Fig. 2a, the TGA result of the fresh as-synthesized 1 

demonstrated a slow weight loss of 28.76% before 300 °C prevailingly due to the loss 
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of guest and coordinated molecules (calculated 28.88%). When the heating 

temperature further increased in air, the structure of MOF 1 began to decompose, 

resulting in the last remnant CuO (expt: 14.83%; calcd: 14.71%). The PXRD profile 

of the as-synthesized solid sample was carried outat ambient temperature. The 

characteristic diffraction lines of prepared 1 are similar with the simulated from the 

single crystal data of 1 (Fig. 2b). The PXRD profiles exhibited that the final phase 

purity of the obtained crystalline materials. 

 

Fig. 2. (a) The TGA data of the as-synthesized 1; (b) the PXRD patterns of the simulated (black) 

and the as-synthesized (red) sample. 

In virtue ofopen Cu(II) metal sites in 1, MOF 1 was applied to as a Lewis acid 

catalysis to investigateits catalytic performancefor the solvent-free conversion of CO2 

and epoxides into cyclic carbonate (Table 1).[49-56] The as-synthesized 1 was collected 

by filtering and drying in air. In a typical trial, a mixture of epoxide substrate 

(20mmol), catalyst (1, 100 mg), and tetrabutylammonium bromide (TBABr, 100mg) 

as a co-catalyst was performed the catalytic reaction with 2.0 MPa CO2 at 85°C for 4 

hours under the free-solvent condition. Table 1 contained the results of the CO2 

cycloaddition reaction with different epoxides, which was easily calculated by using 

the GC method. As seen in entry 1, the propylene carbonate yield of CO2 and 

2-(chloromethyl)oxirane reached up to 99% after 4 hours. Nevertheless, the final 

propylene carbonate efficiencies of only MOF 1 or TBABr were only 8% and 11% 

under the same reaction besides the catalytic as control experiments to illustrate the 

necessary of MOF 1 (entries 2 and 3). The different epoxides were further expanded 
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to investigate the influence of different functional groups for this CO2 reaction using 

MOF 1 as catalytic. The measurement results illustrated that the yields were 

decreased from 99% for propylene oxide to 91% for styrene oxide, 83% for tert-butyl 

glycidyl ether, and 67% of styrene oxide, respectively (entries 4-6). Based on the 

other similar reports, this performance can be predominantly ascribed to large-sized 

epoxides and different electronic effects of these groups in substrates to influence the 

catalytic results.[49-56] The catalytic mechanism may be attributed to the common 

process as the other reports. Firstly, this reaction can be initiated by the interaction 

between the open Cu(II) Lewis site and the oxygen atom in the epoxide ring. Then, 

the epoxide rings are further opened by the Br- ion from TBABr to attack the 

less-hindered carbon atoms from the coordinated epoxides. Subsequently, the oxygen 

anions of the opened epoxy rings can rapidly interact with the surrounding CO2 

molecules to form alkycarbonate anions. Finally, the corresponding cyclic carbonates 

can be achieved through the cyclization process.[49-56] 

Table 1. The catalytic results of cyclic carbonates from CO2 and different epoxides. 

O

R

+  CO2 O O

O

R

1, TBABr

80℃ , 2MPa

 

Entry Substrate Product Yield (%) 

1 
O

Cl
 O

O

O

Cl  

99 

2 
O

Cl
 O

O

O

Cl  

8 

3 
O

Cl
 O

O

O

Cl  

11 
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83 

6 
O

 

O
O

O

 

67 

Meanwhile, the basic catalytic ability of 1 for the Knoevenagel condensation 

reaction was further studied in detail due to the various Lewis basic sites in the whole 

structure like the other previous reports.[57-65] The typical experiment was performed 

as the following condition in Table 2: substrate (1 mmol), malononitrile (1.1 mmol), 

catalyst (1, 100 mg), and toluene (5 mL) in a 20 mL glass flask at 80 °C under 

continuously stirring. The corresponding yields of targeted products were successfully 

monitored by applying the GC approach. Table 2 summed up the results based on 

different aldehyde substrates and malononitrile in the presence of 1. As found in entry 

1 of Table 2, the final yield of 2-benzylidenemalononitrile was about 96% after 

reacting 3 hours. To prove the necessary of MOF 1 for this reaction, the catalytic 

reaction almost didn’t happen in the absent of 1 as a control experiment (entry 2). 

Various different substituted aldehyde reactants have been applied to study the effects 

of different substituents with the catalysis 1. The catalytic results furthermore 

demonstrated that the superior conversions (>99%) can be detected during existing 

the withdrawing groups (–F and –NO2, entries 3 and 4), while the catalytic yields of 

the electron donor groups on the aldehyde for one –OMe group in entry 5 and two 

–OMe groups in entry 6 were reduced to 89 and 74, respectively. The catalytic 

performance is also similar with the previous reports.[57-65] The catalytic mechanism 

for this reaction may be ascribed to lots of N atoms in MOF 1, which can served as 

common Lewis basic sites to activate this reaction like other similar reports.[57-63] 
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Table 2. The yields of Knoevenagel condensation reaction. 

R H

O
+

NC CN
R

CN

CN

1

80 °C, toluene

 

Entry Substrate Product Yield (%) 

1 

  

96 

2 

  

5 

3 

  

>99 

4 

  

>99 

5 

  

89 

6 

  

74 

Additionally, it is significantly important for heterogeneous catalyses to handily 

recollect and reuse after reactions. For MOF 1, it can be recycled by centrifuging at 

8000 rmin-1 for 3 minutes and further re-catalyse these two different reactions. The 

reactions of CO2 and 2-(chloromethyl)oxirane, and benzaldehyde and malononitrileas 

the reaction models. As shown in Fig. 3, Figs. S2, and S3, the PXRD profiles of 

reused 1 after using four times and the catalytic performance both clearly indicated 

that the structure of 1 can retain very well for these catalytic reactions and the 

catalytic effects. The above mentioned results obviously illustrated that 1 can be 

implemented as a bifunctional heterogeneous catalysis for the solvent-free chemical 

transformation of CO2 and epoxides into cyclic carbonate, and the Knoevenagel 
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condensation reaction. 

 

Fig. 3. The recyclability of MOF 1 for chemical transformation of CO2 (a) and 

Knoevenagel condensation reaction (b). 

In conclusion, a novel mononuclear Cu(II)-based metal-organic framework was 

successfully generated, which can be considered as an outstanding heterogeneous 

catalyst for the CO2 cycloaddition reaction and Knoevenagel condensation reaction. 

More importantly, MOF 1 exhibited excellent recyclability for these reactions at least 

four times. We hope that this work can offer a useful and meaningful method to use 

such ligands to synthesize MOFs with targeted functions. 
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Graphical Abstract-Pictogram 

 

A novel mononuclear Cu(II)-based MOF was successfully generated and used as an 

heterogeneous catalyst for the CO2 cycloaddition reaction and Knoevenagel 

condensation reaction. 
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Highlights 

 

1. A novel 2D MOF was fabricated by neutral ligand and Cu(II). 

2. It can be served as a bifunctional heterogeneous catalysis. 

3. It possesses excellent recyclability at least four times. 
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